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Abstract

Reaching is one of the central experimental paradigms in the field of motor control, and many computational models of
reaching have been published. While most of these models try to explain subject data (such as movement kinematics,
reaching performance, forces, etc.) from only a single experiment, distinct experiments often share experimental conditions
and record similar kinematics. This suggests that reaching models could be applied to (and falsified by) multiple
experiments. However, using multiple datasets is difficult because experimental data formats vary widely. Standardizing
data formats promises to enable scientists to test model predictions against many experiments and to compare
experimental results across labs. Here we report on the development of a new resource available to scientists: a database of
reaching called the Database for Reaching Experiments And Models (DREAM). DREAM collects both experimental datasets
and models and facilitates their comparison by standardizing formats. The DREAM project promises to be useful for
experimentalists who want to understand how their data relates to models, for modelers who want to test their theories,
and for educators who want to help students better understand reaching experiments, models, and data analysis.

Citation: Walker B, Kording K (2013) The Database for Reaching Experiments and Models. PLoS ONE 8(11): e78747. doi:10.1371/journal.pone.0078747

Editor: William W. Lytton, SUNY Downstate MC, United States of America

Received June 18, 2013; Accepted September 17, 2013; Published November 14, 2013

Copyright: � 2013 Walker, Kording. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors received support from the following funding sources: NIH R01 grant R01NS063399 (http://grants.nih.gov/grants/funding/r01.htm), and
NSF CRCNS (Collaborative Research in Computational Neuroscience) grant NSF 11-505 (http://www.nsf.gov/pubs/2011/nsf11505/nsf11505.htm). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kk@northwestern.edu

Introduction

Reaching is one of the popular paradigms used to study

movement. Reaching is used to ask psychological, computational,

behavioral, and clinical questions. For example, it is used to ask

how people determine ownership of their hand [1], how the brain

deals with uncertainty [2], how people minimize their variability

[3], and how recovery of motor function after stroke can be

accelerated [4]. In all these domains, the contributions of reaching

experiments are important, both conceptually and practically, as

their ramifications extend well beyond the domain of reaching.

Although reaching research is driven by a broad community,

publications about reaching tend to be insular. These publications

generally present one experiment or one model – or in some cases,

one of each. However, comparing datasets or models from

multiple publications can lead to new insights. For instance,

comparing datasets can help identify relevant differences in

experimental designs. Comparing models promises to reveal

which aspects of models are most important. And comparing

multiple datasets and models promises to expose the scope and

limitations of each model. Data sharing – making models and

experimental data publicly available – would facilitate these

comparisons. In addition, data sharing could help assimilate new

members into the reaching community. For instance, educators

could enhance the learning experience by having students analyze

data from recent publications. Access to experimental datasets and

models would also reduce the barrier to entry for scientists

studying other fields who want to transition into studying reaching.

Sharing of data and models would stimulate productive scientific

communication and facilitate new scientific inquiries.

Data sharing could be enabled by a database. However, data

formats vary widely between labs – and sometimes even within the

same lab. If a user of a database were required to learn a new

format for each dataset or model, the database would be too

cumbersome. But if a database were to use a standard format for

datasets and another standard format for models, comparisons and

model fits could be efficiently performed across a variety of

datasets. Using common formats could simplify explanations of

experiment results, allow for quicker evaluation of new models,

and reduce, if not fully eliminate, problems of interpreting formats

or variable names.

A consistent data format for reaching experiments is achievable

because a significant portion of recorded data is similar across

experiments. For example, tracking the hand in space is integral

for reaching experiments. In the same way, many experiments

involve some sort of perturbation. These perturbations can be

visual, such as cursor feedback on screen (e.g. [5], which is in the

DREAM database), or physical, such as movement through a

force field (e.g. [6], which is in the DREAM database). A well-

chosen data format could represent many experiments by taking

advantage of these similarities. Likewise, models can be structured

to follow one common format, accepting arguments in a standard

way. Since models make predictions in the same space as

experimental data, predictions can be stored in the same format

as experimental data. Through standardization, the data/model

comparison would then be straightforward; the process would

remain unchanged iteration after iteration, regardless of which

models or which experiments were used. Lastly, if the database

were curated, such formats could be enforced for all datasets and

models. Data could be shared with a curator who could put the
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data into the correct format before making it available for

download.

