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Optical manipulation of neuronal activity has rapidly developed into the most powerful
and widely used approach to study mechanisms related to neuronal connectivity over a
range of scales. Since the early use of single site uncaging to map network connectivity,
rapid technological development of light modulation techniques has added important new
options, such as fast scanning photostimulation, massively parallel control of light stimuli,
holographic uncaging, and two-photon stimulation techniques. Exciting new developments
in optogenetics complement neurotransmitter uncaging techniques by providing cell-type
specificity and in vivo usability, providing optical access to the neural substrates of behav-
ior. Here we review the rapid evolution of methods for the optical manipulation of neuronal
activity, emphasizing crucial recent developments.
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INTRODUCTION
An understanding of the physiological mechanisms involved in
conscious and subconscious processes in the nervous system
requires tools to manipulate and observe the activity of living
neurons at spatial and temporal scales relevant to the investigative
problem. The complexity and scale of neuronal interconnections
drive the demand for faster and more spatially precise physiology
research tools. Regardless of the neurophysiology model system,
amplified electrical recordings and chemical observations and
manipulations are tried and true techniques that have seen wide-
spread use since the dawn of neuroscience. The most common
technique for manipulating synaptic inputs, electrical stimula-
tion, has severe disadvantages over newly available alternatives.
One is the number and flexibility of stimulation sites. Even with
multielectrode arrays, the number of sites is typically less than
100. Furthermore, there is no flexibility in the spatial arrange-
ment or the size of stimulation sites as electrodes are arranged
on a fixed grid and the location of sites is determined by the
placement and orientation of the grid. Another disadvantage of
electrical stimulation is its poor anatomical specificity as it mostly
activates fibers of passage and not somata and dendrites (Nowak
and Bullier, 1998) and results in antidromic activation of neu-
rons. This is particularly problematic in regions of the brain
like the neocortex, where a high density of axons originating
from multiple brain regions passes through every cortical layer.
More recently, optical techniques for the bidirectional control
of neuronal excitation have overcome many technical barriers,
including exceptionally high spatial and temporal precision, and
cell-type specificity. The following review provides a brief history
of optical stimulation techniques and discusses the experimental
strengths and weaknesses of a variety of different photostimula-
tion approaches. The strengths and weaknesses of the different
light modulation techniques are summarized in Table 1 with a

comparison of caged neurotransmitters and light-sensitive ion
channels in Table 2.

CAGED NEUROTRANSMITTERS
The development of caged compounds has had a profound effect
on the biological sciences. A caged compound is formed by chemi-
cally altering a normally physiologically active molecule to include
a covalently bonded functional group, often called a “protecting
group” or simply a “cage.” In order qualify as a caged compound,
the protecting group must have several properties. First, the cage,
when chemically bonded, must render the caged molecule biologi-
cally inactive while minimizing other physiological consequences.
Second, the cage must be quickly and specifically removed by pho-
tolytic cleavage. In most cases, the action spectrum of photolytic
cleavage for caged compounds is in the UV spectrum. UV light,
therefore, can control the active concentration of the caged mol-
ecule in a temporally (microsecond) and spatially (micrometer)
precise manner. Finally, the photoreleased caged must be itself
biologically inert such that photolytic activation of the caged com-
pound results only in the action of the target molecule, and not
the protecting group.

The utility of caged compounds in biology was first demon-
strated with caged ATP (Kaplan et al., 1978). Neuroscience, though,
has arguably gained the most from the development of caged
compounds through the availability of caged neurotransmitters.
In the vertebrate brain, neurotransmitters are released in com-
plex spatial and temporal patterns at synaptic connection between
neurons. With approximately 1011 neurons and 1014 synapses in
the human brain, the spatiotemporal patterns of neurotransmit-
ter release and postsynaptic activation are exceptionally complex.
Caged neurotransmitters allow investigators to study the dynamics
of neurotransmitter release. Photoliable amino acid neurotrans-
mitters were first synthesized in 1990 (Wilcox et al., 1990) and then
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Table 2 | Photostimulation substrates.

Caged neurotransmitters Light-sensitive ion channels

Cell-type specific/genetically targetable No Yes

Bidirectional Yes – demonstrated with 2P only (Kantevari et al., 2010) Yes – with expression of multiple channels and

multicolor photostimulation (Han and Boyden, 2007)

Activates axons of passage No Ectopic: yes – Modified endogenous: no

In vivo applicability No Yes

Reference Araya et al. (2006a,b), Bloodgood (2005), Boucsein

et al. (2005), Callaway and Katz (1993), Canepari et al.

(2001), Corrie et al. (1993), Dalva et al. (1997), Far-

ber and Grinvald (1983), Fedoryak et al. (2005), Fino

et al. (2009), Furuta et al. (1999), Gasparini and Magee

(2006), Ghezzi et al. (2007, 2008), Godwin et al. (1997),

Golan et al. (2009), Gordon et al. (2009), Harvey and

Svoboda (2007), Jerome et al. (2011), Kandler et al.

