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Abstract

Ubiquitination is a fundamental posttranslational protein modification that regulates diverse 

biological processes, including those in the CNS. Several topologically and functionally distinct 

polyubiquitin chains can be assembled on protein substrates, modifying their fates. The classical 

and most prevalent polyubiquitin chains are those that tag a substrate to the proteasome 

for degradation, which has been established as a major mechanism driving neural circuit 

deconstruction and remodeling. In contrast, proteasome-independent nonproteolytic polyubiquitin 

chains regulate protein scaffolding, signaling complex formation, and kinase activation, and play 

essential roles in an array of signal transduction processes. Despite being a cornerstone in immune 

signaling and abundant in the mammalian brain, these nonproteolytic chains are under-appreciated 

in neurons and synapses in the brain. Emerging studies have begun to generate exciting insights 

about some fundamental roles played by these nondegradative chains in neuronal function and 

plasticity. In addition, their roles in a number of brain diseases are being recognized. In this article, 

we discuss recent advances on these non-conventional ubiquitin chains in neural development, 

function, plasticity and related pathologies.

Introduction

Ubiquitination is an essential post-translational protein modification in eukaryotes through 

which the 76 amino acid protein, ubiquitin is conjugated to a protein substrate [1]. 

Ubiquitination is completed in sequential enzymatic events through E1 ubiquitin-activating, 

E2 ubiquitin-conjugating, E3 ubiquitin-ligating enzymes, and sometimes an E4 ligase, and 

is reversed by a family of deubiquitinases (DUBs) (Fig. 1a). A major form of ubiquitination 

is polyubiquitination where a chain of ubiquitin molecules linked through the C-terminal 

glycine of one ubiquitin molecule and an internal lysine of another ubiquitin molecule is 

conjugated on a lysine residue of a substrate. Given that seven internal lysine residues 

(K6, K11, K27, K29, K33, K48, and K63) exist in the ubiquitin molecule, seven distinct 
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polyubiquitin (polyUb) chains can form [2] (Fig. 1b). Another polyUb, the head-to-tail 

linear chain (M1) linked through the N-terminal methionine of one ubiquitin and the C 

terminus of a preceding ubiquitin also exists [3]. Various polyUb chains assume distinct 

topologies and confer differential fates to a substrate. K48-linked chains are the classical 

signal that targets substrates to the proteasomes for degradation, whereas K63 and M1 

chains are nonproteolytic and are involved in signaling activation and transduction [4]. 

The remaining chains, less prevalent and atypical, have both proteasome-dependent and 

nonproteolytic functions.

The roles of the ubiquitin proteasome system (UPS) in neural development, function, 

plasticity, and behavior have been extensively investigated [5–8]. Notably, UPS-dependent 

protein degradation and turnover represent a major mechanism driving synapse remodeling 

and plasticity, and are involved in a number of brain diseases [7–10]. Nonproteolytic 

ubiquitination, however, has not been well studied in neurons. Recent studies begin to reveal 

involvements of nonproteolytic polyUb chains in neural development, receptor trafficking, 

pre- and postsynaptic function and remodeling, and synaptic plasticity, representing a 

new paradigm in synapse biology. The potential roles of nonproteolytic chains in several 

common brain diseases, including Autism Spectrum Disorders (ASDs), schizophrenia, 

Parkinson’s disease (PD), Alzheimer’s Disease (AD) and related dementia, have also been 

steadily emerging.

In this review, we discuss recent advances on the roles of nonproteolytic polyubiquitination 

in neural development, functions, and plasticity, as well as several common brain 

disorders. Although not involved in proteasomal degradation, K63-polyUb chains can 

target ubiquitinated cargos, including misfolded protein inclusions (aggrephagy) and 

damaged mitochondria (mitophagy) to the autophagy-lysosome pathway for clearance. This 

proteasome-independent proteolysis function is outside the scope of our discussion, and 

interested readers may refer to some excellent recent reviews on this topic [11–14].

Different Faces of Ubiquitin Linkages

Among the eight polyUb linkages (Fig. 1b), K48 chains are the first-identified and best-

characterized. These chains adopt a compact conformation and are recognized by the 26S 

proteasome, where substrates are degraded and the ubiquitin tag is cleaved and recycled, 

and act as a general degradation signal maintaining cellular protein homeostasis [2, 15]. 

K63 chains represent the second most abundant polyUb species in the mammalian brain 

[16]. They adopt a more open and flexible conformation and are not recognized by 

the 26S proteasome, thus do not signal proteasomal degradation. Instead, they mediate 

signaling pathways involved in NF-κB activation, receptor endocytosis, and DNA repair, by 

stabilizing/activating substrates or acting as a scaffold to assemble signaling complexes [2, 

4, 17, 18]. Linear chains are also non-degradable by the proteasome and play important roles 

in NF-κB signaling [3, 19]. The remaining linkages are less prevalent and play degradative 

and/or nondegradative roles in more specialized cellular processes [4, 20]. K6 chains are 

implicated in DNA damage response (nondegradative) and mitophagy (degradative). K11 

chains regulate the proteasomal degradation of proteins involved in cell cycle regulation 

[21, 22] and endoplasmic reticulum-associated degradation (ERAD) [23], and have a 
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nonproteolytic signaling role in TNFα activation [24]. K27 chains are more enigmatic, but 

are implicated in DNA damage, mitophagy, and autophagy as scaffolds to recruit signaling 

proteins [20]. Both K29 and K33 chains can serve as proteasome degradation signals and 

are implicated in epigenetic regulation and post-Golgi membrane protein trafficking as 

nonproteolytic signals [20, 25, 26]. Finally, mixed/branched and unanchored chains also 

exist and play degradative and nondegradative functions [20, 27].

The various polyUb linkages are assembled by diverse (> 600) E3s in complex with 

~40 E2s [2, 28, 29]. E3s contain four families: really interesting new gene (RING), 

homologous to E6-associated protein C-terminus (HECT), UFD2 homology (U-box), and 

RING-in-between-RING (RBR) [30, 31] (Fig. 1a). For HECT E3s, ubiquitin is relayed from 

a bound E2 to a catalytic cysteine residue in the HECT domain of an E3, which then 

attaches the ubiquitin to a substrate. The chain specificity for most HECT E3s remains to 

be determined, but one exception is Nedd4 (neural precursor cell expressed developmentally 

downregulated gene 4) that contains a Ub binding site in the C lobe which may orient the 

Ub chain and select for K63 chains [32]. In contrast, RING E3s, the most prevalent, serve as 

adaptors, bringing a ubiquitin-bound E2 and a substrate into close proximity and activating 

the E2 to transfer the ubiquitin to the substrate. Thus, E2s bound to these RING E3s often 

determine the polyUb linkage specificity. The RING E3 ligase, TNF receptor-associated 

factor 6 (TRAF6), for example, catalyzes the formation of K63 chains on substrates together 

with the K63-specific ubiquitin conjugating enzyme Ubc13 and the Ubc-like protein Uev1A 

E2 dimers [33]. Some RING E3s function as single subunits (e.g. TRAFs), whereas others 

function in multisubunit complexes that contain several adaptors for substrate recognition 

and ubiquitin E3 activity (e.g., Skp1/Cullin/F-Box (SCF)) [34]. U-box E3s, also dubbed 

E4s, mainly elongate existing polyUb chains [35]. Finally, RBR E3s employ a hybrid 

mechanism by which the first RING domain acts as a canonical RING ligase while the 

second RING domain acts like a HECT ligase [36, 37]. Two important RBR E3s are Parkin, 

involved in Parkinson’s disease and mitophagy [13], and LUBAC (linear ubiquitin chain 

assembly complex), an E3 ligase complex composed of SHARPIN, HOIL-IL, and HOIP that 

specifically generates linear chains [3]. All ubiquitin enzymes discussed in this review are 

summarized in Table 1.