Here we present such a database, the Database for Reaching

Experiments And Models (DREAM). DREAM is a curated

database that uses one format for many distinct experiments and

model predictions and another format for models. A user can

download DREAM datasets, models, tools, and documentation

from http://crcns.org/data-sets/movements/dream/. We chose

MATLAB as the development environment due to its popularity

in the field; as such, the files associated with the database are .mat

and .m files. Importantly, through data standardization, generic

tools can be written that will generally work with every

experimental dataset and every model in the database. The user

could load any dataset into MATLAB, use a DREAM tool to run

a model and generate predictions, then use other tools to display

and compare predictions and experimental data (see Fig. 1). We

will briefly describe the format and reasoning behind the content

of DREAM (fuller documentation can be found online), then show

how the tools can be used to display data, compare model

predictions against experimental data, and compare model

predictions against one another.

Materials and Methods

Datasets and models were acquired from many scientists in the

reaching field. Currently, DREAM has data from 16 different

publications (see Fig. 2), citing author affiliations with 15 different

institutions; 39 experiments and 5 models have thus far been

added into DREAM. Willingness to share data has been shown to

be an indicator of good science [7], so we are confident in the

quality of these studies.

Experiments
We use one format to represent many unique experiments.

DREAM contains experiments that alter how the subject receives

visual feedback; a cursor (or ‘‘cloud of dots’’ for uncertainty

experiments) is displayed continuously [8], only at the midpoint

[9], or only at the target [10]. Some experiments change reaching

environments from trial to trial, alternating force fields and catch

trials [2]. Other experiments involve visuomotor rotations [5],

learning of force fields [6], generalizing reach distances [11] and

directions [12], changing the movement pace [13], and reference

frame transformation [14]. DREAM also has datasets from non-

human primates that recorded local field potentials [15], neuron

spike timestamps [16] and behavior but not brain activity [17]. We

also have experiments that include important non-behavioral data,

such as recorded functional magnetic resonance imaging (fMRI)

scans of subjects before and after certain movement conditions

[18] or recorded electromyography (EMG) activity of four

shoulder muscles [19]. Despite this diversity, the database

represents each of these experiments in one consistent format.

The uniform format shared by DREAM experiments can be

thought of as having two main aspects: 1) meta-information about

the experiment and 2) the experimental parameters and kinematic

data. The meta-information includes information required to

recreate or fully understand the experiment, such as the type of

equipment used or the type of feedback a subject received. It also

includes other important information associated with the exper-

iment, such as the publication information. The other data is what

scientists will spend most of the time analyzing. This recorded data

would include the subject’s kinematics, such as the hand position

or the recorded forces, along with experimental parameters, such

as the target location or the test condition of the reach. While

experiments inherently record different types and amounts of data,

the DREAM format requires aspects that are shared across

datasets to be fully standardized. For example, we enforce using SI

units throughout, eliminating a possible source of analysis error

that was illustrated by NASA’s multi-million dollar mistake [20].

Models and tools have access to both the data and the meta-

information to generate predictions, display information, and

make comparisons.

The format of datasets is hierarchical – technically a MATLAB

structure – containing fields for the movement data and for the

conditions under which the data were recorded (or predicted). At

the top level, the ‘Subject’ field is an array of structures, indexed

by subject number. Within the ‘Subject’ field is another array of

structures named ‘Trial’, which contains the actual movement

data (hand position, time trace, etc.). The fields in ‘Subject’ other

than ‘Trial’ are subject-specific meta-information (age, gender,

etc.). The top-level fields other than ‘Subject’ contain experiment-

wide meta-information, including, among other things, task

instruction, equipment used, and publication information. (See

Fig. 3.)

This unified format would be useless if it were unable to

accurately represent distinct experiments. To account for differ-

ences between experiments, the format representing experimental

data needs to be sufficiently flexible. There are three main aspects

to the flexibility of the DREAM data format. First, each

experimental dataset can define arbitrary conditions (e.g. ‘null

field’ or ‘catch trial’) depending on the procedure. Second, since

not all experiments record the same data, some fields will not exist

for some experiments. Each datum has a predetermined place

where it should be stored and the presence of that field determines

whether it was recorded or not. For instance, if a field called

‘HandVel’ is absent, then the hand velocity was not recorded for

that particular experiment. If that field does exist, then the data

stored within will be valid and in SI units (m/s). In rare instances,

NaNs are used when small portions of data were missing, such as

when a camera was blocked during recording. Third, the format

can handle situations where data were recorded but do not fit into

the pre-defined structure. Both the Subject and Trial structures

have a field called ‘Special’ which is a structure that can store

pertinent data that does not fit into the other predefined fields.