(1998), Kantevari et al. (2010), Katz and Dalva (1994),

Liang et al. (2011), Losonczy and Magee (2006), Loson-

czy et al. (2008), Maier et al. (2007), Makara et al.

(2009), Matsubara et al. (1992), Matsuzaki et al. (2001,

2004, 2008), Nikolenko et al. (2007), Papageorgiou

and Corrie (2000), Papageorgiou et al. (1999), Pettit

et al. (1997), Richardson et al. (2009), Shembekar et al.

(2005), Shepherd et al. (2003), Shoham et al. (2005),

Suga et al. (1998), Trigo et al. (2009), Volgraf et al.

(2007), Wang et al. (2000), Wilcox et al. (1990), Zahid

et al. (2010), Zhang et al. (2008b)

Abbott et al. (2009a,b), Adamantidis et al. (2007),

Alilain et al. (2008), Aravanis et al. (2007), Arenkiel

et al. (2007), Atasoy et al. (2008), Banghart et al.

(2004, 2006), Bi et al. (2006), Blaustein et al. (2000),

Boyden et al. (2005), Cardin et al. (2010), Carter

et al. (2009), Chambers and Kramer (2008), Dhawale

et al. (2010), Douglass et al. (2008), Fortin et al.

(2011), Gorostiza and Isacoff (2007), Govorunova

et al. (2011), Han and Boyden (2007), Gunaydin et al.

(2010), Hira et al. (2009), Huber et al. (2008), Ishizuka

et al. (2006), Lewis et al. (2009), Li et al. (2005),

Liewald et al. (2008), Lima and Miesenböck (2005),

Lin et al. (2009), Nagel (2002), Nagel et al. (2003,

2005), Petreanu et al. (2007), Schroll et al. (2006),

Szobota et al. (2007),Tønnesen et al. (2009), Volgraf

et al. (2006), Wang et al. (2007a), Zemelman et al.

(2002), Zhang et al. (2008a,b), Mohanty et al. (2008)

first use in elucidating the kinetics of the nicotinic acetylcholine
receptor (Matsubara et al., 1992).

Glutamate is the primary excitatory neurotransmitter in the
brain and is consequently the most commonly used caged
neurotransmitter today. Virtually every neuron type in the ver-
tebrate and invertebrate nervous system is activated by glutamate
making the use of this caged neurotransmitter universally effec-
tive. Several different caged variations are in use with each having
unique properties (discussed later). The first use of caged gluta-
mate was to study the glutamatergic activation of the giant squid
synapse (Corrie et al., 1993) and later for the mapping of func-
tional circuitry in the acute brain slice preparation (Callaway and
Katz, 1993). Before the availability of caged neurotransmitters, a
light-based mapping system was proposed (Farber and Grinvald,
1983), however, this system induced action potentials by irre-
versibly damaging or killing the targeted cell and also stimulated
axons of passage, making mapping of connections in axon-dense
brain regions impossible.

Caged glutamate is currently most widely used in studies of
synaptic physiology, synaptic plasticity, and functional circuitry in
both normal and diseased states. The utility of any photostimula-
tion system depends critically on the method of light modulation,
which determines the spatiotemporal complexity of stimulus pat-
terns. Various methods of photostimulation are discussed below,
including the recent developments of ectopic or reengineered

light-sensitive ion channels. Caged calcium has also contributed
immensely to neuroscience as reviewed by Ellis-Davies (2008).
Since caged calcium is most instrumental in studies of single-cell
physiology, we have omitted further discussion of its use here and
have focused this review on photostimulation techniques related to
the investigation of circuits, networks, and integrative properties
of neurons.

UNCAGING WITH ULTRAVIOLET LIGHT
Currently, the most common scheme for photostimulation
involves an objective-focused ultraviolet beam for scanning
uncaging patterns. Due to a lack of commercialization of this
method, multiple variations exist with no two systems being
exactly identical, so this review will survey the various components
of these systems in generalities.

The selection of an excitation light source is flexible and
contributes greatly to the variability of system configurations.
In the earliest systems and in many still used today, a xenon
flash lamp directly coupled to the epifluorescence port is used
to generate the photolyzing UV radiation (Callaway and Katz,
1993). More commonly though, lasers (Dalva and Katz, 1994;
Katz and Dalva, 1994) are used because of their high output
power, narrow emission spectrum, and other technical advan-
tages such as fiber optic coupling and alignment simplicity. How-
ever, even the choice of laser varies greatly, with success reported
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with pulsed frequency-tripled Nd:YVO4, q-switched DPSS lasers
(Shepherd et al., 2003), continuous wave argon lasers (Dalva and
Katz, 1994; Katz and Dalva, 1994), or excimer dye lasers (Maier
et al., 2007), all of which are set up to emit in the near UV
(315–380 nm), the wavelength band with the highest uncaging
yield. Uncaging success has also been achieved with 405 nm
visible-light (Trigo et al., 2009), which offers slightly decreased
phototoxicity and tissue scattering at the cost of lower photolytic
efficiency.