More than 100 DUBs, cysteine proteases and metalloproteases that remove or trim 

PolyUb chains, exist in the human genome [38–40]. Based on their catalytic domains 

and mechanisms of action, these DUBs are categorized into six superfamilies: Ubiquitin 

C-terminal hydrolases (UCHs), ubiquitin-specific proteases (USPs), ovarian tumor proteases 

(OTUs), the Josephin family, the Motif interacting with ubiquitin-containing novel DUB 

family (MINDYs), and the JAB1/MPN/MOV34 (JAMMs) metalloprotease family [38, 40, 

41]. DUB superfamilies exhibit variable levels of linkage specificity. For example, USPs are 

typically linkage nonspecific [38], but an exception is cylindromatosis (CYLD), which is 

specific to K63 (and M1 chains which have virtually equivalent structure) due to its unique 

UBD that contains an extended loop near the catalytic domain selective for K63 chains [42, 

43]. In contrast, OTUs are mostly linkage-specific due to their diverse ubiquitin-binding 

domains (UBDs) [44].

Zajicek and Yao Page 3

Mol Psychiatry. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Diverse polyUb chains are “decoded” by a large number of UBD-containing proteins, 

known as ubiquitin receptors, which translate the ubiquitin code to specific biochemical 

and cellular outputs [2, 45]. There are more than 20 structurally different UBDs in five 

subfamilies, α-Helix, Zinc Finger (ZnF), Ubc-like, pleckstrin homology (PH) fold, and other 

structures [2]. Individual UBDs typically bind ubiquitin with low affinities, and additional 

interactions between ubiquitinated targets and ubiquitin receptors in a multiprotein complex 

cooperate to provide sufficient specificity, avidity, and dynamic regulation. The formation of 

these “signalosomes” through recruitment of binding partners that harbor specific UBDs is a 

hallmark role of nondegradative polyUb chains.

Major Nonproteolytic Paradigms in Non-neurons

Signalosome assembly and kinase activation.

Roles of nonproteolytic polyUb in scaffolding signaling complexes and activating kinases 

are best illuminated in the classical NF-κB signaling pathways in innate and adaptive 

immunity (Fig. 2a) [18, 46–48]. Activation of Toll-like and cytokine receptors recruits, in 

a ligand- and receptor-specific manner, adaptor proteins, protein kinases, and a panel of 

K63- or M1-specific E3 ligases including TRAF6 and LUBAC, promoting their activation. 

Activated E3s coordinate with specific E2s to assemble K63 and M1 chains on specific 

substrates or free, unanchored chains. These polyUb chains then serve as scaffolds to 

simultaneously load the TAK1 (TGF-β activated kinase 1) kinase complex and IKK 

(Inhibitor-of-κB kinase) complex through their UBDs, leading to the activation of the 

IKK complex. Activated IKK complex then recruits a signaling complex consisting of 

IkBα (inhibitor of NF-κB) and NF-κB subunits p65/p50, leading to phosphorylation and 

proteasomal degradation of IkBα by the E3 complex SCFβTrCP [49]. Liberated NF-κB then 

enters the nucleus to regulate expression of diverse target genes important for inflammation 

and cell survival. The ubiquitin editing enzyme A20, an OTU DUB, and CYLD are potent 

inhibitors of NF-κB signaling by cleaving K63 and M1 chains [19, 50].

Endocytosis:

Ubiquitination is a classical signal for surface receptor endocytosis, endosomal trafficking, 

and sorting [17, 51, 52]. Upon ligand binding, activated receptors are ubiquitinated at the 

plasma membrane by several K63 E3 ligases recruited to the activated receptors, such 

as CBL (Cas-Br-M ecotropic retroviral transforming sequence; a RING E3), TRAF6, 

and the Nedd4 family. AMSH (associated molecule with the SH3 domain of STAM; a 

JAMM DUB) and USP8/UBPY (ubiquitin-specific protease 8/ubiquitin-specific protease Y) 

negatively regulate endocytosis by cleaving K63 chains from internalized receptors [53, 54]. 

Ubiquitinated receptors are internalized through either clathrin-dependent or -independent 

endocytosis, driven by a set of endocytic adaptors at the plasma membrane, such as 

EPS15 (epidermal growth factor receptor substrate 15) and epsins, which bind ubiquitin 

through their UBDs and couple receptors to endocytic vesicles. Once at early endosomes, 

ubiquitinated cargo is sorted through endosome-associated complexes ESCRT (endosomal 

sorting complex required for transport)-0, -I, -II, and -III into multivesicular bodies (MVBs) 

within late endosomes for degradation (Fig. 2b). Importantly, each ESCRT complex contains 

UBDs in their subunits that facilitate formation of multiprotein complexes necessary for 
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efficient endosomal sorting. Ubiquitin is removed by ESCRT-III-associated DUBs prior 

to receptor entry into MVBs. Monoubiquitin and K63-polyUb chains often dominate in 

endocytosis, however, the latter is believed to be more effective [55].

Maintenance of genome integrity.

Nonproteolytic polyUb plays essential roles in DNA damage response (Fig. 2c). Following 

DNA double-stranded breaks (DSBs), the E2 Ubc13 and UbcH5c, and RING E3 ligases 

RNF (RING finger protein) 8 (RNF8) and RNF168 are recruited to sites of damage foci, 

where they synthesize K27 and K63 chains on Histone H2A/H2AX or other substrates [56–

59]. These nonproteolytic chains serve as scaffolds for the receptor-associated protein 80 

(RAP80), a ubiquitin receptor, which recruits the BRCA1 (breast cancer type 1 susceptibility 

protein) E3 ligase repair complex and other crucial mediators to DSB-associated chromatin 

to promote K6 ubiquitination and initiate DNA repair [56–60].

Neurotrophin Signaling

Neurotrophins (NGF, BDNF, NT4/5, NT-3) regulate neuronal differentiation, survival, 

and plasticity by signaling through several tyrosine kinase receptors (TrkA, TrkB, and 

TrkC) and the p75 receptor, a member of the TNF receptor superfamily [61, 62]. 

The NGF receptor TrkA undergoes K63 polyubiquitination following NGF stimulation 

in PC12 cells [63], which is mediated by TRAF6 and the E2 UbcH7, and requires 

the K63-polyUb-binding scaffolding protein p62/sequestosome-1 (SQSTM1) to facilitate 

the assembly of NGF-induced p75-TrkA-TRAF6-UbcH7 multiprotein complex. This K63 

polyUb signal is required for TrkA internalization, downstream signaling, and NGF-induced 

neurite outgrowth [63]. TrkB and TrkC also contain a consensus site for TRAF6/p62 

polyubiquitination, and TrkB is ubiquitinated by TRAF6 following its activation [64].

