
RESEARCH ARTICLE

ICD-10 based machine learning models

outperform the Trauma and Injury Severity

Score (TRISS) in survival prediction

Zachary Tran1,2, Arjun Verma1, Taylor WurdemanID
2, Sigrid Burruss2,

Kaushik Mukherjee2, Peyman BenharashID
1*

1 Cardiovascular Outcomes Research Laboratories (CORELAB), David Geffen School of Medicine,

University of California, Los Angeles, California, United States of America, 2 Division of Acute Care Surgery,

Department of Surgery, Loma Linda University Medical Center, Loma Linda, California, United States of

America

* Pbenharash@mednet.ucla.edu

Abstract

Background

Precise models are necessary to estimate mortality risk following traumatic injury to inform

clinical decision making or quantify hospital performance. The Trauma and Injury Severity

Score (TRISS) has been the historical gold standard in survival prediction but its limitations

are well-characterized. The present study used International Classification of Diseases 10th

Revision (ICD-10) injury codes with machine learning approaches to develop models whose

performance was compared to that of TRISS.

Methods

The 2015–2017 National Trauma Data Bank was used to identify patients following trauma-

related admission. Injury codes from ICD-10 were grouped by clinical relevance into 1,495

variables. The TRISS score, which comprises the Injury Severity Score, age, mechanism

(blunt vs penetrating) as well as highest 24-hour values for systolic blood pressure (SBP),

respiratory rate (RR) and Glasgow Coma Scale (GCS) was calculated for each patient. A

base eXtreme gradient boosting model (XGBoost), a machine learning technique, was

developed using injury variables as well as age, SBP, RR, mechanism and GCS. Prediction

of in-hospital survival and other in-hospital complications were compared between both

models using receiver operating characteristic (ROC) and reliability plots. A complete

XGBoost model, containing injury variables, vitals, demographic information and comorbidi-

ties, was additionally developed.

Results

Of 1,380,740 patients, 1,338,417 (96.9%) survived to discharge. Compared to survivors,

those who died were older and had a greater prevalence of penetrating injuries (18.0% vs

9.44%). The base XGBoost model demonstrated a greater receiver-operating characteristic

(ROC) than TRISS (0.950 vs 0.907) which persisted across sub-populations and secondary
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endpoints. Furthermore, it exhibited high calibration across all risk levels (R2 = 0.998 vs

0.816). The complete XGBoost model had an exceptional ROC of 0.960.

Conclusions

We report improved performance of machine learning models over TRISS. Our model may

improve stratification of injury severity in clinical and quality improvement settings.

Background

Traumatic injuries account for 8% of global deaths and have far reaching implications in

chronic disabilities [1]. Given the wide spectrum of injuries, accurate predictive modeling of

mortality in trauma victims is paramount to several clinical and programmatic aims. Such

models may be used to support benchmarking efforts, quality improvement research and real-

time clinical decision-making [2, 3]. However, currently used trauma scores, such as the Injury

Severity Score (ISS), have several significant pitfalls. Initially developed in 1974 for research

and quality monitoring purposes, it is reliant on additional administrative coding, was not

designed to be a comprehensive summary of all injuries and does not consider in-hospital fac-

tors which may be important for adjustment [4–6]. The Trauma and Injury Severity Score

(TRISS) mitigated some shortcomings of the ISS by incorporating physiologic variables rou-

tinely collected upon arrival to the emergency department [7]. Nonetheless, both models rely

on Abbreviated Injury Scale (AIS) data that are not regularly collected in all centers and

require dedicated coders.

More recently, models derived from International Classification of Diseases (ICD) codes

have attempted to address some of the limitations noted in AIS-based risk algorithms. The

Trauma Mortality Prediction Model (TMPM), which employs traditional logistic regression,

has garnered interest as a feasible alternative [8, 9]. Nonetheless, this methodology fails to

account for the complex interplay of injuries and their impact on mortality. Machine learning

(ML)-based models, whose strengths lie in complex outcome prediction, may incorporate

these relationships through their decision tree architecture [10, 11]. Its prior applications have

included predicting complications following shoulder arthroplasty, bleeding following colonic

resection, among others [12]. In fact, recent work from our group demonstrated improved dis-

crimination and calibration of eXtreme gradient boosting (XGBoost), a ML approach, in mor-

tality prediction compared to logistic regression, ISS and TMPM [13].