The position of the photostimulation target is modulated in a
few different ways. With stationary scopes, a low power (5–10×)
objective provides a large field of view while the beam is steered
into position by a pair of galvanometric mirrors and coupled to
the microscope’s epifluorescence port. With this method, the pre-
cise focal depth is difficult to control due to different targets in the
field of view having different path lengths, so a low NA objective
to generate a cylindrical beam is required.

The other common method expands the beam to fill the back
aperture of a high NA, high magnification objective, generating a
conical uncaging beam. The position of photorelease in the slice
is modulated by a double- or triple-axis translating stage, mov-
ing the target of photostimulation relative to the fixed position of
the photolysis site. Alternatively, fiber coupling of the UV source
to the epifluorescence port allows the stage to be fixed while the
stage-mounted microscope is moved to new targets. While this
scheme is mechanically more complex and results in slower scans,
systems of this type use light more efficiently, as explained in the
next paragraph.

The rate at which caged compounds are released from their
cage is an important parameter in photostimulation experiments
as it determines the speed at which responses can be induced (i.e.,
the temporal precision of action potential induction). This rate
is dependent on the flux density (i.e., the number of photolytic
photons in a given volume) at the target stimulation site. In con-
ical beams, the focal point of the beam has a higher flux density
than any other point in the beam while in a cylindrical beam,
the flux density is the same throughout the beam. Consequently,
when using a cylindrical beam, greater total power is required to
match the flux density at the focal point of a conical beam. With
the higher total-power in cylindrical beams, the uncaging medium
above the target site is subject to the same flux density and thus
same high rate of caged compound release, while in conical beams,
the rate is focused and optimal at the object plane exclusively. As a
result, the practical lifetime of recirculated caged glutamate solu-
tion is slightly reduced in galvanometric mirror systems, which
also require more-expensive higher-power light sources to achieve
the same photolysis rate at the intended target.

A few unique variations of UV photostimulation systems are
in current use, each with its own advantages. Introduction of
galvanometric-mirror-modulated excitation light from beneath
the recording chamber has eliminated the problem of excessive
bath solution uncaging as the majority of the excitation light is
dissipated within the slice before passing through the bath solu-
tion (Boucsein et al., 2005). This system also allows very fast
scans over a large field of view. Very fast scans have also been
realized with an acousto-optic deflector used as a beam position
modulator (as opposed to galvanometric scanners; Shoham et al.,

2005). This system also allows for the study of synaptic integra-
tion of pseudo-synchronous input, as beam position updates can
occur on the scale of 50 μs per spot, although over a smaller area
(170 μm × 170 μm). While faster and technically less difficult to
implement, the light throughput of acousto-optic systems is lower
than galvanic mirror systems as the acousto-optic medium absorbs
a significant amount of light.

The practical spatial limitation for uncaging applications is the
radius of glutamate release around a focused uncaging site. Under
normal circumstances, the theoretical diffraction-limited optical
resolution and practical uncaging resolution (i.e.,uncaging radius)
are different by several orders of magnitude. In thick, inhomoge-
neous media like brain slices, the uncaging resolution is limited by
light scatter and diffusion of uncaged glutamate. At these ultra-
violet wavelengths, the theoretically calculated Rayleigh criterion
(r = 1.22λUV/2NAobj) predicts an optical resolution of <1 μm
while the minimum resolvable distance between uncaging spots is
typically around 50–100 μm. Thus in most standard UV uncaging
setups, target sites have to be spaced by 50 μm or more to activate
non-overlapping populations of neurons.

While most UV photostimulation systems do not achieve
single-cell resolution, they do allow investigators to resolve laminar
organization of synaptic input to the postsynaptic cell. Resolution
may be increased by recently described holographic uncaging sys-
tems (Golan et al., 2009; Dal Maschio et al., 2010). However, this
elegant but technically complex and expensive technique may have
as many disadvantages as advantages. First, excitation spots can-
not be chosen arbitrarily but must be generated by holographic
reconstruction of fluorescent images with computationally com-
plex algorithms, requiring genetically tagged or dye-filled neurons
to stimulate. Second, the light modulator, a liquid-crystal spatial-
light-modulator (SLM), has a relatively slow refresh rate (approx-
imately 60 Hz), limiting its ability to present sequential spatial
patterns and therefore spatiotemporally complex stimuli. Finally,
while a holographic system has demonstrated the ability to induce
action potentials in single-cells (Zahid et al., 2010), the speed
and temporal precision of excitation by laser scanning systems
is much greater. However, the potential for mapping synaptic con-
nections at a single-cell spatial precision is a significant advantage
and holographic photostimulation may also prove instrumental in
studies of dendritic spatial integration by taking advantage of the
improved resolution of direct-dendritic stimulation. Resolution
has also been improved with a system utilizing the principles of
total-internal-reflection (TIRF) microscopy in which an evanes-
cent wave of UV light was used to activate caged calcium near
the surface of coverslip-cultured cells (Suga et al., 1998). However,
this system probably has low utility in an acute slice preparation
in which most of the viable presynaptic cells are outside the reach
of an evanescent wave.