TRAF6 becomes associated with p75 following stimulation by neurotrophins in transfected 

HEK293T cells [65]. TRAF6 may act as the E3 ligase for p75, which is polyubiquitinated 

following NGF stimulation in a mouse hippocampal cell line [66]. Additional signaling 

intermediates recruited to activated p75 or TRAF6 include p62 [67], IRAK (interleukin 1 

receptor-associated kinase) [68], NRIF (neurotrophin receptor interacting factor) [69, 70], 

and RIP2 (receptor-interacting protein 2) [71]. Among these, NRIF is K63 ubiquitinated 

by TRAF6 [70]. These cytoplasmic adaptors form complexes following p75 activation and 

transduce multiple downstream p75-dependent signaling pathways to regulate cell survival 

or apoptosis in various neuron(-like) cell types [65, 66, 68, 70–72]. In TRAF6 knockout 

mice, p75-mediated NF-κB and JNK (c-Jun N-terminal kinase) signaling following NGF or 

BDNF stimulation were blunted and the p75-induced apoptosis was lost in Schwann cells 

and sympathetic neurons [73].

Neural Patterning

Sonic Hedgehog (Shh) signaling plays crucial roles in vertebrate neural patterning, mediated 

by gradients of Ci/Gli family transcription activators (GliA) and repressors (GliR). In a 

Shh-regulated manner, Glis are modified with degradative K11 or K48 polyUb chains by 

several multisubunit SCF E3 ligases (among others), which dictates the degradation and 
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activator/repressor status [74–77] . Recent work indicates that Shh/Gli signaling gradient is 

also fine-tuned by nonproteolytic ubiquitination during ventral neural tube patterning [78]. 

Specifically, RNF220, an E3 specifically expressed in the developing ventral neural tube, 

assembles K63 chains on all Glis, either in their activator or repressor forms, and the K63 

chains promote Gli nuclear export and refine their gradients by limiting their nuclear levels. 

Loss of RNF220 leads to expansion of the GliA and GliR gradients and disruptions of 

progenitor patterning along the dorsal-ventral axis [78].

Axonal and Dendritic Outgrowth

In developing sensory neurons, neurotrophin signaling promotes axon outgrowth through 

clathrin-mediated endocytosis and signaling endosomes that are retrogradely transported 

back to cell bodies to support neuronal survival [79, 80]. Zhou et al. (2007) showed 

that in addition to this “global” mechanism, neurotrophins also regulate sensory axon 

elongation and branching via a K63-mediated clathrin-independent TrkA endocytosis locally 

at the growth cone [81]. In cultured mouse embryonic dorsal root ganglion neurons, 

NGF stimulates K63 ubiquitination of Ulk1/2 (Unc-51-like kinase 1/2) by TRAF6 and 

recruitment of Ulk1/2 to the TrkA receptor complex via interaction with p62, routing 

NGF-bound TrkA to non-clathrin-coated vesicles that attenuates NGF signaling and allows 

filopodia withdrawal. This study highlights an important role for presynaptic endosomal 

trafficking in axonal development (Fig. 3). Knocking down Ulk1/2 leads to impaired 

NGF endocytosis, excessive axon arborization, and severely stunted axon elongation. Mice 

lacking Ulk1/2 in the CNS showed defects in axonal pathfinding and defasciculation 

affecting the corpus callosum, anterior commissure, and corticothalamic and thalamocortical 

axons [82]. However, it should be noted that these loss-of-function experiments did not 

directly address the role of K63 ubiquitination of Ulk1/2 in these deficits.

Another K63-dependent mechanism regulating neurite outgrowth is mediated by 

Muscleblind-Like Protein 1 (MBNL1). MBNL1 is a multifunctional protein regulating 

the transition between differentiation and pluripotency and the pathogenesis of myotonic 

dystrophy type 1 (DM1), which is associated with dendritic and synaptic transmission 

deficits at early stages [83]. MBNL1 undergoes K63 ubiquitination, which is required for 

its localization in the cytoplasm. Cytoplasmic, but not nuclear MBNL1 promotes axon 

outgrowth and neurite differentiation in hippocampal neurons [84].

Presynaptic Differentiation and Function

Endosomal trafficking at presynaptic terminals plays an important role in synaptic vesicle 

(SV) cycles during presynaptic development and functions [85–87]. The ubiquitin-binding 

protein Phospholipase A2 Activating Protein (PLAA) has been shown to act as a ubiquitin 

adaptor required for post-endocytic sorting of ubiquitinated presynaptic proteins from 

early endosomes to lysosomes for degradation during SV recycling [88]. Mammalian 

PLAA specifically recognizes K63-polyUb-modified SV components and targets them 

for ESCRT-dependent degradation via MVBs. Mice deficient in PLAA show disrupted 

Purkinje cell migration and dendritic arborization, accumulated K63-ubiquitinated proteins 

and presynaptic membrane proteins. This accumulation of K63-ubiquitinated proteins is 
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thought to be a result of impaired trafficking of these proteins to ESCRT-dependent sorting 

and lysosomal degradation. Mutant NMJs show striking presynaptic swelling/sprouting, 

drastic loss of reserve pool SVs, and aberrant vesicle recycling during sustained activity. 

In both human and mouse, hypomorphic mutations in PLAA cause a lethal infantile 

neurodysfunction syndrome with epilepsy [88]. This study supports the importance of K63-

related UBD-containing ubiquitin adaptors and endosomal trafficking in SV homeostasis 

and presynaptic differentiation (Fig. 3).

In addition to its role in nuclear DNA repair in proliferating cells, RNF8 and associated 

K63-specific E2 Ubc13 regulate presynaptic differentiation in postmitotic neurons [89]. 

Knockdown or conditional knockout of RNF8 or Ubc13 in mouse cerebellum granule 

neurons robustly increases the number of presynaptic boutons and parallel fiber-Purkinje cell 

synapses as well as functional synaptic transmission. Knockdown of the K48-synthesizing 

E2 UbcH8, fails to increase the number of parallel fiber presynaptic boutons. Expression 

of an RNF8 mutant that interacts with Ubc13, but not UbcH8, rescues the number 

of presynaptic boutons. Cytoplasmic, but not nuclear RNF8 exerts this presynaptic 

differentiation role. RNF8 interacts with the HECT domain protein HERC2/scaffold protein 

Neuralized 4 (NEURL4) complex and knocking down either protein mimics the inhibition of 

RNF8 on synapse formation. These results, though short of directly showing involvement of 

K63 chains, strongly suggest that RNF8/Ubc13-dependent K63-ubiquitin signaling inhibits 

synapse formation in vivo (Fig. 3). Detailed molecular details of this K63-dependent 

presynaptic remodeling remain to be determined.

The metabotropic glutamate receptor 7 (mGluR7), a presynaptic G Protein-coupled receptor 

that inhibits glutamate release especially during sustained and heightened activity [90], is 

K63 ubiquitinated following agonist stimulation in heterologous cells and cultured neurons 

[91]. mGluR7 ubiquitination is mediated by Nedd4, which is recruited to activated mGluR7 

by the adaptor protein β-arrestin, and leads to endosome-lysosome sorting and degradation 

of the receptor. This process may play a role in the regulation of presynaptic metaplastic 

long-term depression (LTD)/long-term potentiation (LTP) at certain synapses, e.g. mossy 

fiber-CA3 stratum lucidum interneuron (MF-SLIN) synapses [92] (Fig. 4; further discussed 

below).

Postsynaptic Function and Dendritic Spine Remodeling

Increasing evidence indicates that K63 ubiquitination occurs at mammalian synapses. 

