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T-cell receptors can recognize foreign peptides bound to major histocompatibility complex
(MHC) class-I proteins, and thus trigger the adaptive immune response. Therefore,
identifying peptides that can bind to MHC class-I molecules plays a vital role in the
design of peptide vaccines. Many computational methods, for example, the state-of-the-
art allele-specific method MHCflurry, have been developed to predict the binding affinities
between peptides and MHC molecules. In this manuscript, we develop two allele-specific
Convolutional Neural Network-based methods named ConvM and SpConvM to tackle the
binding prediction problem. Specifically, we formulate the problem as to optimize the
rankings of peptide-MHC bindings via ranking-based learning objectives. Such
optimization is more robust and tolerant to the measurement inaccuracy of binding
affinities, and therefore enables more accurate prioritization of binding peptides. In
addition, we develop a new position encoding method in ConvM and SpConvM to better
identify the most important amino acids for the binding events. We conduct a
comprehensive set of experiments using the latest Immune Epitope Database (IEDB)
datasets. Our experimental results demonstrate that our models significantly outperform
the state-of-the-art methods including MHCflurry with an average percentage
improvement of 6.70% on AUC and 17.10% on ROC5 across 128 alleles.
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1 INTRODUCTION

Immunotherapy, an important treatment of cancers, treats the disease by boosting patients’ immune
systems to kill cancer cells (Mellman et al., 2011; Couzin-Frankel, 2013; Esfahani et al., 2020;
Waldman et al., 2020). To trigger patients’ adaptive immune responses, Cytotoxic T cells, also known
as CD8+ T-cells, have to recognize peptides presented on the cancer cell surface (Valitutti et al., 1995;
Blum et al., 2013). These peptides are fragments derived from self-proteins or pathogens by
proteasomal proteolysis within the cell. To have the peptides presented on the cell surface to
be recognized by CD8 receptors, they need to be brought from inside the cells to the cell surface,
typically through binding with and transported by major histocompatibility complex (MHC)
class-I molecules. To mimic natural occurring proteins from pathogens, synthetic peptide
vaccines are developed for therapeutic purposes (Purcell et al., 2007). Therefore, to design
successful peptide vaccines, it is critical to identify and study peptides that can bind with MHC
class-I molecules.
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Many computational methods have been developed to predict
the binding affinities between peptides and MHC class-I
molecules (Han and Kim, 2017; O’Donnell et al., 2018). These
existing computational methods can be categorized into two
types: allele-specific methods and pan methods. Allele-specific
methods train one model for one allele such that the model can
capture binding patterns specific to the allele, and thus it is better
customized to that allele (Lundegaard et al., 2008; O’Donnell
et al., 2018). Pan methods train one model for all the alleles at the
same time, and thus the information across different alleles can be
shared and integrated into a general model (Jurtz et al., 2017; Hu
et al., 2018). These existing methods can achieve significant
performance on the prediction of binding affinities. However,
most existing methods formulate the prediction problem as to
predict the exact binding affinity values (e.g., IC50 values) via
regression. Such formulations may suffer from two potential
issues. First of all, they tend to be sensitive to the
measurement errors when the measured IC50 values are not
accurate. In addition, many of these methods use ranking-
based measurement such as Kendall’s Tau correlations to
measure the performance of regression-based methods
(Bhattacharya et al., 2017; O’Donnell et al., 2020). This could
lead to sub-optimal solution as small regression errors do not
necessarily correlate to large Kendall’s Tau. Therefore, these
methods are limited in their capability of prioritizing the most
possible peptide-MHC pairs of high binding affinities.

In this study, we formulate the problem as to prioritize the most
possible peptide-MHC binding pairs via ranking based learning.
We propose three ranking-based learning objectives such that
through optimizing these objectives, we impose peptide-MHC
pairs of high binding affinities ranked higher than those of low
binding affinities. Coupled with these objectives, we develop two
allele-specific Convolutional Neural Network (CNN)-based
methods with attention mechanism, denoted as ConvM and
SpConvM. ConvM extracts local features of peptide sequences using
1D convolutional layers, and learns the importance of different
positions in peptides using self-attention mechanism. In addition
to the local features used in ConvM, SpConvM represents the peptide
sequences at different granularity levels by leveraging both global and
local features of peptide sequences. We also develop a new position
encoding method together with self-attention mechanism so as to
differentiate amino acids at different positions. We compare the
various combinations of model architectures and objective
functions of our methods with the state-of-the-art baseline
MHCflurry (O’Donnell et al., 2018) on IEDB datasets (Vita et al.,
2018). Our experimental results demonstrate that our models
significantly outperform the state-of-the-art methods with an
average percentage improvement of 6.70% on AUC and 17.10%
on ROC5 across 128 alleles.

We summarize our contributions below:

• We formulate the problem as to optimize the rankings of
peptide-MHC pairs instead of predicting the exact binding
affinity values. Our experimental results demonstrate that
our ranking-based learning is able to significantly improve
the performance of identifying the most possible peptide-
MHC binding pairs.

• We develop two allele-specific methods ConvM and
SpConvM with position encoding and self attention,
which enable a better learning of the importance of
amino acids at different positions in determining
peptide-MHC binding.

• We incorporate both global and local features in SpConvM to
better capture and learn from different granularities of
peptide sequence information.

• Our methods outperform the state-of-the-art baseline
MHCflurry on IEDB datasets (O’Donnell et al., 2018) in
prioritizing the most possible peptide-MHC binding pairs.

2 LITERATURE REVIEW

The existing computational methods for peptide-MHC binding
prediction can be generally classified into two categories: linear
regression-based methods and deep learning (DL)-based
methods. Below, we present a literature review for each of the
categories, including the key ideas and the representative work.

2.1 Peptide Binding Prediction Via Linear
Regression
Many early developed methods on peptide-MHC binding
prediction are based on linear regression. For example, Peters
and Sette (2005) proposed a method named Stabilized Matrix
Method (SMM), which applied linear regression to predict the
binding affinities from one-hot encoded vector representation of
peptide sequences. Kim et al. (2009) derived a novel amino acid
similarity matrix named Peptide:MHC Binding Energy
Covariance (PMBEC) matrix and incorporated it into the SMM

approach to improve the performance of SMM. In PMBEC, each
amino acid is represented by its covariance of relative binding
energy contributions with all other amino acids. Some recent
work (Zhao and Sher, 2018; Bonsack et al., 2019) demonstrates
these linear regression-based methods are inferior to DL-based
methods, and therefore, in our work, we focus on DL-based
methods.

2.2 Peptide Binding Prediction Via Deep
Learning
The DL-based models can be categorized into allele-specific
methods and pan methods. Allele-specific methods train a
model for each allele and learn the binding patterns of each
allele separately. Instead, pan methods train a model for all alleles
to learn all the binding patterns together within one model. Both
the methods use similar encoding methods such Onehot

encoding, BLOSUM encoding and Word2Vec (Goldberg and
Levy, 2014).

2.2.1 Allele-specific Deep Learning Methods
Among these allele-specific methods, Lundegaard et al. (2008)
proposed NetMHC3.0 that takes the embeddings of peptide
sequences as input, and they applied neural networks with one
hidden layer to predict peptide-MHC binding for peptides of
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fixed length. In NetMHC3.0, the hidden layer is a fully-connected
(FC) layer, and learns the global features of peptide sequences
such as the position and types of specific amino acids. Andreatta
and Nielsen (2015) extended NetMHC3.0 to NetMHC4.0 by
padding so that the model can handle peptides of variable
length. Kuksa et al. (2015) developed two nonlinear high-order
methods including high-order neural networks (HONN) pre-
trained with high-order semi-restricted Boltzmann machine
(RBM), and high-order kernel support vector machines
(hkSVM). Both the high-order RBMs and the high-order kernel
are designed to capture the direct strong high-order interactions
between features. Bhattacharya et al. (2017) developed a deep
recurrent neural network based on gated recurrent units (GRUs)
to capture the sequential features from peptides of various length.
Vang and Xie (2017) applied two layers of 1D convolution on the
embeddings of peptide sequences so as to learn local binding
patterns existing in each k-mer amino acids. O’Donnell et al.
(2018) designed a deep model named MHCflurry with locally-
connected layers. This locally-connected layer is used to learn the
position-specific local features from the peptide sequences.
MHCflurry has been demonstrated to achieve better or similar
performance compared with most of the other prediction
methods (Zhao and Sher, 2018; Michael Boehm et al., 2019).