A large number of caged glutamate variants have been synthe-
sized, including a reversibly caged glutamate (Volgraf et al., 2007)
and a double-caged glutamate for slightly improved UV resolution
at the expense of a higher-power requirement (Dalva et al., 1997;
Pettit et al., 1997; Wang et al., 2000). A visible-light-sensitive caged
glutamate was first described in 2005 (DECM–glutamate; Shem-
bekar et al., 2005). The decreased cost of visible-light sources is an
obvious advantage and makes photostimulation systems attainable
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for more labs, but visible-light-sensitive caged neurotransmitters
are also advantageous because visible-light scatters significantly
less in tissue, improving the effective resolution of photostimula-
tion. RuBi–glutamate, another visible-light-sensitive caged gluta-
mate, also has less GABA-antagonistic activity and has a greater
quantum yield, allowing it to be used in lower concentrations
while reducing the antagonistic effects on inhibitory networks
(Fino et al., 2009). However, the sensitivity of these caging groups
to ambient room light reduces the stability in solution, requir-
ing dark rooms and shielding of light-emitting equipment. On
the other hand, the exceptional stability, the capability of being
frozen, thawed and reused, the relatively low cost, and the wide
availability of MNI–glutamate makes it the most commonly used
caged glutamate in both UV and two-photon photostimulation
experiments.

Multiple uncaging systems have been described with fiber optic
light delivery (Godwin et al., 1997; Kandler et al., 1998; Ghezzi
et al., 2007, 2008). These systems have the advantage that the pho-
tolytic light does not have to be focused through a microscope
objective, making them appropriate for multiple types of thicker
preparations, including in vivo applications where the depth of
stimulation is limited only by the length of the fiber. However,
they suffer from the facts that they are highly invasive, spatially
inflexible, and that positioning of fibers can be very time con-
suming as compared to scanning systems. Additionally, the in vivo
loading and replenishing of caged neurotransmitters deeper than
the surface of the brain to practical concentrations is difficult if not
impossible, thus fiber optic photostimulation in vivo has only be
accomplished when combined with optogenetics (discussed later;
Aravanis et al., 2007; Campagnola et al., 2008).

MULTIPHOTON UNCAGING
Not long after Einstein (1905) elucidated the mechanism of the
photoelectric effect, in which quanta of light cause electron energy-
state transitions resulting in measurable electric current, Göppert-
Mayer (1931) described a theoretical excitation scheme in which
simultaneous absorption of two or more low-energy photons
results in electron-state transitions. Proof of this theory, though,
would have to wait for the advent of the laser, due to the necessary
high flux density of excitatory photons. This was finally achieved in
cesium vapor nearly three decades later (Abella, 1962) and applied
to fluorescence excitation shortly thereafter (Peticolas et al., 1963).

Denk et al. (1990) applied two-photon excitation to fluores-
cence microscopy. Several advantages exist for two-photon excita-
tion fluorescence microscopy (2P) compared to confocal or other
fluorescence microscopy techniques. In 2P, the excitation volume
is effectively confined in 3D at the focal point of the objective,
where the flux density is at a maximum and two-photon excita-
tion events become several orders of magnitude more probable.
In addition to matching the 3D imaging capabilities of confocal
fluorescence microscopy, the infrared excitation wavelengths in 2P
are significantly less phototoxic and damaging, allowing the obser-
vation of living tissue. The elimination of the confocal aperture
combined with the relatively long 2P excitation wavelengths that
are less susceptible to scattering, allow fluorescence 3D imaging
in vivo at depths up to 1 mm. Finally, 2P provides unmatched res-
olution of 3D photolysis of biologically relevant caged molecules,

first demonstrated with photolysis of DMNPE-caged ATP in a
bioluminescence assay (Denk et al., 1990).