Given that our prior work only incorporated injury variables, our aim was to determine

whether inclusion of physiologic factors augment the model’s power in predicting mortality

[14, 15]. Although the TRISS score has not been validated for outcomes other than survival, we

additionally sought to explore the validity of both ML and TRISS models in a number of in-

hospital complications. In the present study, we used ICD-10 injury codes in conjunction with

vital signs, Glasgow Coma Scale (GCS), age and mechanism to develop and validate an

improved machine learning model. We hypothesized that our model would persistently dem-

onstrate superior performance compared to TRISS and would have high performance in pre-

diction of in-hospital complications.
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Materials and methods

Data source and study population

Patients of all ages admitted following traumatic injury were identified using the National

Trauma Data Bank (NTDB) from October 2015 to December 2017. The NTDB is the largest,

voluntarily reported national trauma database in the United States with greater than 10 million

aggregate records from nearly 800 participating hospitals. Patients with traumatic mechanisms

of injury were identified using ICD-10-CM codes V00-Y99. Those who sustained burn injuries

or had admissions from drowning/submersion, environmental or exertional causes (ICD-

10-CM: W65-W99, X00-X50) were excluded to enhance patient homogeneity. Patients trans-

ferred to another hospital or with missing survival information, were excluded (9.0%: 2.5%

transferred out, 6.5% missing survival).

Study variables and outcomes

The ISS for each patient is submitted by the respective trauma center through AIS coding and

quantifies injury severity with a range of 1–75 (ISS). It is calculated as the sum of squares for

the highest AIS scores for the three most severely injured body regions. The TRISS score,

which comprises the ISS, age, mechanism (blunt vs penetrating) as well as the highest 24-hour

values for systolic blood pressure (SBP), respiratory rate (RR) and GCS was calculated for each

patient. Patients with missing values for any of the above variables were excluded from further

analysis (14.3% patients).

Variables used in the ML models were derived using ICD-10-CM codes, with each patient

having a maximum of 50 injury codes. They contain descriptors for “initial encounter”, “sub-

sequent encounter”, and “sequela.” To ensure that only first-time injuries were evaluated, anal-

ysis was limited to injury codes that specify “initial encounter.” Codes are compiled at the end

of each patient’s hospitalization using documentation from medical examiners and operative

reports, radiologic studies as well as physicians’ notes. In the present study, 8,021 ICD-10-CM

codes were grouped by clinical relevance into 1,495 final variables, as previously described by

our group [13]. Notably, both ISS and ICD-10-CM nomenclature describe “unsurvivable”

injuries. Codes and patients that sustained these injuries were retained in our study. To ensure

a fair comparison of ML and TRISS, a base ML model was developed to include mechanism of

injury, age, SBP, RR and GCS. The full ML model, which contained additional NTDB-pro-

vided variables shown in S1 Table, was also developed. A schematic demonstrating variables

used in each model is shown in S1 Fig.

The primary outcome of the study was survival to discharge at index hospitalization. Sec-

ondary outcomes included in-hospital stroke (ischemic or hemorrhagic stroke), cardiac com-

plications (myocardial infarction, non-traumatic cardiac arrest, ventricular arrhythmia),

pneumonia, acute respiratory failure (ARF) (acute respiratory distress syndrome), deep vein

thrombosis (DVT), pulmonary embolism (PE), massive transfusion (�10 units within 24

hours), acute kidney injury (AKI), infection (surgical site infection, line infection, sepsis) and

need for intensive care unit (ICU) admission. Outcomes were defined using the NTDB data

dictionary and ICD-10-CM codes defined elsewhere [16]. For secondary outcomes, the base

ML and TRISS models were compared. Importantly, the TRISS was validated for survival, but

not for the secondary outcomes. Analysis was performed in order to provide a reference group

with the ML model.

Statistical analyses

Categorical variables are reported as proportions while continuous variables are reported as

medians with interquartile range (IQR). Patient demographics were assessed using the
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Kruskal-Wallis and the chi-square tests for continuous and categorical variables, respectively.