2.2.2 Pan Deep Learning Methods
Nielsen and Andreatta (2016) developed a DL-based pan method
named NetMHCpan3.0. This method takes the embedding of
pseudo MHC sequences and peptide sequences as input, and
then applies an ensemble of neural networks to predict the
binding affinities of peptide-MHC pairs. Jurtz et al. (2017)
extended NetMHCpan3.0 to NetMHCpan4.0 by training the
model on both binding affinity data and eluted ligand data.
Their model shares a hidden layer among two kinds of data
and applies two different output layers to predict binding
affinities and eluted ligands, respectively, for peptide-MHC
pairs. Phloyphisut et al. (2019) developed a deep learning
model, which uses GRUs to learn the embeddings of peptides,
and a FC layer to learn the embeddings of alleles. The two types of
embeddings are then concatenated to predict peptide-MHC
binding probabilities. Han and Kim (2017) encoded peptide-
MHC pairs into image-like array (ILA) data and applied deep 2D
convolutional neural networks to extract the possible peptide-
MHC interactions from the ILA data. Hu et al. (2018) combined a
deep convolutional neural network with an attention module.
They applied multiple convolutional layers to extract features of
different levels. The extracted features are integrated with the
features learned from attention mechanism and fed
MHCflurry2.0 into the output layer to predict binding
affinities of peptide-MHC pairs. O’Donnell et al. (2020)
developed a pan-allele binding affinity predictor BP and an
allele-independent antigen presentation predictor
MHCflurry2.0 AP to calculate the presentation scores of
peptide-MHC pairs. Their binding affinity predictor includes
upstream and downstream residues of peptides from their
source proteins to improve the performance of models. Note
that MHCflurry2.0 is a pan method and requires source proteins
of peptides. Therefore, we do not compare our methods with

MHCflurry2.0. Venkatesh et al. (2020) developed amodel named
MHCAttnet which combines a bidirectional long short-term
memory (Bi-LSTM) network with attention mechanism to
encode the allele sequences and peptide sequences. The
encoded peptide embeddings and allele embeddings are then
concatenated and fed into the output layer to predict the binding
probability. Zeng and Gifford (2019) developed an ensemble of
deep residue convolutional neural networks named PUFFIN to
predict the probability that the peptide binds to an MHC
molecule, and to quantify the uncertainty of binding
predictions. Each network in PUFFIN predicts an affinity
distribution (i.e., mean and variance) of a peptide-MHC pair.
Then, all the predicted mean values and variance values are
averaged to produce a final prediction and the uncertainty of
the prediction.

3 MATERIALS

3.1 Peptide-MHC Binding Data
The dataset is collected from the Immune Epitope Database
(IEDB) (Vita et al., 2018). Each peptide-MHC entry m in the
dataset measures the binding affinity between a peptide and an
allele. These binding affinity entries could be of either quantitative
values (e.g., IC50) or qualitative levels indicating levels of binding
strength. The mapping between quantitative values and
qualitative levels is shown in Table 1. Note that higher IC50

values indicate lower binding affinities.
We combined the widely used IEDB benchmark dataset

curated by Kim et al. (2014) and the latest data added to
IEDB (downloaded from the IEDB website on Jun. 24, 2019).
The benchmark dataset contains two datasets BD2009 and
BD2013 compiled in 2009 and 2013, respectively. BD2009
consists of 137,654 entries, and BD2013 consists of 179,692
entries. The latest dataset consists of 189,063 peptide-MHC
entries. Specifically, we excluded those entries with non-
specific, mutant or unparseable allele names such as HLA-A2.
We then combined the datasets by processing the duplicated
entries and entries with conflicting affinities as follows. We first
mapped the quantitative values of all these duplicated or
conflicting entries into qualitative levels based on Table 1, and
used majority voting to identify the major binding level of the
peptide-MHC pairs. If such binding levels cannot be identified,
we simply removed all the conflicting entires; otherwise, we
assigned the average quantitative values in the identified major
binding level to the peptide-MHC pairs. The combined dataset
consists of 202,510 entries across 128 alleles and 53,253 peptides

TABLE 1 | Binding affinity measurement mapping.

Qualitative Quantitative (nM) Level

Negative >5,000 1
Positive-low 1,000–5,000 2
Positive-intermediate 500–1,000 3
Positive 100–500 4
Positive-high 0–100 5

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6348363

Chen et al. Ranking-Based Peptide Binding Prediction

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


as in Table 2. We further normalized the binding affinity values
ranging from 0 to 107 to [0, 1] via formula

b � clamp(1 − log50,000(x), 0, 1), (1)

where x is the measured binding affinity value, and
clamp(1 − log50,000(x), 0, 1) represents that 1 − log50,000(x) is
clamped into range [0, 1]. By using the above clamp function,
smaller/larger binding affinity values corresponding to higher/
lower binding affinities will be converted to higher/lower
normalized values.

4 DEFINITIONS AND NOTATIONS

All the key definitions and notations are listed in Table 3.

5 METHODS

We developed two new models: ConvM and SpConvM (will be
discussed in Sections 5.1 and 5.2), and compare them with
MHCflurry (O’Donnell et al., 2018), where MHCflurry is the
state-of-the-art and used as the baseline. In terms of the
embeddings of amino acids, we compare the performance of
SpConvM with three embedding methods for amino acids and
their combinations. In terms of the loss functions, we

developed three pair-wise hinge loss functions, and compare
them with the conventional mean-square loss function used in
MHCflurry.

5.1 Convolutional Neural Networks with
Attention Layers (ConvM)
In this section, we introduce our new model ConvM, a
convolutional neural network with attention layers. Figure 1
presents the architecture of ConvM.

5.1.1 Peptide Representation in ConvM
In ConvM, we first represent each amino acid, denoted as aj, in a
peptide sequence, denoted as p � [a1, . . . , aj, . . . , an] (started
from C-end), using two types of information. The first
information encodes the type of amino acids using
BLOSUM62 matrix or Onehot encoding. The details about
the encoding of amino acids are described in Section 6.1.1.
The second information encodes the position of each amino
acid in peptide sequences, as it has been demonstrated
(O’Donnell et al., 2018) that different positions of peptides
contribute differently to their binding to alleles. In particular,
each position of the peptide sequences, regardless of which
amino acid is at the position, will have two position vectors: for
the jth position from the C-end, we use oj and o−j ∈ Rdo×1 to
represent the position information with respect to the C-end
and the N-end, respectively. The two position vectors will
together accommodate the variation of peptide lengths. Thus,
each amino acid aj is represented as a feature vector
f j � [ej; oj; o−j] ∈ R(de+2do)×1, where ej ∈ Rde×1 is a j’s
embedding with an encoding method in Section 6.1.1, and
do is the dimension of position embedding vectors; a peptide of
n amino acids is represented as a feature matrix

TABLE 3 | Notations.

Notation Meaning

Peptides and alleles
p A peptide
a An amino acid of a peptide sequence
P A set of peptides
Q An allele

Binding
x/b Original/normalized binding affinity for a peptide-MHC pair
l Binding level for a peptide-MHC pair

Embeddings
e Encoding vector of amino acid type
r Embedding vector of each amino acid
o Position embedding of each k-mer amino acids
R Feature matrix for a peptide sequence
FG Feature matrix for a padded peptide sequence (i.e., input of global kernel in SpConvM)

Parameters
S(·) A scoring function
de Dimension of amino acid embedding
df Number of filters in convolution layer
do Dimension of position embedding o
dg Number of global kernels in SpConvM

dr Dimension of hidden units c in fully connected layer
k Kernel size in convolutional neural layer
w Attention weight learned in attention layer

TABLE 2 | Data statistics.