While Denk et al. (1990) speculated that improved modu-
lation of biologically relevant caged compounds would benefit
from 2P, many caged compounds, including most of the caged
neurotransmitters, were not suitable for 2P photolysis due to their
low propensity for 2P photoactivation, a measure formally called
two-photon cross section with units named the Goeppert-Mayer.
The first such caged neurotransmitter to be efficiently released by
two-photon photolysis (BHC–glutamate) was described in 1999,
and was used to generate a 3D, neuronal sensitivity map to glu-
tamate (Furuta et al., 1999). Since then, multiple variations of
glutamate with a two-photon-sensitive cage have emerged with
each variation developed for the purpose of improving stabil-
ity, improving caged inertness, increasing quantum yield, widen-
ing the action spectrum, or improving two-photon cross section
including MNI–glutamate (Papageorgiou et al., 1999; Papageor-
giou and Corrie, 2000; Canepari et al., 2001; Matsuzaki et al., 2001),
MDNI–glutamate (Fedoryak et al., 2005), and RuBi–glutamate
(Fino et al., 2009). RuBi–glutamate, mentioned earlier, in addi-
tion to being visible-light-sensitive, is also two-photon-sensitive
at wavelengths longer than those used for MNI–glutamate, allow-
ing for better penetration and resolution in thicker preparations.
The peak output power of the commonly used tuned Ti-Sapphire
infrared lasers occurs at wavelengths closer to those used for 2P
RuBi–glutamate uncaging (800 nm) than those used for 2P MNI–
glutamate uncaging (725 nm). Overall, the improved quantum
yield and light source efficiency allows RuBi–glutamate to be used
at concentrations at least five times lower than MNI–glutamate.
This, in combination with its lower GABA-antagonistic activity,
makes it an effective tool for the study of inhibitory network
activity and connectivity (Fino et al., 2009).

With 2P photostimulation, the near-infrared (NIR) photodam-
age threshold and limited practical concentration of bath-applied
caged glutamate limits the rate of caged glutamate release at any
one spot. Generally, a higher photolysis yield requires longer dwell
times. While this is not a problem for the study of sub-threshold
synaptic integration, action potential initiation, and therefore
presynaptic stimulation, is severely limited with two-photon sys-
tems. In one non-standard setup, a diffractive optical element was
used to split the uncaging beam into several closely spaced beam-
lets (Nikolenko et al., 2007). This system was capable of eliciting
action potentials with 30 μm resolution and 5 ms dwell times in
some cells, with 30–50 ms dwell times being typical (supplemen-
tary material for Nikolenko et al., 2007). However, due to the beam
multiplexing and lack of adequate controls, it is unclear whether
this system is capable of single-cell specificity. Regardless, it is
possible to generate neuronal connectivity maps by sequentially
scanning targeted neurons with resolution and specificity better
than that offered by traditional ultraviolet photostimulation sys-
tems. Similar results were found by increasing the two-photon
excitation volume by reducing the effective numerical aperture of
the objective (Matsuzaki et al., 2008). In this case, it was shown that
resolution, while greater than UV systems, generally stimulated
multiple cells at each target.

Additional disadvantages of two-photon photostimulation are
a result of the gap in current availability of NIR laser power and
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the required flux density of NIR photons for efficient photoly-
sis of even the most easily photolyzed caged glutamate varieties.
The recent description of a SLM based scanless 2P microscope
illustrated this particular weakness, in which increasing the num-
ber of synchronous targets decreased the response amplitude to
glutamate uncaging, presumably due to a redistribution of avail-
able light power and low throughput efficiency of SLM-based
systems. Even with a single-cell being targeted, the initiation of
action potentials required very long dwell times (100 ms in the
author’s example case; Nikolenko et al., 2008).

With these limitations, it is not possible to induce synchronous
action potentials from two or more spatially separated presynap-
tic neurons. Therefore, investigating the integration of coincident
input or the consequences of neuronal synchrony in large-scale
circuits is beyond the capabilities of 2P glutamate uncaging. How-
ever, the ability to target individual spines and achieve patterned,
pseudo-synchronous activation of multiple targeted spines in a
limited field of view has been achieved with 2P uncaging and has
been the method of choice for numerous investigations (Matsuzaki
et al., 2001, 2004; Bloodgood, 2005; Araya et al., 2006a,b; Gasparini
and Magee, 2006; Losonczy and Magee, 2006; Harvey and Svoboda,
2007; Losonczy et al., 2008; Zhang et al., 2008b; Gordon et al., 2009;
Makara et al., 2009; Richardson et al., 2009; Zito et al., 2009).

LIGHT-SENSITIVE ION CHANNELS AND RECEPTORS
Photostimulation schemes utilizing bath-applied caged neuro-
transmitters are useful for many types of investigations, including
synaptic physiology and laminar organization of many structures.
However, in many brain regions, a single structure may contain
a dense mixture of multiple neuron subtypes, which are acti-
vated indiscriminately by photostimulation via neurotransmitter
uncaging. To overcome this limitation, many investigators have
developed methods of targeting individual cell-types with a com-
bination of genetic and optical techniques. These optogenetic tech-
niques alter the intrinsic photoexcitability of functionally distinct
cell groups, allowing for a different approach to the investigation
of neural circuits. These techniques are briefly reviewed here.