A mass-spec analysis of rat brain ubiquitome shows that K63-polyUb species are the 

second most abundant ubiquitin linkage, behind K48 chains [16]. Mouse brain K63-polyUb 

levels increase during postnatal development and K63-polyUb clusters are abundant in 

dendritic spines in cultured rat hippocampal neurons [93]. K63-related ubiquitin enzymes, 

including TRAF3, TRAF6, Ubc13, Uev1A, CYLD, and A20 are present in the mouse brain 

postsynaptic densities (PSDs) [93–95]. Several signaling components of NF-κB pathway are 

also found at synapses [96–98]. These studies suggest that K63-polyUb may play synapse- 

and neuron-specific roles in addition to their classical functions in host immune surveillance 

and defense.
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Among K63-polyUb machineries localized in the PSD, CYLD emerges as a central player. 

CYLD transcript is high in fetal brain, and its mutations are associated with familial 

cylindromatosis, an autosomal dominant genetic predisposition to multiple tumors of the 

skin appendages [99]. CYLD protein is highly enriched in the rat brain PSD [93, 100]. 

CYLD in the PSD is endogenously active with K63 deubiquitinase activity at basal 

conditions maintained by the PSD-associated IKK [100, 101], and is recruited and further 

activated in a Ca2+-dependent manner by CaMKII to the PSD following high K+ or NMDA 

stimulation in cultured hippocampal neurons [102]. Thus, CYLD may participate in activity-

dependent regulation of K63 ubiquitination in synapses and synaptic plasticity (Fig. 4; 

further discussed below). CYLD binds the scaffolding protein and autophagy receptor p62 

[103], which is also abundant in the PSD. CYLD also interacts with Shank3, which regulates 

the abundance of CYLD and total K63-polyUb level in mouse striatal synaptosomes [104]. 

Proteomic analysis of CYLD interactome has identified more than 103 proteins, many of 

which are associated with ASD, schizophrenia, and depression. Despite its abundance and 

function in the PSD, it should be noted that a small amount of CYLD is present in the 

presynaptic fraction of the rodent brain [93], and a recent study reports that it regulates 

axonal length in cultured mouse hippocampal neurons [105].

In addition to its abundance and functions at excitatory synapses, CYLD also regulates 

inhibitory neurons and synapses [106]. In CYLD knockout mice, in vivo recording shows 

that the rhythmic activity in the striatum, where ~95% of neurons are GABAergic, is altered, 

characterized by shortened spontaneous up-states and increased membrane fluctuations 

preceding action potential firing. Levels of striatal GABAA and GABAB receptors are 

increased in mutant mice and pharmacological blockade of GABA receptors rescues 

the electrophysiological phenotypes. This study suggests that CYLD regulates synthesis, 

turnover, and/or trafficking of GABA receptors.

A bona-fide substrate of K63 ubiquitination at synapses has been identified as PSD-95 [93], 

a major postsynaptic scaffold with essential roles in PSD organization and synaptic plasticity 

[107, 108]. PSD-95 is K63-ubiquitinated by TRAF6 together with Ubc13/Uev1A, and 

deubiquitinated by CYLD (Fig. 3). The K63-polyUb conjugation sites are mapped to several 

lysine residues in the GK (guanylate kinase) domain, which mediate PSD-95 interactions 

with its binding partners, including SPAR (spine-associated RapGAP), GKAP (guanylate 

kinase-associated protein)/SAPAP (SAP90/PSD-95-associated protein), and AKAP79/150 

(A-kinase-anchoring protein 79/150). Mutations of these K63-polyUb sites abolish PSD-95-

target binding, consistent with the role of K63-polyUb as a signalosome scaffold (Fig. 

3). Functionally, mutant PSD-95 lacking K63 ubiquitination cannot target to the synapse 

and promote synapse formation, maturation, and strength. This study provides the first 

direct evidence that K63 ubiquitination regulates postsynaptic scaffolding and remodeling in 

excitatory synapses (Fig. 3).

Recently, the ubiquitin-editing enzyme A20 has been shown to potently inhibit dendritic 

arborization, spine formation, and synaptic strength in cultured hippocampal neurons [95]. 

The A20 regulation of dendritic spine remodeling depends on the K63-specific DUB activity 

of A20 and is mediated by suppression of the (presumably nuclear) NF-κB signaling 

Zajicek and Yao Page 8

Mol Psychiatry. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathway. Thus, K63-linked ubiquitination can regulate postsynaptic remodeling via both 

local (synapse) and global (nuclear) mechanisms (Fig. 3).

Glutamate Receptor Trafficking and Function

Glutamate receptors mediate the majority of excitatory synaptic transmission and plasticity 

responsible for cognitive functioning, and ubiquitination plays crucial roles in these 

processes. Initial studies in C. elegans found that the glutamate receptor GLR-1 (about 

40% homology to mammalian AMPA-class glutamate receptor (AMPAR) subunits [109]) is 

ubiquitinated, which regulates GLR-1 postsynaptic abundance and synaptic strength [110], 

and Uev-1 regulates GLR-1 trafficking by controlling its exit from early endosomes post 

endocytosis [111]. Mammalian AMPARs undergo ubiquitination at specific lysine residues 

in the C-terminus, regulating receptor trafficking and synaptic strength [112, 113]. All four 

AMPAR subunits, GluA1-A4, display low levels of ubiquitination under basal conditions, 

but become rapidly ubiquitinated following short-term AMPAR, but not NMDA receptor 

(NMDAR) activation that is associated with receptor internalization, endosomal sorting, and 

lysosomal degradation [114–116]. Ca2+ entry via voltage-gated L-type Ca2+ channels and 

CaMKII activation are required for the activity-dependent AMPAR ubiquitination, likely by 

specific E3s and DUBs recruited/activated to active synapses [113–115, 117]. Importantly, 

K63-linked ubiquitination represents the primary polyUb linkage for both constitutive and 

activity-dependent GluA1 and GluA2 ubiquitination [114, 118], consistent with its role in 

endosomal trafficking. Other glutamate receptors, including NMDA (GluN1, GluN2A, and 

GluN2B) [119–122], kainate (GluK2) [123, 124], and metabotropic receptor (mGluR1/5) 

[125], also undergo ubiquitination, but these modifications are associated with proteasomal 

degradation.

Several ubiquitin enzymes have been identified to regulate AMPAR ubiquitination and 

trafficking. Nedd4 interacts with GluA1, promotes GluA1 ubiquitination, and is rapidly 

redistributed to spines in response to AMPAR activation in cultured neurons [115, 126, 

127]. Overexpressing Nedd4 increases GluA1 ubiquitination, reduces its surface level, 

and enhances its internalization and accumulation at lysosomes, and Nedd4 mediates 

bicuculline-induced homeostatic synaptic downscaling [115, 127, 128]. Nedd4–2/Nedd4L, 

a closely related but functionally different E3, also ubiquitinates and downregulates 

GluA1 during synaptic downscaling [129]. RNF167, a plasma membrane-associated but 

predominately lysosomal RING E3 involved in endosomal trafficking, has been shown 

to ubiquitinate GluA2 and regulate synaptic AMPARs and activity-dependent AMPAR 

ubiquitination [117]. Two USP family DUBs can reverse GluA1 ubiquitination and may 

facilitate AMPAR recycling back to the plasma membrane. USP8/UBPY reduces basal and 