Variables Count

Entries 202,510
Alleles 128
Peptides 53,253
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F � [f 1, f 2, . . . , f n] ∈ R(de+2do)×n. The position vectors will be
learned in order to optimize the peptide representations.

5.1.2 Model Architecture of ConvM
The ConvM model consists of a 1D convolutional layer, a self-
attention layer and a fully-connected layer as demonstrated in
Figure 1. The 1D convolutional layer takes the peptide feature
matrix F ∈ R(de+2do)×n as input, and extracts local feature
patterns from the peptide sequences via 1D convolution
using dr kernels of size (de + 2do ) × k. The output of the 1D
convolutional layer is an embedding matrix
R � [r1, . . . , r(n−k+1)] ∈ Rdr×(n−k+1), in which each column ri
represents the embedding of the ith k-mer out of the dr
kernels. Batch normalization is applied to fix the mean and
variance of the embedding matrix R in each batch. After batch
normalization, rectified linear unit (ReLU) activation is
applied as the non-linear activation function on the
embedding matrix. Then, we apply the self-attention
mechanism (Chorowski et al., 2015) to convert the
embedding matrix into an embedding vector c for the input
peptide as follows. First, the weight wi for ith k-mer is
calculated as follows,

wi � exp(ai)
∑jexp(aj)

, ai � v tanh(Wri + b), (2)

where W ∈ Rda×dr , b ∈ Rda×1 and v ∈ R1×da are the parameters
of self-attention layer, and da is the number of hidden units in
the self-attention layer. With the weight wi on each k-mer, the
embedding of the whole sequence is calculated as the weighted
sum of all k-mer embeddings, that is,

c � ∑
n−k+1

i

wiri. (3)

The embedding vector c ∈ Rdr×1 of the input peptide is then
fed into the fully-connected layer to predict peptide binding at
the output layer. We will discuss the loss function used at the
output layer later in Section 5.3.

5.2 Convolutional Neural Networks with
Global Kernels and Attention
Layers (SpConvM)
We further develop ConvM into a new model with global kernels,
denoted as SpConvM as in Figure 1. The use of global kernels is
inspired by Bhattacharya et al. (2017), which demonstrates that
global kernels within CNN models can significantly improve the
performance of peptide binding prediction. As ConvM primarily
extracts and utilizes local features, the additional global kernels
extract global features from the entire peptide sequences that
could be useful for prediction but cannot be captured by local
convolution. In order to use global kernels, we pad the peptide
sequences of various lengths to length 15, with padding 0 vectors
in the middle of the peptide representations in a same way as in
MHCflurry. More details about padding are available later in
Section 6.1.2. The padded peptide sequences will be encoded into
a feature matrix FG in the same way as in ConvM, except that the
position embeddings are not included because the global kernels
will overwrite the local information after the convolution.

Given the input FG, the convolution using dg global kernels will
generate a vector g ∈ Rdg×1. We concatenate g and c as in ConvM

(i.e., the embedding vector calculated from local kernels) to
construct a local–global embedding vector c′�[c; g] for the
input peptide sequence and feed c′ into the fully-connected
layer to predict peptide prediction as in Figure 1.

5.3 Loss Functions
We propose three pair-wise hinge loss functions, denoted as Hv,
Hl and Hi, respectively. We will compare these loss functions with
the widely used mean-square loss function (O’Donnell et al.,
2018), denoted as MS, in learning peptide bindings.

5.3.1 Hinge Loss Functions for Peptide Binding
Ranking
We first evaluate the hinge loss as the loss function in
conjunction with various model architectures. The use of
hinge loss is inspired by the following observation. We

FIGURE 1 | Architectures of ConvM and SpConvM.
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noticed that in literature, peptide-MHC binding prediction is
often formulated into either a regression problem, in which
the binding affinities between peptides and alleles are
predicted, or a classification problem, in which whether
the peptide will bind to the allele is the target to predict.
However, in practice, it is also important to first prioritize the
most promising peptides with acceptable binding affinities
for further assessment, whereas regression and classification
are not optimal for prioritization. Besides, recent work has
already employed several evaluation metrics on top ranked
peptides, for example, (Zeng and Gifford, 2019) evaluated the
performance through the true positive rate at 5% false
positive rate, which suggests the importance of top-ranked
peptides in addition to accurate affinity prediction. All of
these inspire us to consider ranking based formulation for
peptide prioritization.

Given two normalized binding affinity values bi and bj of any
two peptides pi and pj with respect to an allele, the allele-specific
pair-wise ranking problem can be considered as to learn a scoring
function S(·), such that

S(pi)> S(pj), if bi > bj. (4)

Please note that S(pi) is a score for peptide pi, which is not
necessarily close to the binding affinity bi, as long as it
reconstructs the ranking structures among all peptides. This
allows the ranking based formulation more flexibility to
identify the most promising peptides without accurately
estimating their binding affinities. To learn such scoring
functions, hinge loss is widely used, and thus we develop three
hinge loss functions to emphasize different aspects during peptide
ranking.

5.3.1.1 Value-Based Hinge Loss Function
The first hinge loss function, denoted as Hv, aims to well rank
peptides with significantly different binding affinities. Given
two peptides pi and pj, this hinge loss function is defined as
follows:

Hv(pi, pj) � max(0, c + (bi − bj) − (S(pi) − S(pj))),
where li > lj,

(5)

where li denotes the binding level of peptide pi according to
the Table 1; li > lj denotes that the binding level of peptide pi
is higher than the peptide pj; bi and bj are the ground-truth
normalized binding affinities of pi and pj, respectively; c > 0 is
a pre-specified constant to increase the difference between
two predicted scores. Hv learns from two peptides of different
binding levels and defines a margin value between two
peptides as the difference of their ground-truth binding
affinities bi − bj plus a constant c. If two peptides pi and pj
are on different binding levels li > lj, and the difference of
their predicted scores is smaller than the margin c + (bi − bj),
this pair of peptides will contribute to the overall loss;
otherwise, the loss of this pair will be 0. Note that Hv is
only defined on peptides of different binding levels. For the
peptides with the same or similar binding affinities, Hv allows
incorrect ranking among them.

5.3.1.2 Level-Based Hinge Loss Function
Instead of ranking with respect to the margin as in Hv, we relax
the ranking criterion and use a margin according to the difference
of binding levels (Table 1). Thus, the second hinge loss, denoted
as Hl, is defined as follows:

Hl(pi, pj) � max(0, r × (li − lj) − (S(pi) − S(pj))),
where li > lj,

(6)

where r > 0 is a constant. Given a pair of peptides in two different
binding levels, similar to Hv, Hl requires that if the difference of
their predicted scores is smaller than a margin, this pair of
peptides will contribute to the overall loss; otherwise, the loss
of these two peptides will be 0. However, unlike Hv, the margin
defined in Hl depends on the difference of binding levels between
two peptides (i.e., r × (li − lj)). Therefore, in Hl, the margin values
of all the peptides (p1, p2, . . . , pn) on the level li to any other
peptides on the level ljwill be the same (i.e., r × (li − lj)). Note that
Hl is defined on peptides of different binding levels, and thus
also allows incorrect ranking among peptides of same binding
levels as in Hv ; the difference with Hv is on how the margin is
calculated.

5.3.1.3 Constrained Level-Based Hinge Loss Function
The third hinge loss function Hi extends Hl by adding a constraint
that two peptides of a same binding level can have similar
predicted scores. This hinge loss is defined as follows:

Hi(pi, pj) � ⎧⎨
⎩

max(0, r × (li − lj) − (S(pi) − S(pj))), if li > lj,
max(0, ∣∣∣∣∣S(pi) − S(pj)

∣∣∣∣∣ − r), if li � lj.