The first realization of this capability required the ectopic
expression of three phototransducing genes from the retina of
Drosophila in mammalian neurons. Using this technique, intrin-
sic light sensitivity was demonstrated in oocytes and cultured
hippocampal neurons (Zemelman et al., 2002). Even though this
phototransduction cascade is relatively fast and involves fewer gene
products than the vertebrate phototransduction cascade, directly
gated light-sensitive ion channels from phototaxic algae have now
been introduced to mammalian cells. Channelrhodopsin-1 is a fast
activating/inactivating light-gated proton channel (Nagel, 2002)
and Channelrhodopsin-2 (Chr2) is a slow activating/inactivating
non-selective cation channel (Nagel et al., 2003). Functional Chr2
was introduced with lentiviral infection into cultured mammalian
neurons twice independently in 2005 (Boyden et al., 2005; Li et al.,
2005), followed by the generation of several lines of transgenic
mice expressing Chr2 in a subset of functional distinct neurons
in the mouse under the control of the Thy1 promoter (Wang
et al., 2007a). A good illustration of this selective expression is
found in the Thy1–Chr2/YFP line 18 mouse, in which expression
in the neocortex is limited to pyramidal cells in layer V. Therefore,

photostimulation of cortex selectively activates layer V pyramidal
cells, while others remain quiescent. This allows investigators to
selectively map inputs from layer V pyramidal cells onto other
neurons without confounding the input from other cell-types
within cortex. Additionally, the use of expensive and depletable
caged neurotransmitters is made unnecessary by the fact that light
sensitivity is intrinsic to the genetically defined neuronal subset.

While the mosaic expression of Thy1 promoted genes appears
partially random and dependent on transgene copy number and
insertion location (Feng et al., 2000), many other groups have
since used other genetic and molecular tools to express Chr2 in
alternative subsets of neurons in anatomically restricted regions.
For example, the selection and implementation of an alternative
promoter in a lentiviral transfection vector has allowed Chr2 to be
specifically expressed in hypocretin-expressing neurons under the
control of the prepro-hypocretin promoter (Adamantidis et al.,
2007). An additional advantage of lentiviral transfection of light-
sensitive ion channels is that the region of transfection can be
limited anatomically due to the limited spread of the viral vec-
tor. The Cre-recombinase-dependent viral-transfection protocol
has also been described in detail (Atasoy et al., 2008) and lim-
its expression to anatomically restricted sites in cre transgenic
mice. A simpler approach of restricting Chr2 to cre-lines is also
possible with a Ch2 transgenic available from Jaxmice (stock num-
ber 012567) The transgene in these mice contains a loxP-flanked
STOP cassette ahead of the coding region that prevents down-
stream transcription of the Chr2 gene (Madisen et al., 2010). When
crossed with a transgenic mouse expressing Cre-recombinase in a
promoter-specified subset of cells, the STOP cassette is excised,
and CHR2 is expressed in all genetically defined target cells across
the entire brain.

Since not all neuronal subpopulations contain a known unique
promoter, developmentally timed in utero electroporation may
restrict spatiotemporal expression to populations which are genet-
ically indiscriminate (Saito and Nakatsuji, 2001; Matsui et al.,
2011). For example, the functionally and anatomically distinct
subtypes of cortical pyramidal neurons do not have unique pro-
moters and differentiate from common neural progenitors at dif-
ferent points in development to form layers with distinct geome-
tries and functional roles. Pyramidal neurons have been targeted
via developmentally timed electroporation of neuronal progeni-
tors (Petreanu et al., 2007) and Chr2 was selectively expressed in
layer 2/3 but not in layer 5. In contrast, a mouse with a CAMKII-α
promoted Chr2 transgene would express the channel in gluta-
matergic neurons throughout the brain (Benson et al., 1992).

Another unique feature of transgenic light-sensitive-ion-
channel-expressing neurons is that they can be activated in vivo
and thus allow the investigation of the neuronal substrates of
behavior at an unprecedented level of specificity, including the
contribution of neuronal subpopulations to appetitive and aver-
sive learning in Drosophila (Schroll et al., 2006), avoidance, body
elongation, and contraction in C. elegans (Nagel et al., 2005;
Liewald et al., 2008), in ovo movement initiation of chick embryos
(Li et al., 2005), targeted motor output and functional mapping by
optogenetic stimulation of rodent motor cortex (Aravanis et al.,
2007; Hira et al., 2009) olfactory processing in mouse (Arenkiel
et al., 2007), sleep homeostasis in mouse (Adamantidis et al., 2007;
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Carter et al., 2009), somatosensory learning in mouse (Huber et al.,
2008) breathing (Abbott et al., 2009a) and sympathetic nerve activ-
ity (Abbott et al., 2009b) in rat, and swimming and escape behavior
in zebrafish (Douglass et al., 2008; Zhu et al., 2009). This capability
also presents the potential for therapeutic uses of Chr2 in many
disease states, including the rescue of breathing after spinal cord
injury (Alilain et al., 2008) vision restoration (Bi et al., 2006) and
suppression of epileptiform activity (Tønnesen et al., 2009). A full
description of the protocol for in vivo targeted optogenetic con-
trol of neuronal activity and behavior can be found in Cardin et al.
(2010).