AMPA-induced AMPAR ubiquitination and positively regulates surface AMPAR levels, 

and is recruited to synapses following NMDAR activation in a Ca2+-dependent manner to 

regulate homeostatic downscaling [127]. USP46, a DUB that regulates GLR-1 trafficking 

and levels in C. elegans [130], has been reported to cleave K63-polyUb from AMPARs 

and regulate AMPAR internalization and synaptic strength in cultured rat cortical and 

hippocampal neurons [118].
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Thus, surface AMPARs are ubiquitinated upon activation, internalized, and sorted to late 

endosomes and lysosomes for degradation or recycled back to the plasma membrane [112, 

113, 131, 132] (Fig. 5). However, it remains controversial whether AMPAR ubiquitination 

occurs before [115, 127, 128, 133] or after [114, 116] endocytosis. AMPARs can also 

be degraded by the proteasome system [128, 134, 135], especially in response to chronic 

elevation of synaptic activity [134], or by the autophagy-lysosome pathway during NMDA-

induced chemical long-term depression (cLTD) [136]. Finally, although K63 chains are 

believed to be the primary polyUb chains conjugated to AMPARs [114, 118] and guide 

AMPAR trafficking, further experiments are needed to elucidate the molecular details 

underlying each step of intracellular trafficking and sorting processes.

Synaptic Plasticity

In the mossy fiber-CA3 stratum lucidum interneuron synapses, sustained synaptic activity 

leads to activation of presynaptic mGluR7, which inhibits neurotransmitter release through 

PLC and PKC-dependent suppression of P/Q Ca2+ channels. mGluR7 activation unmasks 

the ability of these synapses to undergo LTP in response to the same high-frequency 

stimuli that induce LTD in naive slices [92]. K63 ubiquitination of mGluR7 routes it for 

lysosomal degradation [91]. These processes may regulate this metaplastic LTD/LTP switch 

(Fig. 4). Converging evidence also indicates that K63-polyUb mechanisms are regulated 

by neuronal activity and in turn regulate activity-dependent Hebbian and non-Hebbian 

synaptic plasticity. Brief exposure to NMDA, a cLTD-inducing stimulus, triggers a rapid 

and global disassembly of K63-polyUb chains in neuronal cultures and concomitant K63 

deubiquitination of PSD-95, which is accompanied by dispersal of PSD-95 from synapses, 

internalization of AMPARs, and cLTD [93]. Deubiquitination of K63-ubiquitinated PSD-95 

by CYLD is required for this cLTD. The activity-triggered, NMDAR-dependent CYLD 

synaptic translocation and activation [102] may serve as a potential mechanism for 

deubiquitination of synaptic substrates including PSD-95, and LTD (Fig. 4). Supporting 

the role of K63-polyUb in synaptic plasticity, Nedd4 heterozygous mice displayed a reduced 

hippocampal postsynaptic LTP [137], and theta burst stimulation (TBS)-induced LTP is 

absent in hippocampal CA1 neurons on slices from p62 knockout mice [138]. Finally, 

K63 ubiquitination, as discussed above, is an important signal for AMPAR trafficking that 

mediates bicuculline-induced synaptic downscaling, a non-Hebbian form of plasticity (Fig. 

5) [115, 127–129].

The involvement of non-proteolytic ubiquitination in behavioral plasticity has also begun 

to emerge. Conditional knockout of RNF8 or Ubc13 in mouse granule neurons show 

cerebellar-dependent learning deficits [89]. Conditional knockout of cerebellar Ubc13 also 

produces disturbances in gait and spontaneous locomotion and exploration [139]. Nedd4 

mutant mice show an impaired long-term spatial memory in the Morris water maze 

[137]. More directly, in the mouse amygdala, memory acquisition has been reported to 

be associated with a nuclear increase of K48, K63 and M1 chains, whereas memory retrieval 

induces an increase in these polyUb chains in the synaptic, but not nuclear or cytoplasmic 

regions [140]. As UPS and synaptic protein degradation underlies destabilization of 

retrieved fear memory [141], how proteasome-independent polyUb chains regulate memory 

formation, consolidation, and retrieval remain an important future question.
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Emerging Models

Based on above discussions, working models of how nonproteolytic ubiquitination regulates 

synapse development, function, and plasticity begin to take shape (Fig. 3–5). By regulating 

protein scaffolding locally in the PSD and globally through NF-κB signaling in the nucleus, 

K63-polyUb can regulate dendritic spine remodeling (Fig. 3). By guiding pre- and post-

synaptic endosomal trafficking and sorting, K63-polyUb can regulate axonal patterning, SV 

cycles, terminal differentiation (Fig. 3), LTD (Fig. 4), and homeostatic plasticity (Fig. 5). 

Through activity-dependent recruitment of ubiquitin enzymes (e.g. CYLD, USP8, Nedd4, 

and Nedd4L) and synaptic substrate ubiquitination/deubiquitination, K63-polyUb can drive 

Hebbian (Fig. 4) and non-Hebbian synaptic plasticity (Fig. 5). Molecules with established 

roles in non-neuron cells (e.g. RNF8) are also repurposed for specific functions at synapses 

(Fig. 3).

Brain Diseases

In this section, we discuss emerging roles of nonproteolytic ubiquitination in 

several common neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. 

Nonproteolytic ubiquitination related genes and their implications in each brain disorder 

are summarized in Table 2.

Autism Spectrum Disorders.

ASDs are neurodevelopmental disorders characterized by impaired social interaction and 

communications, as well as repetitive and stereotypic interests and behaviors [142]. 

Increased dendritic spine density is observed in frontal, temporal, and parietal lobes of 

some ASD patients [143, 144], although decreased spine density has also been observed in 

ASD brains and animal models [145–147]. Genome-wide and homozygosity mappings in 

patients with autism have identified a deletion in the regulatory region of the RNF8 gene 

[148] and a homozygous missense mutation in the gene HERC2 [149]. RNF8 and HERC2, 

as discussed above, act to negatively regulate synapse density during development through 

a K63-dependent mechanism, and disrupting this mechanism results in learning deficits in 

mice [89].

De novo

heterozygous loss-of-function mutations of Ubiquitin-specific protease 7 (USP7), which 

can cleave multiple polyUb linkages including short K48 chains and longer K63 chains 

[150, 151], have been identified in individuals with intellectual disability and ASD 

[152]. USP7 directly deubiquitinates K63-polyUb chains from WASH (Wiskott-Aldrich 

syndrome protein (WASP) and SCAR homolog), an actin-nucleating protein essential in the 

endosomal recycling pathway, to inhibit WASH activity and maintain proper endosomal 

actin levels. WASH K63 ubiquitination is promoted by the TRIM27 (tripartite motif 

containing 27)/RNF76 E3 ligase and its regulator melanoma antigen gene L2 (MAGEL2) 

[152, 153], mutations of which are associated with Prader-Willi syndrome, Schaaf-Yang 

syndrome, and ASD [154–156]. In addition to buffering WASH K63 ubiquitination, USP7 

also deubiquitinates TRIM27 and protects it from auto-ubiquitination and proteasome 
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degradation. Thus, USP7 appears to act as a “molecular rheostat” to regulate WASH-

dependent endosomal actin assembly and protein recycling via both K48 and K63 

deubiquitination important in ASD pathogenesis [152].

Schizophrenia.