(7)

Given a pair of peptides on a same binding level, the added
constraint (the case if li � lj) requires that if the absolute difference∣∣∣∣∣S(pi) − S(pj)

∣∣∣∣∣ is smaller than the pre-specified margin r, the loss
will be zero; otherwise, this pair will have non-zero loss. The
constraint on the absolute difference allows incorrect ranking
among peptides on a same binding level as long as their predicted
scores are similar.

5.3.2 Mean-Squares Loss
We also compare a mean-squares loss function, denoted as MS,
proposed in (O’Donnell et al., 2018; Paul et al., 2019), to fit the
entries without exact binding affinity values as below:

MS (pi) �
⎧⎪⎪⎨
⎪⎪⎩

(S(pi) − bi)2 if mi is quantitative,
(max(0, S(pi) − bi))2 if mi is qualitative and li � 1 (i.e., negative binding),
(max(0, bi − S(pi)))2 if mi is qualitative and li > 1 (i.e., positive binding),

(8)

where “mi is quantitative” denotes that the peptide-MHC entry
mi is associated with an exact binding affinity value xi. In this case,
the MS loss is calculated as the squared difference between the
predicted score S(pi) and bi (bi is normalized from xi as in Eq. 1).
In Eq. 8, “mi is qualitative” denotes that mi is associated with a
binding level li instead of a binding affinity value (Table 1). In this
case, bi is normalized from the binding level thresholds
(i.e., xi ∈ {100, 500, 1000, 5000} in calculating bi in Eq. 1).
When qualitative mi has li � 1, that is, the peptide does not
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bind to the allele and the binding affinity is low (i.e., large binding
affinity value), the predicted score S(pi) should be small enough
compared to v in order not to increase the loss.When quantitative
mi has li > 1, that is, the peptide binds to the allele with reasonably
high binding affinity (i.e., small binding affinity value), the
predicted score S(pi) should be large enough compared to bi in
order not to increase the loss.

Note that in MS, the predicted score S(p) needs to be normalized
into range [0,1]. This is because b is in range [0,1] (Eq. 1) so that S(p)
needs to be in the same range and thus neither S(p) nor b will
dominate the squared errors due to substantially large or small
values. However, in the three hinge loss functions (Eqs. 5–7), the
potential different range between S(p) and b or l could be
accommodated by the constant c (Eq. 5) or r (Eqs. 6, 7),
respectively. In MS, we use sigmoid function to normalize S(p).

6 EXPERIMENTAL SETTINGS

6.1 Baseline Methods
6.1.1 Encoding Methods
Encoding methods represent each amino acid with a vector.
Popular encoding methods used by the previous works include
BLOSUM encoding (Nielsen and Andreatta, 2016; Jurtz et al., 2017;
O’Donnell et al., 2018), Onehot encoding (Bhattacharya et al.,
2017; Phloyphisut et al., 2019) and Word2Vec embedding method
(Vang and Xie, 2017). BLOSUM encoding utilizes the BLOSUM62
matrix (Henikoff and Henikoff, 1992), which measures the
evolutionary divergence information among amino acids. We
use the ith row of the BLOSUM matrix as the feature of ith amino
acid. Onehot encoding represents the ith natural amino acid with
an one-hot vector, in which all elements are ‘0’ except the ith
position as ‘1’. Word2Vec learns the embeddings of amino
acids from their contexts in protein sequences or peptide
sequences. This embedding method requires learning on a
large corpus of amino acid sequences, and is much more
complicated than Onehot. However, it is demonstrated
(Phloyphisut et al., 2019) that Word2Vec embedding method
is comparable to Onehot encoding method, and therefore, we
use BLOSUM encoding and Onehot encoding, but not Word2Vec.
Besides the above encoding methods, we also evaluate
another deep encoding method, denoted as Deep, in which
the encoding of each amino acid is learned during the training
process. Deep encoding is not deterministic and is learned
during the training process; the dimension of embedding
vector needs to be specified as a predefined hyper-parameter.
We also combine different representations of amino acid
generated by the above three encoding methods. These
combinations include BLOSUM+Onehot, BLOSUM+Deep,
Onehot+Deep and BLOSUM+Onehot+Deep , where “+”
represents concatenation of the embeddings of amino acid
from different encoding methods.

6.1.2 Baseline Method: Local Connected Neural
Networks MHCflurry
MHCflurry (O’Donnell et al., 2018) is a state-of-the-art deep
model with locally-connected layers for peptide binding

prediction. In MHCflurry, all peptides of length 8 to 15 are
padded into length 15 by keeping the first and last four residues
and inserting the padding elements in the middle (e.g.,
”GGFVPNMLSV” is padded to ”GGFVXXPNXXXMLSV”).
The padded sequences are encoded into a feature matrix
E ∈ R15×20 using BLOSUM encoding method. MHCflurry

employs locally-connected layers to extract local feature
patterns for each k-mers in peptide sequences. Unlike CNN
using common filters across all k-mer residues in peptides,
locally-connected layers apply local filters for each k-mer to
encode the position-specific features. The encoded feature
embeddings for all k-mers are then concatenated into a vector,
and fed into the fully-connected layer for binding prediction. To
the best of our knowledge, MHCflurry is one of the best neural
network model for allele-specific peptide binding prediction
problem.

Note that we did not compare with other methods including
NetMHC4.0, PUFFIN and MHCAttnet on the IEDB dataset. It has
been demonstrated in literature (Bonsack et al., 2019) that
MHCflurry outperforms or is comparable with NetMHC4.0.
We did not compare with NetMHC4.0 because its source code
and optimal parameters are not publicly available (they only
provided their trained model), and we were not able to reproduce
their results using our data. In addition, it is unfair to apply their
provided models to test our test set, because it is possible that our
test set is included in their training data and thus the performance
on our test set can be overestimated. PUFFIN and MHCAttnet are
pan methods and take both the peptide and allele sequences as
input, but our methods are allele specific.

6.2 Batch Generation
For models with MS as the loss function, we randomly sample
a batch of peptides as the training batch. For models with the
proposed pair-wise hinge loss functions (Hv, Hl, Hi), to
reduce computational costs, we construct pairs of peptides
for each training batch from a sampled batch of peptides.
Specifically, for Hv and Hl, each pair consists of two peptides
from different binding levels; and for Hi, the constructed
pairs can consist of two peptides from the same or different
binding levels.

6.3 Model Training
We use 5-fold cross validation (Bishop, 2006) to tune the hyper-
parameters of all methods through a grid search approach. We
use 10% of the training data as a validation set and explicitly
ensure that the training set, validation set and testing set do not
overlap. This validation set is applied to adjust the learning rate
dynamically and determine the early stopping of training process.
If the loss on the validation set does not decrease in 5 epochs, we
will decrease the learning rate by 10%. The learning rate is
initialized as 0.05. If the loss does not decrease on the
validation set for continuous 20 epochs, we stop the training
process. For each allele, we run the grid search algorithm to find
the optimal hyper-parameters for the allele-specific model
through the above cross validation process. We apply
stochastic gradient descent (SGD) to optimize the loss
functions. We set the dimension of Deep encoding method as
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20, which is equal to the dimension of BLOSUM and Deep

encoding method. We also set both the constant c in Hv and
the constant r in Hl and Hi as 0.2.