Standard mean differences (SMD) were obtained to adjust for population size. We developed

models with the XGBoost algorithm, a machine learning technique in which decision trees are

trained in a stage-wise manner [17]. Using errors from previous iterations, models are refined

with the development of each subsequent decision tree. This technique of sequential training

of decision trees is called gradient boosting. The final output is the average prediction of all

individual decision trees. The performance of an XGBoost model can be optimized through

tuning of hyperparameters, which are used to control the learning process. Hyperparameter

tuning was performed using the RandomizedSearchCV function in Python. This tool ran-

domly searches through a broadly defined hyperparameter space and evaluates models using

the cross-validated greatest area under the receiver operating characteristic curve (ROC). The

hyperparameters that yield the highest ROC are chosen. In the present study, a negligible

impact of hyperparameter tuning was noted; therefore, default values were maintained (S2

Table) [18].

Model development and training

For all analyses, covariates used are shown in S1 Fig with patients randomly assigned into deri-

vation (50%) and validation (50%) cohorts. Models were evaluated using 10-fold cross-valida-

tion for out of sample performance. To assess generalizability across patient cohorts,

sensitivity analysis was performed on six subgroups of patients, including those (1) with

head injuries, (2) without head injuries, (3) with penetrating or (4) blunt traumatic mecha-

nisms, (5) <50 years old and (6)�50 years old. Head injuries were defined as patients who

had at least one cranial injury code as previously defined [13].

Model discrimination was compared using the ROC, precision (positive predictive value),

recall (sensitivity), specificity and with confusion matrices. Precision-recall curves were con-

structed to show sensitivity and positive predictive value across all risk-thresholds [19]. Reli-

ability plots were constructed by plotting observed versus expected mortality rates and

compared using the coefficient of determination (R2). The Brier score was used to measure the

accuracy of probabilistic predictions [20]. Finally, SHapley additive values were utilized to

enhance the interpretability of our ML model. This method uses game theory principles to

estimate the incremental impact of variable value on the output of a decision tree model [21].

The resulting SHAP summary plot generated from these values combines feature importance

with feature effects on a model.

To account for a large number of missing values for components of the TRISS score, sensi-

tivity analysis was performed using simple imputation. Medians were used for continuous var-

iables while the mode was used for categorical values. Statistical significance was defined as

α<0.05 and SMD>0.1. All analyses were conducted using Stata 16.0 (StataCorp LLC, College

Station, TX) and Python 3.8.10 libraries: pandas 1.1.5, sklearn 0.24.2, xgboost 1.6.1 and shap
0.40.0 [17, 21–23]. This study was deemed exempt from full review by the Institutional Review

Board at the University of California, Los Angeles due to its de-identified nature and informed

consent was not necessary. The study was in accordance with the Strengthening the Reporting

of Observational studies in Epidemiology (STROBE) guidelines.

Results

Of 1,380,740 patients included for analysis, 1,338,417 (96.9%) survived to discharge. Com-

pared to survivors, those who died had a greater prevalence of penetrating injuries (18.0% vs

9.44%, SMD = 0.25). As shown in Table 1, patients who died were older had higher ISS scores

and more injuries. While respiratory rate was similar across groups, GCS and systolic blood
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Table 1. Demographic comparison of those who died and those who survived.