Two examples of such data would be timestamps for auditory cues

or peak tangential velocity. Because this format is arbitrarily

extensible, any data in the ‘Special’ field is not standardized and

this field cannot be expected to integrate with DREAM tools. The

documentation, which is available for download with the rest of

the DREAM project, elaborates further on each field and the

specifics of the format.

To be added into DREAM, the minimum requirements for any

experiment are that it involves reaching towards a target and

tracking the hand (or limb) through space and time (joint angles or

hand position or hand velocity). However, experiments are rarely

fully described by only these criteria, so other data essential for

analysis and recreation (e.g. forces or location of cursor feedback)

needs to be present before we add the dataset into DREAM. As

the database is currently structured, some upper limb movement

experiments involve movement of a cursor towards a set of targets

but cannot be included because the cursor position is determined

by changing the hand (or wrist) posture or orientation, not a

hand’s location moving through space (such as [22], which

involves wrist movements while holding smart phones). While

interesting and pertinent research is happening outside these

criteria, the increased database complexity necessary to include

such sets makes it impracticable to include at present. However, in

in the future, more types of experiment may be added.

The Database for Reaching Experiments and Models
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Models
The minimum requirements for models are the same as they are

for experiments. To be added into DREAM, a model must make a

prediction of the hand moving to a target through space and

through time. Models make predictions in the same space as

experimental data, thus the format used to represent movement

data (Fig. 3) is used for both predicted movements (model outputs)

and recorded experimental data. Using the same format allows for

the creation of tools that can be generalized (as shown in Fig. 4) or

Figure 1. DREAM flow chart. Models and experimental data are collected from different labs and aligned to a common format that allows analyses
using DREAM tools. Lighter solid boxes indicate a standard model format, darker solid boxes indicate a standard data format (for experimental data
and model predictions), and striped boxes indicate DREAM tools. Because the model and data formatting is consistent throughout DREAM, tools can
work for any model, experimental dataset, or model prediction.
doi:10.1371/journal.pone.0078747.g001

The Database for Reaching Experiments and Models
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facilitate comparisons between models and data (as shown in

Fig. 5).

Initially, experiment contributions have outpaced model con-

tributions in DREAM. As such, we created trivial models; the

predictions of these trivial models establish an envelope for the

accuracy of real models. As a ceiling, we have created a cheating

model (called Previous Sample in Fig. 6); it uses the actual

trajectory to predict that the hand location at some time t will be

what it was at the time t21. In that sense, it will predict the precise

reach trajectory, just shifted back one sample in time. Practically, a

realistic model would never be able to out-perform this sort of

model; the inherent variability of a person’s reaching and the

presence of outliers (subjects reaching to the wrong target) will

allow this model to out-perform even the best ‘‘honest’’ models.

Similarly, we have included a model that should perform worse

than realistic models. This model assumes no movement (called

Figure 2. Data in DREAM. Publications from which data has been added to DREAM. The DREAM ID is a unique identifier created by combining the
last name of the first author and the year of publication.
doi:10.1371/journal.pone.0078747.g002

Figure 3. Hierarchical structure of experimental data in
DREAM. Red dotted lines indicate that more fields could be present,
but were omitted for space. Blue lines indicate meta-information; green
lines indicate recorded experimental data. The contents of ‘Special’ are
not standardized and can contain any arbitrary data. The ‘Subject’ field
may also have a ‘Special’ field, depending on the experiment.
doi:10.1371/journal.pone.0078747.g003

The Database for Reaching Experiments and Models
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Null Move); it will predict that the hand will stay in the start

position throughout the reach. A model could theoretically do

worse by moving away from the intended target, but such a model

would likely have a bug in implementation (e.g. a sign problem or

wrong assumptions).