6.4 Evaluation Metrics
We use 4 types of evaluation metrics, including average rank (AR),
hit rate (HR), area under the roc curve (AUC), and ROC, to evaluate
the performance of the various model architectures and loss
functions. Both AR and HR metrics are employed to measure the
effectiveness of our model on the prioritization of promising
peptides. Specifically, AR metric measures the average overall
rankings of promising peptides; HR metric measures the ratio of
promising peptides ranked at top; AUC metric measures the
possibility that positive peptides are ranked higher than negative
peptides; ROCmetric measures the ratio of positive peptides that are
prioritized higher than top-n false positive peptides. We denote si
as the rank of peptide pi based on their predicted scores,P h as the
set of peptides with binding affinities smaller than h (e.g., h �
500 nM). Then ARh (e.g., AR500) is defined as follows,

ARh �
∑pi ∈Ph

si
|Ph| , where Ph � {pi∣∣∣∣∀bi < h}, (9)

where |Ph| is the size of Ph. Smaller values of ARh indicate that
promising peptides are ranked higher in general, and thus better
model performance.

The hit rate HRh (e.g., HR500) is defined as follows,

HRh � |Pt ∩  Ph|
|Ph| , where t � |Ph| (10)

where Pt denotes the set of peptides with predicted scores ranked
at top t. Larger values of HRh indicate that more promising
peptides are prioritized to top-t by the model, and thus better
performance.

We use h � 500 nM as the threshold to distinguish positive
peptides and negative peptides, and apply two metrics for
classification to evaluate the model performance. The first
classification metric AUC is calculated as below,

AUC � 1

|P500|(|P| − |P500|) ∑
|P500 |

i�1
∑

|P|−|P500|

j�1
1(S(Pi)> S(Pj)), (11)

where P is the set of all peptides, and |P| is the number of
peptides in the dataset; P500 is the set of all positive peptides,
and |P500| is the number of positive peptides; 1(·) is an
indicator function (1(x) � 1 if x is true, otherwise 0).
Larger values of AUC indicate that positive peptides are
more likely to be ranked higher than negative peptides.
ROC t (e.g., ROC5) score is the area under the roc curve up
to t false positives. ROC t is calculated as below.

ROCt � 1

|P500|t ∑
|P500|

i�1
∑
t

j�1
1(S(Pi)> S(Pj)) (12)

Larger values of ROC t indicate that the model can prioritize
more positive peptides up to first t false positive peptides. We use
7 metrics constructed from the above 4 types of metrics to

evaluate the model performance. These 7 metrics include
AR100, HR100, AR500, HR500, AUC, ROC5 and ROC10.

In order to compare the models with respect to one single
metric in a holistic way, we define a hybrid metric H by
combining all the evaluation metrics. Given a model trained
with a set of hyper-parameters Y, we denote its performance on
metric “mtrc ” (mtrc �ARh, HRh, AUCh, ROCh) as mtrc (Y), and the
best metric value as bestY(mtrc ) � maxY(mtrc (Y)). Then, the
hybrid metric H for a model with hyper-parameters Y is defined
as below,

H(Y) � ∑
mtrc

I(↓mtrc) × (mtrc(Y) − bestY(mtrc))
bestY(mtrc) , (13)

where I(↓mtrc) is an identity function: I(↓mtrc) � +1 if smaller
values on metric mtrc indicate better performance; I(↓mtrc) �
−1 otherwise. For metrics AR100 and AR500, a smaller value
represents a better model performance.

7 EXPERIMENTAL RESULTS

We present the experimental results in this section. All the
parameters used in the experiments are reported in the Appendix.

7.1 Model Architecture Comparison
We evaluate all the 12 possible combinations of the 3 model
architectures (ConvM, SpConvM, MHCflurry) and the 4 loss
functions (Hv , Hl , Hi, MS) with all the encoding methods
through 5-fold cross validation. Table 4 presents the overall
performance comparison with BLOSUM+Onehot+Deep
encoding method (encoding method comparison will be
presented later in Section 7.3). We apply the grid search to
determine the optimal hyperparameters of each method on each
allele with respect to the hybrid metric H (Appendix Section
A1.1), and report the best performance in Table 4. We use
MHCflurry with MS loss in (O’Donnell et al., 2018) as the
baseline, and calculate the percentage improvement of our

TABLE 4 | Overall performance comparison (H; BLOSUM+Onehot+Deep ).

Model Loss AR 100 HR 100 AR 500 HR 500 AUC ROC 5 ROC 10

ConvM Hv 7.93 4.71 2.80 5.48 5.13 8.43 7.26
Hl 5.63 5.47 1.66 3.59 4.56 7.11 4.65
Hi 6.35 5.70 0.99 2.59 4.16 4.69 4.42
MS −6.26 0.02 −7.87 −3.98 0.16 −3.34 −3.94

SpConvM Hv 11.58 10.47 7.28 8.28 6.70 17.10 14.42
Hl 8.97 8.64 6.57 7.36 6.04 12.89 10.85
Hi 10.01 8.87 4.73 6.00 6.00 14.01 11.36
MS 8.66 8.14 2.77 4.28 3.93 13.54 9.68

MHCflurry Hv 11.06 8.93 5.60 5.20 4.42 11.10 9.51
Hl 9.45 5.77 5.09 4.43 4.72 8.05 6.95
Hi 8.83 6.35 4.54 5.73 4.52 7.10 5.88
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The values in the table are percentage improvement compared with the baseline
MHCflurry with MS. Models are trained using BLOSUM+Onehot+Deep encoding
methods, and selected with respect to H and evaluated using the 7 evaluation metrics.
The best improvement with respect to each metric is bold.
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methods over the baseline across 128 alleles. In Table 4, the best
model for each allele is selected with respect to H; the model
performance is further evaluated using the 7 evaluation metrics.

Table 4 shows that as for the model architectures, on average,
SpConvM achieves the best performance overall among all three
model architectures (e.g., SpConvM with MS has 8.66%
improvement in AR100 and 8.14% in HR100 over MHCflurry

with MS). Please note that when we calculate the improvement,
we exclude alleles on which our models achieve more than 150%
improvement (typically no more than 15 such alleles under
different metrics). This is to remove potential bias due to a
few alleles on which the improvement is extremely substantial.
SpConvM performs better than ConvM on average. SpConvM

extends ConvM with global kernels to extract global features
from the entire peptide sequences. The better performance of
SpConvM than that of ConvM indicates that global features could
capture useful information from entire peptide sequences, which
are typically short, for binding prediction. In addition,
MHCflurry outperforms ConvM on average. The difference
between MHCflurry and ConvM is that MHCflurry learns
position-specific features via position-specific kernels, and
ConvM learns local features via kernels that are common to all
the locations. As demonstrated in other studies (O’Donnell et al.,
2018) that certain positions of peptides are more critical for their
binding to alleles, the better performance of MHCflurry over
ConvM could be attributed to its position-specific feature learning
capability. Moreover, since the peptide sequences are usually
short (8–15 amino-acid long), it is very likely that these short
sequences do not have strong local patterns, and thus ConvM

could not capture a lot of useful local information. In comparison

with MHCflurry, SpConvM integrates both local features via its
ConvM component and global features via global kernels. Such
integration could enable SpConvM to capture global information
as compensation to local features, and thus to improve model
performance.

We also report the results of our methods on 34 HLA-A
molecules and 35 HLA-B molecules with the optimal
hyperparameters determined by hybrid metric H separately in
Table 5. HLA-A and HLA-B are two groups of the human
leukocyte antigen (HLA) complex that are important to the
immune system. The results of HLA-A and HLA-B molecules
show the same trend as that in Table 4, that is, for both HLA-A
andHLA-B groups, on average, SpConvM still outperforms ConvM
and MHCflurry on most metrics (e.g., SpConvM with Hv has
5.71% improvement on AR 100 and SpConvM with MS has 3.02%
improvement on HR 100).

In addition to using the hybrid metricH to determine the optimal
hyperparameters, we also apply another four metrics AR 100, HR100,
AUC and ROC 5 to select the hyperparameters. The results of the best
models in terms of these four metrics are presented in
Supplementary Appendix Tables A1–A4, respectively. The
results show the same trend as that in Table 4, that is, on
average, SpConvM outperforms ConvM and MHCflurry on all 7
metrics and Hv loss function is the best among all loss functions.