Died (n = 42,323) Survived (n = 1,338,417) p-value SMD

Age (years) (IQR) 61 (35–78) 51 (27–70) <0.001 0.32

WHO Age Category (years) <0.001 0.34

�4 1.94 0.72

5–14 4.61 1.39

15–24 13.0 11.0

25–34 13.0 10.9

35–54 21.7 17.5

55–74 26.1 27.9

�75 19.6 30.6

Injury severity score (IQR) 25 (14–30) 6 (4–10) <0.001 1.3

Median number of injuries (IQR) 5 (2–8) 2 (1–4) <0.001 0.76

Glasgow Coma Scale (IQR) 4 (3–15) 15 (15–15) <0.001 -1.66

Respiratory rate (IQR) 18 (16–22) 18 (16–20) <0.001 0.075

Systolic blood pressure (IQR) 131 (104–156) 136 (121–153) <0.001 -0.21

TRISS survival probability 43.6 (11.1–82.5) 98.0 (91.7–99.6) <0.001 -1.8

Female sex 28.7 37.3 <0.001 -0.18

Insurance type <0.001 0.30

Private 26.2 35.8

Medicare 36.9 28.2

Medicaid 12.2 16.7

Self-pay 15.9 10.5

Other/unknown 8.86 8.77

Ethnicity <0.001 0.08

White 66.3 67.5

Black 14.8 14.0

Hispanic 9.94 11.4

Asian/Pacific islander 2.59 2.14

Other/unknown 6.38 4.98

Penetrating mechanism 18.0 9.44 <0.001 0.25

Mechanism stratified <0.001 0.50

Gunshot wound 16.2 4.41

Stabbing injury 1.79 4.97

Blunt injury 3.6 9.1

Fall 42.3 46.2

Motor vehicle collision 18.4 19.7

Motorcycle collision 7.17 8.00

Motor vehicle vs pedestrian 10.0 6.48

Other 0.54 1.11

Positive blood alcohol level 12.2 11.5 <0.001 0.02

Positive illicit drug screen 9.60 10.2 <0.001 0.02

Positive prescription drug screen 5.00 5.47 <0.001 0.02

History of stroke 3.91 2.49 <0.001 0.08

Smoking history 9.34 19.6 <0.001 0.30

Chronic obstructive pulmonary disorder 8.82 6.34 <0.001 0.09

Congestive heart failure 7.23 3.21 <0.001 0.18

History of myocardial infarction 1.65 0.93 <0.001 0.06

Hypertension 33.2 30.7 <0.001 0.05

(Continued)
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pressure were lower than those who died (Table 1). Furthermore, patients who died were

more commonly male sex and were more frequently insured by Medicare. They also had sig-

nificantly higher rates of congestive heart failure and end stage renal disease. Patients who

died were more likely managed at ACS and state designation Level I trauma centers.

As shown in Fig 1, the base XGBoost model demonstrated a greater ROC than TRISS

(0.950 (95% CI: 0.949–0.950) vs 0.907 (95% CI: 0.907–0.907)). Additionally, greater classifica-

tion accuracy, defined by improved precision and recall, was achieved by XGBoost. Compared

to TRISS, the base XGBoost model correctly classified 20.1% more patients as observed in the

confusion matrices (Fig 2). Superior discriminatory and classification performance for the

XGBoost model persisted in all studied sub-populations (S3 Table). This model exhibited high

calibration across all risk levels as demonstrated in Fig 3 (R2 = 0.998 vs 0.816). Notably, the

large confidence intervals around the TRISS calibration curve allude to the instability of the

Table 1. (Continued)

Died (n = 42,323) Survived (n = 1,338,417) p-value SMD

Peripheral vascular disease 1.17 0.58 <0.001 0.06

End stage renal disease 3.63 1.51 <0.001 0.13

Liver cirrhosis 2.68 0.86 <0.001 0.14

Diabetes 15.9 12.7 <0.001 0.09

Bleeding history 7.84 4.46 <0.001 0.14

Disseminated cancer 1.62 0.55 <0.001 0.10

Alcohol use disorder 6.78 6.28 <0.001 0.02

Psychiatric disorder 7.91 10.0 <0.001 0.07

History of drug use 3.72 5.78 <0.001 0.09

ADD / ADHD 0.39 1.17 <0.001 0.09

Dementia 6.07 4.10 <0.001 0.09

Advanced directive limiting care 8.65 2.15 <0.001 0.29

Dependent functional status 7.29 5.33 <0.001 0.08

ACS trauma level designation <0.001 0.21

I 21.0 16.9

II 11.0 10.4

III 0.80 1.86

Missing/not applicable 67.2 70.8

State trauma level designation <0.001 0.18

I 52.2 45.5

II 28.6 28.9

III 4.52 7.89

IV 0.20 0.34

Missing/not applicable 14.4 17.3

Hospital teaching status <0.001 0.12

University 49.4 43.8

Non-teaching 13.8 16.7

Community 36.7 39.3

Missing/not applicable 0.05 0.16

Non-profit hospital 6.20 6.15 0.63 0.002

Reported as proportions unless otherwise noted. p-values and standard mean difference (SMD) between multiple groups demonstrate significance across group. ADD/

ADHD: attention deficit disorder / attention-deficit/hyperactivity disorder, WHO: World Health Organization, ACS: American College of Surgeons.

https://doi.org/10.1371/journal.pone.0276624.t001
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model in predicting survival after trauma. The complete model, which consisted of injury vari-

ables, vitals, and patient demographics, exhibited a ROC of 0.960 (95% CI 0.960–0.960). Fur-

thermore, it had exemplary calibration and precision-recall (S2 & S3 Figs).