While Chr2-assisted circuit mapping has many advantages
when compared to neurotransmitter uncaging, there are several
glaring disadvantages. Early in the development of optogenetic
tools, Chr2 activation had slower kinetics than glutamatergic acti-
vation, limiting the precise temporal control of action potential
output. Specifically, inactivation of unmutated Chr2 is about 10
times slower than its activation, resulting in plateau depolariza-
tions and multiple spikes in response to a single light pulse.
Chr2-driven spike trains cannot exceed 40 Hz, therefore, precise
control of neural activity into the gamma band of neural activ-
ity is not possible (Ishizuka et al., 2006; Gunaydin et al., 2010).
Reengineered variants of Chr2 with improved kinetics have over-
come this obstacle (Lin et al., 2009; Gunaydin et al., 2010) and one
of these mutations has been incorporated into the cre-dependent
line of channelrhodopsin-2 mice (Jaxmice stock number 012567).

Another disadvantage is due the subcellular distribution of
Chr2 in transgenic animals and most cell culture preparations.
Chr2 is indiscriminately and uniformly distributed in the plasma
membrane including axons, while glutamate receptors are limited
to the dendrites and cell bodes of neurons. Therefore, blue light
activation of Chr2 activates both cell bodies and axons of passage,
making it impossible to precisely determine from where the synap-
tic connection originates. This is also true of cut axon terminals in
slice preparations, which may still be activated and release neuro-
transmitter, giving potentially confounding results in attempts to
elucidate microcircuitry. This too, though, has been partially over-
come by adding a myosin-dependent targeting sequence to the
transgene, restricting Chr2 expression to dendrites (Lewis et al.,
2009), although at the time of this review’s writing, a transgenic
mouse with this modification is not available. For the investiga-
tion of circuits with short range targets, such as in the neocortex,
where high densities of axons originating from multiple brain
regions pass through every cortical layer, this issue is particularly
problematic.

In light of these limitations, it is more appropriate to classify
the roles of intrinsically light-sensitive ion channels and uncaging-
based photostimulation systems as complementary rather than
competing technologies. In fact, these tools have been combined
for optical induction of plasticity at single synapses (Zhang et al.,
2008b). Also, bidirectional control of neuronal output is possi-
ble with the introduction of a yellow-sensitive chloride-pump
(Han and Boyden, 2007). Additionally, multiple genetically dis-
tinct subsets of neurons can be differentially activated with red-
sensitive excitatory channels (Zhang et al., 2008a; Govorunova
et al., 2011). Conversely, bimodal control of membrane poten-
tial by neurotransmitter uncaging is only possible on two-photon

systems, and has only been demonstrated very recently (Kantevari
et al., 2010).

An alternative to ectopic expression of transgenic ion chan-
nels is the modification of endogenous ion channels to be
photosensitive. The first success with this concept was the descrip-
tion of a nicotinic acetylcholine receptor with a covalently bonded
photoisomerizable tethered agonist (Lester et al., 1980). This
achievement was remarkable in that it was accomplished with-
out the availability of site-directed-mutagenesis. It was not until
more than two decades later that another such channel emerged.
A reengineered shaker potassium channel with a cysteine substi-
tuted for Glu422 allows for the conjugation of a light-switchable
azobenzene tether attached to a pore blocking antagonist similar to
TEA (Blaustein et al., 2000; Banghart et al., 2004, 2006). A similar
design was implemented for the realization of a light-gated gluta-
mate receptor (Volgraf et al., 2006), which has since been shown to
allow optical control of action potential input in vitro and in vivo
(Szobota et al., 2007). As with Chr2, neural substrates of behavior
can be investigated with these channels, as has been demonstrated
with escape behavior in zebrafish (Szobota et al., 2007) and jump-
ing, wing beating, and flight in Drosophila with a photoswitchable
purino receptor (Lima and Miesenböck, 2005). While the popu-
larity of these reengineered channels suffers from the fact that they
involve additional, potentially toxic steps to implement (conjuga-
tion of tethered ligands), they may still be useful for some applica-
tions (Gorostiza and Isacoff, 2007; Chambers and Kramer, 2008).
In fact, Kv3.1-, Kv7.2-, and SK2-containing potassium currents,
which do not have specific pharmacological blockers, have been
tethered to a quaternary ammonia potassium channel blocker with
a photoisomerizable azobenzene (Fortin et al., 2011). These mod-
ified K+ channels can be specifically and reversibly manipulated,
a feat not possible with pharmacology alone.