Schizophrenia is a severe mental illness that affects ~1% of the population worldwide, and 

is characterized by episodic positive symptoms (delusions, hallucinations, paranoia, and 

psychosis) and/or persistent negative symptoms (avolition, flat affect, social withdrawal) 

and cognitive impairments [157]. There is an overall reduction of protein ubiquitination, 

free ubiquitin, and K48-polyUb, but increased K63-polyUb in the superior temporal gyrus 

of schizophrenia subjects [158]. Ubiquitin E1 activating enzyme UBA6 and Nedd4 are 

also decreased, whereas the E2 ubiquitin conjugating enzyme UBE2K is unaltered. Given 

the important roles of Nedd4 in AMPAR ubiquitination and trafficking, a decreased 

Nedd4 level may contribute to glutamate hypofunction in schizophrenia. Single nucleotide 

polymorphisms in the Nedd4 gene have been associated with schizophrenia [159].

Alzheimer’s disease.

AD is the most common neurodegenerative disease, characterized by progressive decline 

in memory, thinking ability, and cognitive functions. Neuropathological hallmarks of AD 

include intracellular, filamentous aggregates mainly consisting of hyperphosphorylated Tau 

(neurofibrillary tangles) and extracellular plaques enriched with Amyloid-beta (Aβ; amyloid 

plaques) [160–162]. Aβ, known to have numerous deleterious effects on neurons and 

synapses [163, 164], is a peptide product generated from the cleavage of the Amyloid 

Precursor Protein (APP) by the β- (BACE) and γ- (presenilin) secretases after it exits the 

secretory pathway and reaches the cell surface [165–167]. APP is K63-ubiquitinated and 

sequestered early in the secretory pathway, primarily within the Golgi apparatus, delaying 

its maturation and subsequent proteolytic processing by secretases [168]. Ubiquilin-1, 

a ubiquitin-like molecular chaperone, stimulates this process [168]. Single nucleotide 

polymorphisms in the Ubiquilin-1 gene have been linked to late-onset AD [169, 170] 

and Ubiquilin-1 levels are significantly decreased in late-onset AD patient brains [171]. 

Thus, although mutations in APP and the secretase enzymes often result in familial early-

onset AD [164, 166], K63-polyUb may have a role in the pathogenesis of more common 

sporadic, genetically complex late-onset AD by regulating APP maturation, trafficking, 

and processing. Finally, presenilins can be K63-ubiquitinated by TRAF6, which does 

not appear to affect the γ-secretase enzyme activity but increases the levels and Ca2+ 

signaling properties of presenilins in heterologous cells [172]. Presenilin-1 also possesses a 

ubiquitin-binding CUE (coupling of ubiquitin to ER degradation) domain and can mediate a 

non-covalent binding to K63 chains [173]. The role of presenilin conjugation or binding by 

K63-polyUb in AD, if any, is currently unknown.

Frontotemporal Dementia (FTD).

FTD, the second most common cause of dementia after AD and the leading dementia 

before the age of 65, is caused by degeneration of prefrontal and/or anterior temporal 

cortex that leads to changes in personality, emotional blunting, disinhibition, and language 

disability [174–176]. FTD overlaps clinically, pathologically, and genetically with the motor 

Zajicek and Yao Page 12

Mol Psychiatry. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neuron disease amyotrophic lateral sclerosis (ALS) [177]. TDP-43 (transactive response-

DNA binding protein-43) is the major pathologic component of tau-negative and ubiquitin-

positive inclusions in ~ 50% of FTD patients [175]. TDP-43 binds noncoding RNAs, 

introns, and mRNAs and regulates RNA splicing, trafficking, and expression of thousands 

of genes including Parkin [178, 179]. TDP-43 is predominately nuclear, but in FTD/ALS, 

is translocated to the cytoplasm where hyperphosphorylated, ubiquitinated, and truncated 

TDP-43 is accumulated. It is currently unclear how cytosolic TDP-43 accumulation leads to 

pathogenesis, though it is hypothesized that it is mediated either by a toxic gain of function 

by aggregated TDP-43, or a loss of function by normal TDP-43 [180–182]. TDP-43 is K63-

ubiquitinated by Parkin, which does not seem to alter TDP-43 levels via autophagy process. 

Rather, Parkin forms a multiprotein complex with cytoplasmic HDAC6 (histone deacetylase 

6) and TDP-43 that promotes TDP-43 translocation to and accumulation at the cytoplasm 

[183]. Furthermore, a mutation in the CYLD gene leading to increased K63-deubiquitinase 

activity of the protein is identified in FTD patients [105]. This mutant, when expressed in 

primary mouse neurons, results in increased cytoplasmic localization of TDP-43. This, in 

combination with CYLD’s interaction with proteins encoded by several FTD-ALS linked 

genes including TBK1 [184, 185], OPTN [186, 187] and SQSTM1 [188, 189], strongly 

suggest that CYLD has a causative role in the pathogenesis of FTD/ALS [105].

Parkinson’s disease.

PD, the second most common neurodegenerative disease, is characterized by the loss of 

dopaminergic neurons in the substantia nigra and the presence of intracellular inclusions 

termed Lewy bodies (LBs). The major constituent of LBs is misfolded α-synuclein [190], 

an abundant lipid-binding presynaptic protein often conjugated with K63-polyUb [191]. 

Nedd4 has been shown to serve as an E3 for α-synuclein ubiquitination and facilitate 

its targeting to the endosomal-lysosomal pathway for degradation, promoting clearance of 

inclusions [192, 193]. Independently, unbiased screens in yeast identified Nedd4 and related 

protein network as druggable targets that ameliorate α-synuclein toxicity in human neurons 

[194, 195]. The deubiquitinase USP8, also present in LBs, removes K63-polyUb chains 

from α-synuclein and regulates its clearance and modifies its toxicity in PD [191]. These 

studies suggest that K63-linked ubiquitination of α-synuclein by Nedd4/USP8 represents an 

important mechanism in PD pathogenesis.

Concluding Remarks

The functional significance of nonproteolytic ubiquitination in the CNS is steadily emerging, 

and many fundamental questions need to be answered. Do other atypical polyUb chains have 

a role in neurons and synapses? How do different polyUb linkages coordinate to regulate 

activity-dependent assembly and disassembly of the PSD during synapse remodeling and 

plasticity underlying behavior? What are the precise molecular mechanisms by which 

K63-polyUb regulates each step of AMPAR trafficking and recycling? What are other 

synaptic substrates that undergo nonproteolytic ubiquitination and what are their roles? 

Answering these and other important questions will require the development of new tools 

for monitoring, manipulating, and characterizing different polyUb chains in the synapse and 

other specific neuronal compartments.
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The brain was initially thought to be immunologically privileged, but it has become 

abundantly clear that many immune molecules are expressed in neurons and neural-

immune interactions profoundly impact synaptic development, function, and plasticity [196–

198]. Importantly, abnormal immune activation in the brain, causing abnormal neural 

circuit rewiring and/or damage to neuronal integrity, is a common pathology across 

neurodevelopmental and neurodegenerative disorders [199, 200]. Given the essential roles 

of nonproteolytic ubiquitination in innate and adaptive immune signaling, elucidating how 

these ubiquitin linkages regulate neural-immune interplays to mediate synapse remodeling in 

normal and disease states undoubtedly represents a fundamental endeavor.
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Figure 1. 
Different faces of polyubiquitin linkages. a, Schematic of enzymatic steps involved in 

substrate ubiquitination and deubiquitination. Ubiquitination by E1, E2, and E3 enzymes, 

as well as ubiquitin chain extension by U-Box/E4 enzymes and deubiquitination by 

deubiquitinases (DUB) are shown. Mechanisms for RING, HECT, and RBR E3 ligases are 

depicted. IBR, in between ring; SBR, substrate binding region. b, Eight different chain 

topologies and their degradative and non-degradative roles in protein fates are shown. 