Unadjusted incidence of secondary outcomes is shown in S4 Table. On adjusted analysis

(Fig 4), the base XGBoost model consistently demonstrated excellent discrimination, precision

and recall compared to TRISS across all secondary outcomes (S5 Table). In particular, the

model performed particularly well in the prediction of massive transfusion with a ROC of

0.986 (95% CI: 0.986–0.986). Importantly, the balanced accuracy of both TRISS and ML mod-

els were poor in most in-hospital complications. The XGBoost model did; however, have an

acceptable balanced accuracy in regards to ICU admission and massive blood transfusion.

The base XGBoost model was interpreted using SHapley summary plots, which rank the

predictors of survival by their relative importance. As shown in Fig 5, red dots correspond to

higher variable values, while blue dots indicate lower values. Age was the most important pre-

dictor, with younger age corresponding with improved survival. Lower GCS and SBP por-

tended reduced survival while lower values of RR was associated with improved survival.

Fig 1. A) Area under the curve (AUC) and B) precision-recall curves comparing XGBoost and TRISS.

https://doi.org/10.1371/journal.pone.0276624.g001

Fig 2. Confusion matrices of XGBoost and TRISS models demonstrating results from testing data.

https://doi.org/10.1371/journal.pone.0276624.g002
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Among the injury variables studied, head injuries were deemed of high importance, compris-

ing 40% of the top twenty most salient features. While subdural hemorrhage was associated

with mortality, concussion-related injuries were associated with survival.

Separate sensitivity analyses were performed to include those with any missing physiologic

variables (14.3% of patients, n = 1,611,063). To account for missing values, imputation was

used with continuous variables imputed as medians and categorical variables as the mode. As

shown in S6 Table, all XGBoost models were re-analyzed and the results remained similar.

Additional analyses were performed using a 60:40 training:validation split, and World Health

Organization (WHO) age as a categorical value and the observed results were similar (S7

Fig 3. Calibration curves comparing XGBoost with TRISS.

https://doi.org/10.1371/journal.pone.0276624.g003
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Fig 4. Area under the curve (AUC) of secondary outcomes of interest with corresponding 95% confidence intervals. PE: pulmonary embolism,

ARF: acute respiratory failure, DVT: deep vein thrombosis, AKI: acute kidney injury, ICU: intensive care unit.

https://doi.org/10.1371/journal.pone.0276624.g004

Fig 5. SHAP plot demonstrating the 20 most important features in the XGBoost model. Features ranked by descending importance. Red points

designate higher values for that feature while blue points denote lower values.

https://doi.org/10.1371/journal.pone.0276624.g005
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Table). In the WHO age�75 years subset, the performance of ML models was persistently

improved compared to TRISS but was slightly diminished compared to the base model exam-

ining all ages.

Discussion

With potential applications in benchmarking and quality improvement, mortality prediction

has been of great interest in trauma. Machine learning-based models, which utilize robust

mathematical methodologies and account for nonlinear relationships among covariates may

provide an opportunity for improvement towards this goal. The present study used previously

validated ICD-10-CM injury variables in conjunction with patient demographics and vitals to

predict survival with a machine learning algorithm. Compared to the TRISS, XGBoost demon-

strated significantly improved classification and calibration. Its performance was maintained

across other in-hospital outcomes assessed but balanced accuracy was relatively poor. In addi-

tion, the complete XGBoost model had high performance, validating its possible utility as a

mortality prediction model. Finally, we observed several patient demographics and injury fea-

tures that were associated with survival. These findings warrant further discussion.