Figure 2 show the distributions of performance improvement
among all the alleles from ConvM, SpConvM and MHCflurry with
Hv, in comparison with MHCflurry with MS, respectively. All the
methods use BLOSUM +Onehot+Deep as encoding methods, and
the performance is evaluated using HR 100 in a same way as that in
Table 4. Figure 2A shows that in ConvM, about half of the alleles

TABLE 5 | Overall performance comparison across HLA-A and HLA-B alleles (H; BLOSUM +Onehot+Deep ).

Allele Model Loss AR 100 HR 100 AR 500 HR 500 AUC ROC 5 ROC 10

HLA-A ConvM Hv 0.56 3.38 1.32 4.68 2.04 2.04 −0.43
Hl −3.12 1.06 −2.44 1.12 0.95 −1.27 −3.03
Hi −4.23 3.38 −3.41 −2.02 0.76 −3.93 −4.62
MS −4.79 1.36 −5.41 −0.22 −0.04 1.71 −0.36

SpConvM Hv 5.71 8.35 4.01 1.94 2.61 7.14 4.34
Hl 3.73 2.66 3.10 4.81 2.83 6.10 1.79
Hi 3.28 4.47 3.02 1.90 2.54 4.14 0.51
MS −1.40 3.02 −2.74 −0.51 0.84 8.53 3.76

MHCflurry Hv 2.75 2.22 2.87 5.26 1.87 3.61 5.22
Hl 2.43 1.65 2.39 4.37 2.29 1.30 0.50
Hi 2.51 1.64 2.21 0.57 1.94 0.11 −0.57
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

HLA-B ConvM Hv 5.12 6.98 0.71 5.38 2.45 11.20 3.87
Hl −0.81 −1.63 −1.43 1.57 2.18 5.47 0.19
Hi 0.27 −2.90 −4.44 3.44 2.29 −0.42 −1.21
MS −8.87 2.99 −13.18 −4.75 −1.69 0.75 −4.06

SpConvM Hv 4.63 4.45 6.55 7.43 3.24 17.12 9.85
Hl 3.53 2.37 5.85 9.20 3.06 15.48 8.95
Hi 7.08 −1.05 4.79 9.04 3.29 15.77 8.31
MS −1.44 −2.19 −3.57 2.56 0.42 8.73 4.16

MHCflurry Hv 4.10 5.21 5.04 8.04 2.96 12.14 6.58
Hl −2.16 −0.99 3.89 7.41 2.17 11.69 5.31
Hi 3.51 2.16 3.02 4.78 1.49 7.52 3.05
MS 0.00 0.00 0.00 0.00 0.00 0.00 0.00

The values in the table are percentage improvement compared with the baseline MHCflurry with MS. Models are trained using BLOSUM+Onehot+Deep encoding methods, and selected
with respect to H and evaluated using the 7 evaluation metrics. The best improvement with respect to each metric is bold.
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have performance improvement compared to that in MHCflurry

with MS. Overall, there is an average 4.71% improvement among
all the alleles. Figure 2B shows that more alleles have
performance improvement in SpConvM compared to that in
ConvM and in MHCflurry with MS, and more alleles have
significant improvement. This indicates the strong
performance of SpConvM. Figure 2C shows that in
comparison with MS as the loss function, MHCflurry has
more improvement using Hv as the loss function (average
improvement 8.93%).

7.2 Loss Function Comparison
Table 4 also demonstrates that Hv is the most effective loss
function in combination with each of the learning architectures,
and all three hinge loss functions Hv, Hl and Hi can outperform
theMS loss function. For example, for SpConvM, the performance
improvement of Hv, Hl, Hi and MS in terms of AR 100 follows the
order Hv(11.58%)>Hi(10.01%)>Hl(8.97%)>MS(8.66%),
compared with the baseline MHCflurry with MS. This trend
is also consistent for ConvM and MHCflurry. The results of HLA-

A and HLA-B molecules in Table 5 also show the same trend as
that in Table 4. The better performance of Hv may be due to the
use of a margin in the loss function that is determined by the
binding affinity values (Eq. 5). This value-based margin could
enforce granular ranking among peptides even when they are
from a same binding level. In Hl (Eq. 6) and Hi (Eq. 7), the
margins are determined based on the levels of the binding
affinities. While Hl and Hi can still produce ranking structures
of peptides according to their binding levels, they may fall short to
differentiate peptides of a same binding level.

All the three hinge loss functionsHv,Hl andHi outperformMS
across all the model architectures. This might be due to two
reasons. First, the pairwise hinge loss functions are less sensitive
to the imbalance of different amounts of peptides, either strongly
binding or weakly/non-binding, by sampling and constructing
pairs from respective peptides. Thus, the learning is not biased by
one type of peptides, and the models can better learn the
difference among different types of peptides, and accordingly
produce better ranking orders of peptides. Second, the pairwise
hinge loss functions can tolerate insignificant measurement
errors to some extent. All the three hinge loss functions do
not consider pairs of peptides with similar binding affinities.
This enables our models to be more robust and tolerant to noisy
data due to the measurement inaccuracy of binding affinities.

7.3 Encoding Method Comparison
We evaluate three encoding methods (BLOSUM, Onehot, Deep)
and their combinations (BLOSUM +Deep, Onehot+Deep,
BLOSUM+Onehot, BLOSUM+Onehot+Deep) over SpConvM with
Hv loss (the best loss function overall) using BLOSUM through 5-
fold cross validation. We report the results of best models across
all 128 alleles in the same way as in Section 7.1 (i.e., model
selection with respect to H, evaluated using the 7 metrics).
Table 6 presents the average percentage improvement of the 7
encoding methods over the baseline on the 7 metrics. The
reported results in Table 6 are from the models with the
optimal hyperparameters that are selected according to the
hybrid metric H. Table 6 shows that BLOSUM+Onehot+Deep
encoding method achieves the best performance in general.
BLOSUM+Onehot+Deep encodes the amino acids using their
inherent evolutionary information via BLOSUM and identity of
different amino acids via Onehot, both of which are deterministic
and not specific to the learning problem, and also the allele-
specific information via Deep, which is learned in the model and
thus specific to the learning problem. The combination of
deterministic, amino acid identities and learned features
enables very rich information content in the embeddings, and
could be the reason why it outperforms others. With a similar
rationale, BLOSUM+Deep achieves the second best performance in
general. BLOSUM on its own outperforms Onehot and Deep,
respectively, indicating BLOSUM is rich in representing amino
acid information. Combing BLOSUM with Onehot and Deep,
respectively, introduces notable improvement over BLOSUM

alone, indicating that BLOSUM+Onehot and BLOSUM+Deep are
able to represent complementary information rather than that in
BLOSUM . Onehot on itself alone performs the worst primarily due
to its very limited information content. Combing Onehot with

FIGURE 2 | Performance improvement compared with MHCflurry with
MS among all Alleles.
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Deep improves from Onehot but does not perform well
compared to Deep alone. This may be due to that Onehot

(i.e., amino acid identity) information still plays a substantial
role in Onehot+Deep so Deep information does not supply
sufficient additional information.

We also select the optimal set of hyperparameters with respect
to AR 100, HR 100, AUC and ROC 5, and report the corresponding
results in Supplementary Appendix Tables A5–A8, respectively.
With different model selection metrics, the encoding methods
have different performance. However, in general,

TABLE 6 | Encoding performance comparison on SpConvM with Hv using BLOSUM (H).

Encoding AR 100 HR 100 AR 500 HR 500 AUC ROC 5 ROC 10

BLOSUM 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Onehot −6.92 −4.38 −4.97 −2.37 −0.73 −5.91 −4.63
Deep −3.33 0.69 −2.76 −0.56 −0.15 −1.22 −1.63
BLOSUM+Onehot −0.96 0.95 0.21 0.79 0.3 1.57 0.89
BLOSUM+Deep 1.37 1.79 0.69 1.49 0.61 3.39 2.49
Onehot+Deep −4.72 −1.65 −3.37 −1.26 −0.32 −3.25 −2.67
BLOSUM+Onehot+Deep −0.36 0.11 1.17 2.12 0.69 4.58 3.46

The values in the table are percentage improvement compared with SpConvM with Hv using BLOSUM . Models are selected with respect to H and evaluated using the 7 evaluation metrics.
The best improvement with respect to each metric is bold.