TNF, tumor necrosis factor; ERAD, endoplasmic reticulum-associated degradation; M, 

methionine; K, lysine; G, glycine.
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Figure 2. 
Roles of nonproteolytic polyUb in signalosome formation and kinase activation. a, NF-κB 

signaling. Activation of TNF receptor (TNFR), interleukin 1 receptor (IL-1R), or Toll-like 

receptor (TLR) leads to, in a receptor-dependent manner, recruitment of adaptor proteins 

(TRADD, MyD88), protein kinases (RIP1, IRAKs), and E3 ubiquitin ligases (TRAF2/5/6, 

cIAP1/2, and LUBAC) which, together with specific E2s (not shown), catalyze the synthesis 

of anchored or unanchored polyUb chains of different linkages (K63, M1, and K11). 

These nonproteolytic chains bind TAB2 subunit of the TAK1 kinase complex, resulting 

in TAK1 activation, which then phosphorylates IKKβ of the IKK complex, leading to 

IKK activation. Activated IKK phosphorylates IκB proteins, resulting in their K48-linked 

ubiquitination and subsequent degradation by the proteasome, freeing the NF-κB complex 

to enter the nucleus to regulate gene transcription. CYLD and A20 inhibit NF-κB signaling 

by cleaving K63 and M1 chains. b, Endocytosis. Following ligand binding of the receptor 

tyrosine kinases EGFR on the plasma membrane, the E3 CBL conjugates K63 chains 

onto the activated receptors. DUBs, such as AMSH and USP8/UBPY, cleave K63 chains 

from internalized receptors. Endocytic adaptors EPS15 and Epsin recognize ubiquitin-bound 

receptors, targeting them for sorting by the endosome. The ESCRT-0, -I, and -II complexes 

mediate the sorting process and target the receptors for ESCRT-III dependent lysosomal 
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degradation, or deubiquitination by DUBs (*, largely unknown) and recycling back to the 

plasma membrane. c, Maintenance of genome integrity. Following DNA double-stranded 

breaks (DSBs), the E3/E2 complexes RNF8/Ubc13 and RNF168/UbcH5c are recruited to 

histone H2A/H2AX at sites of DNA damage, where they synthesize K63 and K27 chains 

on histone or other substrates (S). RAP80 then binds to the polyUb chains, recruiting the 

BRCA1 E3 ligase complex to sites of the DSB, where it synthesizes K6 chains on substrates 

to initiate DNA repair process.
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Figure 3. 
Nonproteolytic ubiquitination in synapse development and remodeling. Presynaptically, the 

ubiquitin adaptor protein PLAA is required for sorting of ubiquitin-modified membrane 

proteins into the lumen of MVB/late endosomes. This process plays an important role 

in synaptic vesicle (SV) recycling, reserve pool size, synaptic transmission, and terminal 

differentiation. K63 ubiquitination also regulates filopodia extension and branching of 

sensory axons via an endocytic process. NGF induces K63-polyubiquitination of Ulk1/2 

likely by TRAF6, allowing the binding of Ulk1/2 to p62 and the recruitment of 

Ulk1/2 to active TrkA complex via p62, leading to TrkA internalization, attenuation of 

NGF signaling, and filopodia withdrawal. RNF8/HERC2 may also regulate presynaptic 

differentiation in a K63-dependent manner through ubiquitination of unidentified substrates 

(S). Postsynaptically, A20 inhibits dendritic arborization and spine remodeling through 

suppression of NF-κB activity, likely via regulation of gene expression in the nucleus, 

causing postsynaptic remodeling. TRAF6 and CYLD control local postsynaptic remodeling 

through K63 polyUb chain conjugation and disassembly on PSD-95. PSD-95 is 

constitutively K63-ubiquitinated by TRAF6 in conjunction with Ubc13/Uev1A, and 

deubiquitinated by CYLD. The K63-polyUb conjugation sites are localized primarily in the 

GK domain, where the assembled K63 chains are essential for PSD-95 interactions with its 

GK binding partners including SPAR, GKAP/SAPAP, and AKAP79/150. K63-ubiquitinated 
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PSD-95, but not its un-ubiquitinated form, is targeted to the PSD to promote synapse 

efficacy (AMPAR numbers) and maturation. CYLD removes K63-polyUb from PSD-95, 

leading to translocation of deubiquitinated PSD-95 away from the PSD, destabilizing the 

PSD, weakening the synapse, and inhibiting synapse formation and maturation. PDZ, SH3, 

and GK domains of PSD-95 are indicated. PSD-95 binds NMDARs directly and AMPARs 

through Stargazin and localizes these receptors at the synapse.
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Figure 4. 
Nonproteolytic ubiquitination regulates Hebbian synaptic plasticity. Presynaptically, 

sustained synaptic activity leads to activation of presynaptic mGluR7, which inhibits 

neurotransmitter release through PLC and PKC-dependent suppression of P/Q Ca2+ 

channels. K63 ubiquitination of mGluR7 routes it for lysosomal degradation, whereas 

K48 ubiquitination targets it for proteasomal degradation. These processes may regulate 

a metaplastic LTD/LTP switch at MF-SLIN synapses. Postsynaptically, IKK regulates 

constitutive CYLD activity through phosphorylation under basal conditions. NMDAR-

mediated Ca2+ influx activates CaMKII, which further activates CYLD through 

phosphorylation, and/or recruits CYLD to the PSD. CYLD deubiquitinates PSD-95 and 

causes dispersal of PSD-95, leading to loss of synaptic AMPARs and weakening of 

synapses.
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Figure 5. 
Nonproteolytic ubiquitination regulates homeostatic plasticity. Nedd4 and Nedd4L are 

activated in response to chronic elevation of synaptic activity (by bicuculline). Nedd4, 

Nedd4L and RNF176 act as E3s to ubiquitinate AMPARs. Ubiquitination, occurring 

either before or after receptor endocytosis, regulates endosomal sorting and lysosomal 

degradation of AMPARs. Deubiquitination by USP8/UBPY, recruited and activated by 

NMDAR stimulation, and USP46 may promote recycling of AMPARs back to the plasma 

membrane. L-VGCC, L-type voltage-gated Ca2+ channels; E.V., endocytic vesicle; E.E., 

early endosome; R.E., recycling endosome.
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Table 1.

Ubiquitin enzymes and their characteristics discussed in this article.