We also have a non-learning model that reaches directly toward

a target (called Trivial No Learn). It does not consider visual

feedback, thus any cursor perturbations will not affect it. It also

does not correct for position errors, thus can be pushed of course if

a force field is present. Such a model serves as a good model to try

to beat; it will be a reasonable approximation of what a human

might do. Because it ignores visual perturbations, it will be much

closer to the target than a human subject would when visual

perturbations are present. Because it does not account for position

errors, it will be much further from the target in the presence of a

non-corrective force field. DREAM also has a force-field learning

model from [21], which also ignores visual feedback, and will

examined further in the Results section.

These models should be able to generate predictions for a broad

sampling of datasets. However, some models might require certain

specific pieces of information. For instance, if a model required

EMG data, it could be added into DREAM, but it would not be

able to make predictions for the majority of experiments. DREAM

also contains, for teaching purposes, a neural decoder that uses

principle component analysis and a least squares covariance to

make kinematic predictions. This is useful for scientists interested

in decoding from a brain-machine interface perspective. Of

course, this model works only for datasets where spike timestamps

were recorded.

When models from the database are run using DREAM’s tools,

they are passed a dataset that includes both the movement data

and the meta-information. The model is responsible for parsing

out the values it needs; because of the standardized format, models

can look for the data in one location and use default values (or fail

gracefully) if a particular piece of data is missing or is unexpected

(e.g. NaN). It then makes a prediction and puts the data in the

correct structure (mimicking the experiment data format). The

models are stored as .m files, formatted to accept arguments as

defined by DREAM’s Run Model tool (Fig. 1). Models that output

predictions appropriately allow the DREAM tools to treat the

predictions just as they would an experimental dataset; thus, the

same DREAM tool can plot the velocity profiles of experimental

data or of predicted data (for an example, see Fig. 5).

Tools
The DREAM tools operate much like a MATLAB toolbox;

they are a suite of tools designed around a central idea. Users can

use these tools to interact with DREAM datasets and models in a

variety of ways. Examples of analyses and tool outputs are

described in the Results section below.

A scientist who wanted to create or add new models, tools,

underlying utility functions, or model comparison metrics will

need to learn the DREAM format. He or she could use current

tools as a guide and could refer to the appropriate section in the

user manual. Documentation regarding tool syntax, purpose, and

creation can be downloaded from http://crcns.org/data-sets/

movements/dream/documentation. To integrate with and em-

ploy the utility functions and tools of DREAM, he or she would

also need to understand the order of arguments and syntax used by

the rest of DREAM. The benefit of taking the time to create new

tools or metrics is that new tools can be shared with all users of

DREAM.

While it is desirable that each tool would work for all datasets,

some DREAM tools apply to only a subset of DREAM datasets.

For instance, we have a tool that plots the preferred direction of

neurons (for an example, see Figure 4). Since not all experiments

record neural spike timestamps, this tool will only work for datasets

that include spike information (e.g. [15] and [16]). However, some

Figure 4. Preferred velocity of two neurons. The x–y velocity of the hand when a spike occurred. This shows two different neurons from two
different monkeys performing the same center-out task.
doi:10.1371/journal.pone.0078747.g004
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tools, like an animation tool, have been written to work for all

experiments.

Because of the shared data format, tools can take inputs of

model predictions or experimental data interchangeably. Thus, we

can use the same tools to make qualitative comparisons between

data and predictions (for an example, see Fig. 5). DREAM also has

tools that are meant to compare models against each other. By

measuring each model according to the same metric, we can see

which performs better for which experiments (for an example, see

Fig. 6). The Results section below will show the outcome of using

some of these tools.

Results

To showcase the possible uses of DREAM, we have included

examples of using DREAM tools to analyze DREAM data and

models in a few different ways. Scientists ought to be able to

expand and adapt these tools to their own uses. But as displayed

below, these tools would be useful for experimentalists who want to

Figure 5. Two DREAM tools used to visualize experimental data and model predictions. Hand trajectories and velocity profiles from
subject 13 of the Mattar_2007_e3 dataset, and the predictions of the same dataset using the Berniker_2011_m1 model. The force field region has
been overlaid on the plot for clarity. For the velocity profiles, five reaches are displayed. One reach is the first force field the subject experienced
(315u). We also show the velocity profile for the first and last catch trial the subject experienced (also at 315u), the last force field trial (315u) and the
first null test trial, which involved reaching to the 225u target after learning the force field at the 315u target.
doi:10.1371/journal.pone.0078747.g005

The Database for Reaching Experiments and Models
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understand how their data relates to models, for modelers who

want to test their theories, and for educators who want to help

students better understand reaching experiments, models, and

data analysis.