In agreement with our prior work, ML-based models were shown to have improved perfor-

mance compared to preexisting injury tools [13]. These findings were anticipated given the

XGBoost model’s greater ROC and better calibration following injury variable-only adjust-

ment compared to ISS and TMPM. Greater performance is likely explained by the extensive

number of features used and the decision architecture’s ability to account for multicollinearity

as well as non-linear relationships. Its strengths persisted across all studied sub-populations

and was augmented further following additional patient characteristics. Of note, we observed

slightly diminished performance when assessing older patients (�50 and�75 years) compared

to the model including all ages. This may be, in part, due to diminished preinjury functional

status that is not accounted in the base model [24]. Nevertheless, the present study, to our

knowledge, provides the highest performance model for mortality classification to date.

In regards to secondary outcomes, the XGBoost models demonstrated overall greater per-

formance compared to TRISS. However, it is important to consider that the balanced accuracy

of ML and TRISS models were relatively poor. These findings likely relate to the skewed rates

of secondary outcomes reported in the NTDB. In addition, the TRISS was created for survival

prediction and has not been validated for our studied secondary outcomes. We recognize our

application of TRISS was not its intended use. To date, there are no validated prediction scores

present that encompass all our studied in-hospital complications. Given similar variables

between both models, we sought to explore its performance to provide a comparison basis for

the XGBoost models. Nevertheless, our model highlights potential applications of ML

approaches beyond mortality prediction.

We observed several patient and injury characteristics to be associated with survival. Youn-

ger age, higher GCS scores and greater SBP were expectedly associated with higher likelihood

of survival. Furthermore, SHapley interpretation revealed that subdural hemorrhage was asso-

ciated with lower rates of survival while concussion-related injuries, including those without

loss of consciousness,�30 minutes, or of unspecified duration, appeared to be protective.

With machine learning methods and the complex interplay of injury interactions, it may be

difficult to ascertain reasons for this finding. However, it is possible that relative to intracranial

bleeding and other more severe head injuries, mild concussions may exhibit a protective effect

in the model. Notably, our outcome evaluated in-hospital mortality and does not reflect the

long-term sequelae of concussions that have been well-documented elsewhere [25–28]. None-

theless, our findings add to the growing body of literature regarding autonomous variable
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selection employed by machine learning approaches that may reduce external bias and

enhance generalizability.

The family of models presented herein may have several practical and important applica-

tions. First, it could be implemented into the electronic medical record and provide an

updated estimate of survival over time. As the relevant injury ICD codes for the patient and as

well as vitals are entered in the electronic system, the model would generate a predicted rate of

mortality and other complications. While the present study evaluated the highest values within

the first 24 hours of admission, an ideal model would be able to capture multiple points tempo-

rally and provide accurate estimates at any interval. With nearly perfect model calibration, our

model could be applied as a risk-stratification tool that could guide resource allocation and

shared decision-making. Finally, our model may have uses in hospital benchmarking. With

appropriate adjustment for injury, risk adjusted outcomes could be used by initiatives such as

the ACS Trauma Quality Improvement Program (TQIP) [29, 30].

Our study has several important limitations including those inherent to its retrospective

nature. The NTDB is a convenience sample and is predicated on voluntary submission by

trauma programs. Variable collection likely differs among institutions which may cause a large

number of missing values that sensitivity analysis with simple imputation may inadequately

address. Additionally, results may not be entirely generalizable to non-participating centers

particularly those not in the United States. As the number of hospitals is unable to be ascer-

tained, we were also unable to perform analysis that accounted for patient clustering within

each hospital. Despite greater granularity of ICD-10 coding compared to ICD-9, 22.8% of

injury variables used contained “unspecified” information. They were included in our analysis

to provide the most inclusive analysis of all existing injury variables. Furthermore, injury

codes in NTDB are compiled at the end of hospitalization which may limit its utility as a real-

time prediction score due to reliance on accurate coding and retrospective scoring. Future

studies are needed to prospectively validate these findings.

In summary, machine learning-based approaches outperform the TRISS in survival predic-

tion following trauma-related admissions. The addition of patient comorbidities to our model

resulted in exceptional discriminatory performance which persisted across risk strata. With

excellent performance in prediction of several in-hospital outcomes, our findings further dem-

onstrate the value of machine learning algorithms in trauma.
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