Ubiquitin 
enzyme

Enzyme type Chain 
specificity

Known substrates Neuronal function Refs

UBA6 E1 N/A ND Unknown 158

Ubc13 E2 K63 TRAF6, H2A/H2AX Synapse formation; PSD-95 
ubiquitination and scaffolding; 
locomotor and plasticity behavior

33, 56–58, 93, 
139

UbcH5c E2 K27, K63 H2A Unknown 58, 59

UbcH7 E2 K63 TrkA Neurotrophin signaling 63

UbcH8 E2 K48 ND Unknown 89

UBE2K E2 K63 ND Unknown 158

Uev1A E2 K63 TRAF6 PSD-95 ubiquitination and 
scaffolding

33, 93

BRCA1 RING E3 K6, others H2A Unknown 56–60

CBL RING E3 K63 Receptor tyrosine 
kinases, e.g., EGFR

Unknown 51, 52

HERC2 HECT E3 K63 ND Synapse formation 89

LUBAC RBR E3 Complex M1 NEMO, MyD88, 
IRAKs, TNFR1

Unknown 3, 19

Nedd4 HECT E3 K63 GluA1, mGluR7, α-
synuclein

AMPAR trafficking; homeostatic 
plasticity; α-synuclein endosomal 
trafficking and clearance

91, 115, 126, 
127, 192, 193

Nedd4–2 
(Nedd4L)

HECT E3 K63 GluA1 AMPAR trafficking; homeostatic 
plasticity

129

Parkin RBR E3 K63 TDP-43 TDP-43 cytoplasmic translocation 
and accumulation in FTD/ALS

183

RNF8 RING E3 K63 H2A/H2AX Synapse formation 56, 57, 89

RNF76/TRIM27 RING E3 K63 WASH Endosomal actin levels and protein 
recycling

152, 153

RNF167 RING E3 ND GluA2 AMPAR trafficking, homeostatic 
plasticity

117

RNF168 RING E3 K63, K27 H2A/H2AX ND 56–58

RNF220 RING E3 K63 Glis Neural development 78

SCF RING E3 K11, K48 Glis Neural development 74–77

SCFβTrCP RING E3 K48 IκBα NF-κB signaling 49

TRAF3 RING E3 K63 ND Present in the PSD with unknown 
function

94

TRAF6 RING E3 K63 PSD-95, TrkA, TrkB, 
TrkC, p75, NRIF, 
Ulk1/2, presenilins

Neurotrophin signaling; synapse 
remodeling; axonal outgrowth

33, 63–71, 73, 
81, 93, 172

A20 OTU DUB, E3 K48, K63 RIP1, TRAF6, 
NEMO, Ubc13

Synapse remodeling 50, 95

AMSH JAMM DUB K63 Receptor tyrosine 
kinases, e.g., EGFR

Unknown 53

CYLD USP DUB K63, M1 PSD-95 Disassembles K63 chains in PSD; 
regulates PSD scaffolding; cLTD; 
striatal GABAergic transmission; 
axonal outgrowth

42–44, 93, 100–
102, 104–106

USP7 USP DUB K48, K63 WASH Endosomal actin levels and protein 
recycling

150, 152
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Ubiquitin 
enzyme

Enzyme type Chain 
specificity

Known substrates Neuronal function Refs

USP8/UBPY USP DUB K63 GluA1, α-synuclein, 
EGFR

AMPAR trafficking; homeostatic 
plasticity; α-synuclein clearance 
and toxicity

54, 127, 191

USP46 USP DUB K63 GLR-1, GluA1, 
GluA2

AMPAR trafficking 118, 130

ALS, amyotrophic lateral sclerosis; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; cLTD, chemical long-term 
depression; FTD, frontotemporal dementia; GABA, gamma aminobutyric acid; N/A, not applicable; ND, not discussed; PSD, postsynaptic density.

Mol Psychiatry. Author manuscript; available in PMC 2022 June 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zajicek and Yao Page 34

Table 2.

Nonproteolytic ubiquitination and ubiquitination-related genes and their implications in brain disorders.

Gene (Protein) Protein and cellular function Associated brain disorders Refs

APP (APP) Subject to Ubiquilin 1-stimulated K63 ubiquitination 
that delays its maturation through the secretary 
pathway and subsequent cleavage by secretases

Mutations associated with early-onset 
familial AD

164, 166, 168

CYLD (CYLD) DUB that disassembles K63 chains in the 
PSD, regulates PSD-95 scaffolding, cLTD, striatal 
GABAergic transmission, and axonal outgrowth; 
regulated by Shank3 and interacts with >103 synaptic 
proteins

Mutations associated with FTD/ALS, 
potentially via regulation of TDP-43 
cytoplasmic accumulation; interacts with 
many proteins associated with ASD, 
schizophrenia, and depression

93, 100–102, 104–106

HERC2 (HERC2) E3 ligase that interacts with RNF8 and NEURL4 to 
inhibit synapse formation likely via K63-dependent 
mechanisms

A homozygous missense mutation linked 
to ASD

149 

MAGEL2 
(MAGEL2)

Regulator in the TRIM27-MAGEL2 E3 ligase 
complex that promotes K63 ubiquitination of WASH 
to regulate endosomal actin assembly and protein 
recycling

Mutations and dysregulation associated 
with Prader-Willi syndrome, Schaaf-
Yang syndrome, and ASD

152, 154–156

NEDD4 (Nedd4) E3 ligase that regulates AMPAR ubiquitination 
and trafficking, synaptic plasticity, α-synuclein 
ubiquitination and endosome-lysosome mediated 
degradation

Decreased in temporal gyrus of 
schizophrenia patients; SNPs associated 
with schizophrenia; regulates clearance 
and toxicity of α-synuclein in PD

158, 159, 194, 195

PRKN (Parkin) E3 ligase that promotes K63 ubiquitination of TDP-43 
and regulates TDP-43 cytoplasmic translocation and 
accumulation

Cytoplasmic TDP-43 accumulation is 
associated with FTD/ALS; mutations 
and dysfunctions are associated with PD

13, 183

PSEN1 
(Presenilin-1)

γ-secretase that cleaves APP to form Aβ; binds 
K63 chains and is K63-ubiquitinated by TRAF6 with 
unknown functional significance

Mutations associated with early-onset 
familial AD but role of K63 
ubiquitination is unknown

165, 166, 172, 173

RNF8 (RNF8) E3 ligase that acts with Ubc13 and interacts with 
HERC2/NEURL4 to limit synapse formation likely 
via K63-dependent mechanisms

A deletion in the regulatory region linked 
to ASD

148 

SNCA (α-
synuclein)

Major constituent of Lewy bodies that is K63 
ubiquitinated by Nedd4

Lewy body formation and toxicity 
associated with PD

190–195

TARDBP (TDP-43) Nuclear DNA/RNA-binding protein that regulates 
expression of thousands of genes; K63 ubiquitination 
by Parkin promotes its translocation and accumulation 
in the cytoplasm

Major pathologic component of 
tau-negative and ubiquitin-positive 
inclusions in ~ 50% of FTD

105, 176, 178, 179, 183

UBA6 (UBA6) E1 ubiquitin activating enzyme Decreased in temporal gyrus of 
schizophrenia patients

158 

UBQLN1 
(Ubiquilin-1)

Ubiquitin-like molecular chaperone that stimulates 
APP K63 ubiquitination, maturation, and degradation

SNPs associated with late-onset AD; 
levels are decreased in late-onset AD 
brains

168–171

USP7 (USP7) DUB that removes K63 chains from WASH to 
maintain endosomal actin levels and K48 chains from 
TRIM27/RNF76 to prevent proteasomal degradation 
to regulate endosomal protein trafficking

Loss of function mutations linked to 
intellectual disability and ASD

152 

USP8 (USP8/
UBPY)

DUB that removes K63 chains from α-synuclein and 
regulates its clearance

Regulates α-synuclein toxicity in PD 191 

AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; 
ASD, autism spectrum disorder; cLTD, chemical long-term depression; DUB, deubiquitinase; FTD, frontotemporal dementia; GABA, gamma-
aminobutyric acid; PD, Parkinson’s disease; PSD, postsynaptic density; SNP, single nucleotide polymorphism.
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