Using DREAM Tools to look at data
One of the tools in DREAM allows a user to plot the preferred

direction of neurons. This tool will work only if timestamps of

spikes are recorded in the neuron structure as defined in the

documentation of DREAM. Data from two such publications have

been included in DREAM: [15] and [16], with DREAM IDs of

‘‘Flint_2012_e1’’ and ‘‘Stevenson_2011_e1’’ respectively. (The

‘e1’ at the end means the data is the first experiment associated

with the publication, as defined on the download page of the

dataset.)

Figure 4 shows the results of this tool. A point is plotted every

time the neuron fired during the experiment. The point is placed

at the corresponding x–y value of the velocity when the spike

occurred. In these experiments, the monkey moved a handle in a

two dimensional plane that moved a cursor on a screen in front of

the animal. The task was a center-out reach with 8 targets equally

spaced (every 45 degrees) around the edge of a circle with a 10 cm

radius.

Using DREAM Tools to compare data and models
To compare experimental results with model predictions, we

can plot position and velocity traces using DREAM tools. To

illustrate this feature, we will use an example dataset and model

from the database. For an example dataset, we use data from

subject 13 of an experiment designed to look at generalization

within the workspace [12]. The dataset is called ‘‘Mat-

tar_2007_e3’’ in DREAM. At the beginning of the experiment,

the subject started by making baseline movements to a target

located at 225u (see Fig. 5, top left). They then reached to another

target, located at 315u, during a training phase in a null field and a

testing phase that had a velocity-dependent curl field with catch

trials. Finally they reached to the original target (225u) in a null

field again.

For our example model, we use a generic force field adaptation

model (DREAM ID: Berniker_2011_m1) that uses a 4-dimen-

sional linearization of the limb in space [21]. The model was

designed to explain force field adaptation for center out reaches.

Parameters were not specifically tuned for performance, but some

experiment-specific values, such as the duration of reach, were

used to help make useful predictions.

After loading the dataset into MATLAB, we can use DREAM

tools to examine the experimental data, run models to generate

predictions, and compare the predictions with the experimental

results. Figure 5 shows the trajectories of the subject’s hand for all

reaches in the experiment alongside the trajectories that the model

predicted. Importantly, the hand trajectories of both the model

prediction and the experimental data were plotted using the same

DREAM tool. Because the reaches to the 225u target were

performed in a null field, they are very direct. By comparison,

reaches to the 315u target occur within a force field (with some

catch trials) and therefore take less direct paths.

Another tool in DREAM plots the hand’s velocity profile. In

Figure 5, we show the velocity profiles of five reaches of interest.

Since we used the same tool to plot both the model results and the

experimental data, we can easily compare the two. The model’s

prediction is similar in a number of ways to the experimental data

but also clearly differs, e.g. with respect to the smoothness of the

velocity.

Comparing one model to one experiment in this way can give us

insights into what experimental conditions make the model more

or less accurate. By examining on a trial by trial basis, we can learn

where model predictions might break down. But we are also

interested in assessing whether certain models perform well for

some experiments and poorly for others. By running all models

against all datasets, we can get a sense of how models compare and

what sort of experiments each does well at describing.

Using DREAM Tools to compare models
We used four models described in the methods section to make

predictions: a ‘‘null move’’ model, a non-learning model that tries

to move straight to the target (without correcting for visual or

physical perturbations), the force field adaptation model from

Figure 5 and a ‘‘cheating’’ model that predicts the previous point

in the reach as the next point in the reach. After generating

predictions with the Run Model tool, we used another DREAM

tool to calculate mean squared error (MSE) of each model. The

mean squared error tool computes the MSE between the

prediction and the actual data and, using a third DREAM tool,

we can plot the MSE for each trial or across subjects or for the

whole experiment. In Figure 6 we show the averages of all subjects

within each experimental dataset.