FIGURE 3 | Attention weights and motifs for HLA-A*02:01 and HLA-A*24:02.
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BLOSUM+Onehot+Deep achieves better performance than other
encoding methods over all the metrics.

7.4 Attention Weights
Figures 3A,B, 4A,B present the attention weights over
peptides of allele HLA-A*02:01, HLA-A*24:02, HLA-B*27:
05 and HLA-B*58:01, respectively, learned by the attention
layer of ConvM (with BLOSUM+Onehot+Deep, Hv; position 5,
6, 7 and 9, 10, 11 are padding positions if the sequence length
is less than 15). In these figures, each column represents the
weight of 1-mer embedding, that is, the embedding over one
amino acid, because the best kernel size for these four alleles
in ConvM is 1; each row represents an attention weight learned
for a specific peptide by ConvM. Figure 3A shows that for
HLA-A*02:01, the amino acids located at the second position
and the last position contribute most to the binding events.
This is consistent with the conserved motif calculated by
SMMmatrix (Peters and Sette, 2005). Figures 3A, 4A, and 4B

also show the clear position-specific binding patterns for the
other three alleles: for HLA-A*24:02, the second and last
positions have higher weights; for HLA-B*27:05, the second
position has higher weights; and for HLA-B*58:01, the
second and last positions have higher weights. This
indicates that ConvM with the attention layer is able to
accurately learn the importance of different positions in
peptides in predicting peptide activities.

Figures 3C,D, 4C,D present the allele-specific binding
motifs of the peptides with high affinity for allele HLA-A*02:
01, HLA-A*24:02, HLA-B*27:05 and HLA-B*58:01,
respectively. Comparing with Figures 3A,B, 4A,B
respectively, we noticed that for sequence positions that
have higher weights, there are a few preferred amino acids;
for positions with lower weights, the amino acids can be
diverse. We further check whether the learned attention
weights correlate with amino acid conservation. We first
calculate a matrix, denoted as SMMl , where each row

FIGURE 4 | Attention weights and motifs for HLA-B*27:05 and HLA-B*58:01.
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represents an amino acid, each column represents a position
in peptides, and each value in the matrix is calculated as
follows,

SMMl(a, j) � ∑
p∈P

I(amino acid a is at j − th position in p ) × wj,

(14)

where I(x) is the indicator function (I(x) � 1 if x is true,
otherwise 0), and wj is the learned attention weight at the jth
position. That is, SMMl(a, j) is the sum of attention weights at
the jth position aggregated from all peptides if amino acid a
appears at that position in those peptides. We calculated the
correlation between the Stabilized Metrix Method (SMM)
scoring matrix provided by IDEB (Vita et al., 2018) and
SMMl for HLA-A*02:01 after they are flattened. The
correlation is −0.7613. Since in SMM, smaller values indicate
that amino acids are preferred, and in SMMl, larger values
indicate high frequencies (i.e., preferred) with high weights, the
negative correction value indicates strong correlation between
SMM and SMMl. Similarly, for HLA-A*24:02, the correlation is
−0.6615 and thus also strong. We also calculated the correlation

at anchor positions between the SMM and SMMl for HLA-A*02:
01 and HLA-A*24:02. The correlations for HLA-A*02:01 are
−0.8809 at position 2 and −0.8945 at position 9. The correlations
for HLA-A*24:02 are −0.9128 at position 2 and −0.6636 at
position 9. These strong correlations demonstrate that our
learned attention weights are able to indicate motifs
represented by SMM.

Figure 5 presents the attention weights learned from ConvM of
three peptides binding to HLA-A*02:01. In this figure, each line
represents a peptide sequence in which each colored block represents
an amino acid. The number above each block represents the learned
attention weight at that position. Figure 5 shows that our model can
capture the anchor position and amino acids that are important to
the binding events: the second amino acids and the last amino acids
are associated with the largest attention weights.

FIGURE 6 | Performance comparison on ConvM and SpConvM with and without position encoding.

FIGURE 5 | Attention weights of three peptides for HLA-A*02:01 learned
from ConvM.

TABLE 7 | Performance comparison over mass spectrometry dataset in PPV .

Allele MHCflurry NetMHC4.0 NetMHCpan3.0 ConvM − e

HLA-A*01:01 0.8055 0.6578 0.7700 0.7910
HLA-A*02:01 0.7014 0.6182 0.6516 0.7112
HLA-A*02:03 0.7443 0.7060 0.6984 0.7180
HLA-A*02:07 0.5566 0.2645 0.5283 0.4608
HLA-A*03:01 0.6288 0.5238 0.5876 0.6267
HLA-A*24:02 0.7625 0.6432 0.7257 0.7620
HLA-A*29:02 0.7355 0.6334 0.7007 0.7181
HLA-A*31:01 0.4491 0.3989 0.4649 0.4209
HLA-A*68:02 0.5181 0.4975 0.5096 0.4960
HLA-B*35:01 0.6443 0.6119 0.6510 0.6488
HLA-B*44:02 0.7213 0.6952 0.7623 0.7577
HLA-B*44:03 0.7840 0.6414 0.7478 0.7621
HLA-B*51:01 0.7104 0.6305 0.6248 0.7368
HLA-B*54:01 0.6371 0.5882 0.6230 0.6603
HLA-B*57:01 0.6223 0.5331 0.5952 0.6542

The best performance for each allele is bold. The second best performance for each
allele is underlined.
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We do not present the attention weights learned by SpConvM,
as in SpConvM, the attention weights do not show binding patterns
as clear as those in ConvM. This is due to that SpConvM incorporates
both local features and global features, and the global features

might significantly contribute to the prediction and therefore the
contribution from local features is reduced.

7.5 Position Embeddings
We conduct an ablation study to verify the effect of position
embedding in the ConvM and SpConvM. We compare the
performance of ConvM and SpConvM with and without position
embedding on four alleles including: HLA-A*02:01, HLA-A*24:02,
HLA-B*57:01 and HLA-B*58:01. We run the combinations of ConvM
and SpConvM with 4 loss functions (i.e., Hv, Hl, Hi, MS) using 5-fold
cross validation. Figure 6 presents the performance comparison over
HR 500 and AUC. In this figure HR 500(no pos) and AUC (no pos)
represent model performance in HR 500 and AUC without position
embedding, and HR 500 and AUC represent that with position
embedding. As demonstrated in Figure 6, position embedding in
ConvM can lead to significant performance improvement in terms of
HR 500 and AUC. The better performance of ConvM with position
embedding also demonstrates the importance of position information
to the binding events of peptide-MHC pairs. The performance
improvement induced by the position embedding on
SpConvM is not as significant as that of ConvM. This is due
to that the global kernel in SpConvM can reduce the effect of
position embedding, since the global kernel can also encode

FIGURE 7 | Comparison between mass spectrometry dataset and IEDB dataset.

TABLE 8 | Performance comparison over mass spectrometry dataset in AUC.