PARALLEL PHOTOSTIMULATION TECHNIQUES
A major drawback of most existing photostimulation techniques
is that they are limited to sequential stimulation. Activity in
the brain however, consists of complex spatiotemporal patterns
which can only be emulated using techniques that allow mas-
sively parallel control of a large number of photostimulation
sites. There is substantial experimental and theoretical evidence
supporting a role of synchronous spiking activity for informa-
tion processing in the brain. For example, synchronized spikes
have been shown to represent essential features of visual (Kre-
iter and Singer, 1996; Dan et al., 1998) auditory (deCharms
and Merzenich, 1996; Huetz et al., 2009) and gustatory (Gutier-
rez et al., 2010) stimuli and to encode motor events (Vaadia
et al., 1995; Gutierrez et al., 2010) and also represent cogni-
tive functions such as attention (Riehle, 1997; Steinmetz et al.,
2000). Currently, most of our knowledge about the generation
and propagation of synchronous spike activity in the neocor-
tex stems from theoretical studies (Salinas and Sejnowski, 2001;
Kumar et al., 2010). Technical challenges have hindered direct
and thorough experimental investigations of neuronal synchrony
in biological networks. As a result, there is a large gap between
theoretical predictions and our neurophysiological understanding
of the mechanisms underlying neocortical synchronous spiking
activity.
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Photostimulation systems based on digital light processing
(DLP, Texas Instruments) technology allow for thousands of paral-
lel photostimulation beams. DLP systems are built around a digital
micro mirror device (DMD), an array of several hundred thou-
sand microscopic mirrors, with each mirror corresponding to a
potential photostimulation site. Each mirror can be independently
positioned to reflect light in one of two directions. With the mir-
ror in the “on” position, light is reflected through a projection
lens, making the corresponding site (pixel) appear bright. Light
reflected from a mirror in the “off” position is directed toward a
heat sink, causing the site on the projection plane to remain dark
(Single-Panel DLP Projection System Optics, 2005). While typi-
cally used in multimedia applications with frame rates between 5
and 240 Hz, the array of DMD mirrors can be switched at rates
of tens of kilohertz with the appropriate software and hardware
controllers. DMDs thus provide high-speed parallel control of
hundreds of thousands of light beams, one for each micromir-
ror, affording the opportunity to control complex spatiotemporal
activity patterns, including synchrony, over a large range of scales
to emulate neuronal interactions as they occur in vivo.

The first use of DLP technology in neuroscience provided spa-
tiotemporal control of neuronal activity in cultured rat hippocam-
pal neurons expressing light-activated glutamate receptors at a
rate of 10 Hz (Wang et al., 2007a). Activation of Chr2-expressing
neurons with DLP photostimulation has also been used to gen-
erate glomerular input maps to mitral-tufted cells in olfactory
bulb (Dhawale et al., 2010) and to manipulate the movement of
unrestrained C. elegans expressing Chr2 (Leifer et al., 2011). A
recently described Ultraviolet DLP photostimulation system has
been used to investigate dendritic integration of sub-threshold
stimuli by uncaging glutamate at distal dendritic branch points
(Liang et al., 2011). However, with limited subcellular resolution,

UV photostimulation mostly activates extrasynaptic receptors,
which may have implications in dendritic processing.

A unique strength of DLP-modulated light is that multiple sites
can be activated with perfect synchrony or arbitrarily specified
delays at a very high rate to investigate the processing of synchro-
nous activity by individual neurons or neural networks (Jerome
et al., 2011). This system, which requires the high light output of a
high-power frequency-tripled ND:YAG laser, is capable of induc-
ing action potentials with dwell times as low as 3 ms. With the mas-
sively parallel capacity of light modulation, the synchrony of large
numbers of anatomically distributed neurons can be manipulated.
The control of action potential firing at high temporal resolution
in multiple presynaptic neurons now allows for the investigation
of important questions related to temporal synaptic integration of
spatially distributed inputs and the generation and propagation of
synchronous population activity in neural networks.

CONCLUSION
Light-based stimulation has greatly enhanced the available tools
for investigating the spatially complex connections between neu-
rons in the central nervous system. Mechanical, spatial, and other
technical limitations of electrode and electrophoresis-based stim-
ulation have been overcome with light-based techniques, in which
the flexibility and resolution of chemical stimulation depends
solely on the method of light modulation. Quick and efficient
mapping of inputs across large brain regions is now common,
along with investigations of strength, size, and density of con-
vergent inputs in axon-dense regions such as the neocortex. The
recent introduction of parallel photostimulation provides new
vistas for the investigation of complex spatiotemporal activity pat-
terns, including synchronous population activity, and their role in
normal and pathological brain function.
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