Since it is designed to describe force field experiments, the

Berniker_2011_m1 model performs well for experiments that

involved force fields [2], [6], [11], [12], [18] – its average error

was about half (51%) that of the Trivial No Learning model. When

experiments did not involve force fields, both the Trivial No Learn

and the Berniker_2011_m1 move directly toward the target. For

these, the Berniker_2011_m1 model had about 81% of the error of

the Trivial No Learn model. Also, both models perform very

poorly (very similar to Null Move) for the Fernandes_2012_e2

experiment, which gradually introduced a 30 degree visual

rotation. Since both the Trivial No Learn and the Berni-

ker_2011_m1 model ignore visual feedback, they predict straight

reaches that move directly toward the target. The actual data

shoes that subjects do respond to the cursor rotation and make

reaches that are rotated away from the target. The models do not

correct for this cursor rotation; thus they make predictions that

terminate closer to the displayed target than the actual reaches

did.

Adding data into DREAM
Because each submission we received had a unique organiza-

tion, we wrote MATLAB functions that read the data in (from

.mat or .txt files) and save it according to the correct DREAM

format. These functions allowed us to parameterize the data sifting

process. We can change the downsampling rate or the value used

to convert cursor screen coordinates to meters, allowing us to

quickly make changes if a user requests a non-downsampled

dataset or if an error is discovered in cursor conversion. We can

also reuse some of the functions when we get submissions similar to

datasets we have already added; this can reduce the required

sifting time when labs make multiple submissions.

Figure 6. Mean Squared Error Averaged Across Subjects. The results of four separate models run against all experiments in DREAM. The Mean
Squared Error (+/2 STD) averaged across subjects for each experiment is reported.
doi:10.1371/journal.pone.0078747.g006
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Discussion

Major Contributions of DREAM
With the available datasets and tools, DREAM enables

comparing models against multiple datasets. By analyzing how

models perform against different datasets, scientists can explore

strengths and weaknesses of certain modeling approaches under

certain conditions. Experimentalists can also use DREAM to

explore how their data relates to models. Educators can use

DREAM to aid in the learning environment, providing a way for

students to interact with and analyze data. Lastly, DREAM

expands the availability of data, giving access to those who might

be transitioning into the field, to those for whom obtaining data is

difficult, or to those who would like to analyze data from a range of

experiments.

Data Availability
The process of sifting the data and putting it into the DREAM

format sometimes revealed problems in the dataset. While trying

to match what we saw in the data with what is reported in the

paper, we occasionally uncovered discrepancies. Sometimes we

discovered figures which omit information or that the number of

trials of a certain condition was different than what was reported in

the publication. We then went back to the data providers, asking

them to explain. On rare occasions, we come to an impasse (part

of the data cannot be found or the target of the reach was not

saved) and had to decide whether to include the data, making

inferences where appropriate, or to refrain from loading the data

into DREAM. As an example of inferring data, one dataset

omitted target position. But while it may not have been explicitly

recorded, velocities and hand positions traces can give a good

indication of where the target was. In all our actions, we worked to

maintain the integrity of the dataset, so that the files available for

download were maximally useful.

After the sifting was finished, the new dataset was saved with a

unique identification tag and then uploaded. The unique

identification was created using the last name of the first listed

author, the year of publication, and a number indicating different

experiments present in the publication. If we received a dataset

that is not attached to a publication, we can still use the last name

of the contributing author and the year it was added. Often one

publication looks at a few different experimental conditions. As

such, we divide the publication’s data into a number of

experiments. These are defined in an associated info.txt file

explains the divisions (and any other oddities about the data). On

the dataset’s download page, the info.txt file and a PDF of the

publication are made available.

In general, we found scientists were willing to share data. Some

granting agencies and journals hold data sharing as a condition of

publication and funding (see http://www.nature.com/authors/

policies/availability.html, http://grants.nih.gov/grants/policy/

data_sharing/data_sharing_guidance.htm) and some granting

agencies, e.g. the NSF provide special grants for data sharing

(http://www.nsf.gov/pubs/2011/nsf11505/nsf11505.htm). How-

ever, it seemed that most scientists we contacted were willing to

make their data public simply to make the data useful to the

community. However, there were a few who held back their data,

either for personal reasons or because of doubts about the

generality of the conclusions.