Allele MHCflurry NetMHC4.0 NetMHCpan3.0 ConvM − e

HLA-A*01:01 0.9873 0.9854 0.9881 0.9864
HLA-A*02:01 0.9836 0.9775 0.9798 0.9820
HLA-A*02:03 0.9903 0.9888 0.9879 0.9878
HLA-A*02:07 0.9630 0.9176 0.9600 0.9339
HLA-A*03:01 0.9714 0.9632 0.9648 0.9678
HLA-A*24:02 0.9905 0.9857 0.9895 0.9917
HLA-A*29:02 0.9580 0.9549 0.9651 0.9648
HLA-A*31:01 0.9276 0.9408 0.9483 0.9204
HLA-A*68:02 0.8101 0.8039 0.8232 0.7930
HLA-B*35:01 0.8765 0.8786 0.8744 0.8859
HLA-B*44:02 0.9796 0.9770 0.9791 0.9808
HLA-B*44:03 0.9765 0.9696 0.9723 0.9768
HLA-B*51:01 0.9314 0.9275 0.9195 0.9339
HLA-B*54:01 0.9255 0.9301 0.9341 0.9264
HLA-B*57:01 0.8799 0.8667 0.8756 0.8842

The best performance for each allele is bold. The second best performance for each
allele is underlined.
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the absolute position information of each amino acid as
position embedding does.

Literature Chorowski et al. (2015) shows that a main limitation of
weighted-sum operation in attention layer is that the same k-mers
with position-unaware embeddings will be associated with the exactly
same attention weights regardless of their position in the peptide
sequence. Such position-unaware weights are against our knowledge,
that is, amino acids in specific positions have been known to be
important for binding events O’Donnell et al. (2018); O’Donnell et al.
(2020). Hence, encoding position information into the embeddings of
k-mers is necessary for the self-attention layer to learn meaningful
position-specific binding patterns.

7.6 Training and Inference Time
We implemented the models using Python-3.6.9, Pytorch-
1.3.1 and Numpy-1.18.1. We trained the models on
machines with Intel Xeon E5-2680 v4 CPUs and NVIDIA
Tesla P100 (Pascal) GPU 16 GB memory with Red Hat
Enterprise 7.7. With different hyperparameters, the average
training time for each allele with 5-fold cross validation (i.e., 5
models for each allele) is 3.81 min [(3.41, 4.28), standard
deviation (±0.34)] with a single CPU core and a single GPU.
We also calculated the average inference time for three alleles HLA-A-
2402, HLA-A-0201, HLA-A-0301. On average, the inference with our
ConvM model takes 0.88 μs per peptide, and the inference with our
SpConvM model takes 1.46 μs per peptide.

8 DISCUSSIONS

8.1 Experiments on Mass Spectrometry
Benchmark Dataset
We evaluated the performance of our methods with the Mass
Spectrometry benchmark dataset curated by O’Donnell et al.
(2018). This MS benchmark dataset contains 23,653 sequences
of MHC-displayed ligands eluted from B cell lines expressing 15
MHC class I alleles. For each eluted ligand, 100 decoys will be
sampled from the protein-coding transcripts that contained this
eluted ligand. Specifically, they sampled an equal number of
decoys of each length 8–15. After removing all the entries
present in the IEDB dataset, the yielded Mass Spectrometry
benchmark dataset contains 23,653 positive peptides and
2,377,037 randomly sampled negative peptides.

To compare with other methods on the Mass Spectrometry
benchmark dataset, we follow the idea of model ensemble that
MHCflurry applied on this dataset. Similarly as in MHCflurry,
for each of our methods (ConvM and SpConvM with the three
hinge loss functions Hv, Hl and Hi), we train models using 90%
samples of IEDB dataset, in which 10% of the training data are
randomly sampled as a validation set for early stopping. The
remaining 10% data in the IEDB dataset is used as the test set for
parameter turning. Note that during model training, we use the same
negative sampling method as in MHCflurry to generate negative
training peptides, that is, we generate 25 randomnegative peptides for
each of length 8–15 at each epoch. For each set of hyperparamenters,
we train 8 models as above with different randomized validation sets
but a same test set. The top-16 best performingmodels are selected to

predict on the Mass Spectrometry benchmark dataset. For each allele
in the benchmark dataset, the final ranking position of each peptide
for that allele is calculated as the geometric mean of its 16 ranking
positions out of the 16 best models. Tables 7 and 8 present the
performance comparison between our ensemble method, denoted as
ConvM − e, and three other state-of-the-art methods on the
benchmark data including MHCflurry, NetMHC4.0 and
NetMHCpan3.0.

Table 7 shows that in terms of PPV (positive predictive value, a
popular metric using on the Mass Spectrometry dataset), our
ensemble methods achieve either the best or the second best
performance on 12 out of 15 alleles among all the methods.
When our ensemble achieves the second best performance on an
allele, it is very comparable to the best performance—on average, the
difference is 0.0112. For HLA-B alleles, our ensemble methods are
also the best or the second best. Table 8 shows a similar trend in
terms of AUC, that is, our ensemble methods achieve either the best
or the second best performance among out 9 of 15 alleles among all
the methods; when it is the second best method, its performance is
very comparable to the best method. In particular, for HLA-B alleles,
our ensemble methods achieve the best performance on 5 out of 6
alleles. The results in the above two tables demonstrate that our
methods either outperform the other methods, or are very
comparable to the other methods.

8.1.1 Discussion on Using an Independent Test Set
One concern with this benchmark dataset is that the random negative
sampling method creates a data distribution that is different from that
of real data. Figures 7A,B present the distributions of binding ligands
and the randomly sampled negative samples for two different alleles in
theMass Spectrometry benchmark dataset, respectively; Figures 7C,D
present the corresponding distributions in the IEDB dataset. Both the
benchmark dataset and the IEDB dataset have similar distributions on
the binding peptides, that is, most of the binding peptides have
sequence length 9 to 11. In the IEDB dataset, the negative peptides
have a similar distribution over sequence lengths as the positive
peptides, and the dataset is balanced in terms of positive and
negative sample size. However, in the benchmark dataset, the
negative samples are uniformly distributed over sequence lengths
and the distribution is significantly different from that of the positive
peptides. In addition, the dataset is highly unbalanced with
significantly more negative samples. Given the different
distributions between the IEDB dataset and the Mass Spectrometry
benchmark dataset, models trained using IEDB data without altering
its negative sample distribution will not work well on the Mass
Spectrometry benchmark dataset.

Even though theMass Spectrometry benchmark dataset has a data
distribution that is different from IEDB, it is still valid to be used as an
independent test set. However, to ensure it is truly “independent”, its
label information including the distributions of positive and negative
samples must not be available or used during the model training
process. If amethod does the same negative sampling and constructs a
similar training data distribution as in the benchmark dataset during
its training process, implicitly it uses the label information from test
set. Thus, such training process violates the “independence” of the test
set and the model performance could be over-estimated. We noticed
that MHCflurry uses the same negative sampling method as in the
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Mass Spectrometry benchmark dataset during its training process,
which might not be appreciate. In Tables 7 and 8, we still used the
same negative sampling method as what MHCflurry used in our
ensemble methods just to make a fair comparison with MHCflurry.

8.2 Reproducibility
We published our data and code at https://github.com/ziqi92/
peptide-binding-prediction.

9 CONCLUSION

Our methods contribute to the study of peptide-MHC binding
prediction problem in two ways. First, instead of predicting the
exact binding affinities values as in the existing methods, we
formulate the problem as to prioritize most possible peptide-
MHC binding pairs via a ranking-based learning. We developed
three pairwise ranking-based learning objectives for such
prioritization, and the corresponding learning methods that
impose the peptide-MHC pairs of higher binding affinities ranked
above those with lower binding affinities with a certain margin. Our
experimental results in comparison with the state-of-the-art
regression based methods demonstrate the superior prediction
performance of our methods in prioritizing and identifying the
most likely binding peptides. In addition to the learning
objectives, we also developed two convolutional neural network-
based model architectures ConvM and SpConvM, which incorporate a
new position encoding method and attention mechanism that
differentiate the importance of amino acids at different positions
in determining peptide-MHC binding. Our experiments show that
the learned important positions and amino acids for allele HLA-A-
0201 conform to the biological understanding of the allele. Our
experimental results also demonstrate that our model architectures
can achieve superior or at least comparable performance with the
state-of-the-art allele-specific baseline MHCflurry.
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