Applications for and Limitations of DREAM
The tools allow us to examine the trajectories of the hand and

the velocity profiles of movements. Using these, a person can

quickly become familiar with data they have not seen before – the

animation tool is also especially useful in this regard. DREAM

tools allow a user to readily identify outliers, selectively examine

data (e.g. by looking at only catch trials), and make qualitative

model/experiment comparisons. The tools also allow for quanti-

tative comparisons of models. Using DREAM promises to be

useful for students entering the field to learn about current

research and to practice data analysis. In fact, we extensively used

the database as part of the 2012 Summer School in Computa-

tional Sensory-Motor Neuroscience (CoSMo 2012, online at

http://www.compneurosci.com/CoSMo2012/) and it was rated

as very useful by the students. The database allowed us to enhance

the student experience, and we anticipate its use growing as people

come to understand what it is able to do.

One area in which DREAM is lacking is in the number of

model submissions. In the early stages of this project, it has been

necessary to focus on experimental dataset inclusion; model

inclusion was postponed because some models required access to

meta-information that was not recorded in certain experiments.

While we do make every effort to include all the information we

can from the experiment in the database, there may be some

information a model might want – such as subject meta-

information (gender, height, age) or behavioral information (gaze

direction) – that wasn’t recorded in the experiment and is

therefore not contained in the database. However, as more

experiments are being added to DREAM, there is a greater

chance that the relevant information is available in a reasonable

number of datasets. We anticipate broader exposure to the

community will increase model submission. Summer schools such

as CoSMo 2012 will teach attendees how to use the database,

broadening its exposure. We also anticipate having model

competitions that use the database, which will also increase model

contributions.

One challenge we have faced is that some of the experiments in

DREAM do not include all the data we would like or all that is

reported in the published paper. For instance, some experiments

monitor position with a camera that is sometimes blocked during

the experiment. For other datasets, target locations or training

data were not recorded. In some cases, some of the data used in

the analysis of the paper has been lost. When appropriate, we have

interpolated what we can, but sometimes we need to omit data or

leave place holders (NaNs). It is our goal to make the dataset as

useful as possible, inferring target position if appropriate, but most

importantly, to retain the data’s integrity.

Appropriateness of DREAM
DREAM is not unique in its approach of collecting

experimental data into one database. Many other databases

(http://neuinfo.org/nif/nifgwt.html, http://en.wikipedia.org/wiki/

List_of_neuroscience_databases) are very useful to scientists. How-

ever, two aspects of DREAM make it stand out. First, by focusing on

reaching, DREAM fills a gap in the resources available to movement

scientists. Second, unlike most databases, DREAM is curated.

Although DREAM’s use of kinematic reaching data from different

labs offers new analysis possibilities, its potential really lies in

standardization of data. By standardizing, analyses become

streamlined and broader questions can be asked. This can best be

facilitated with a curated database.

Despite the work done so far, there are still ways to make the

DREAM project more useful. A feature we would like to add is

having tools that reproduce figures from specific publications.

There is also potential for further development in increasing the

number and type of metrics used to compare models, like

deviation from a straight path or end point error. More tools could

be written to allow for other kinds of analysis, as well. These tools
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could then be incorporated into the downloadable DREAM tools

in future releases. And, of course, we’d like to add more models

and continue to add datasets. Our goal is for the DREAM project

to grow organically; as members in the community begin using it

more, development can be focused on features of DREAM that

would be most helpful.

Some might argue that this project places restrictions on

scientists; for instance, by choosing MATLAB as our environment,

we reduce the number of people who can interact with the

database. However, an environment must be chosen; and while

perhaps not catering to every potential user, we chose MATLAB

because we believe it makes the database accessible to the largest

subset of scientists in the field. While an open-source solution (such

as Octave) was initially considered, preliminary inquiries with

potential users indicated MATLAB would be more useful. We also

did not want to take on the administrative burden of developing in

two formats. The database was designed to incorporate new tools

as they were developed; if labs have analyses that are written in

other languages, we encourage them to port them over to

MATLAB to share with other users of DREAM.

Another argument on restriction revolves around standardizing

data format. Does creating a standard stifle flexibility and create

restrictive policies? Whenever standards are created, certain

boundaries need to be set. Indeed, we included an example of a

dataset that must be omitted. We are aware there are some valid

reasons to not standardize – for instance, the overhead of the

format structure is non-trivial for certain applications – however,

creating a place for data to be collected and shared is a good step

in reducing unnecessary duplication (and perhaps doing good

verification), and a way of discussing standard paradigms shared

by the community.
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