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Abstract: Pipeline inspection gauges (pigs) have been used for many years to perform various
maintenance operations in oil and gas pipelines. Different pipeline parameters can be inspected
during the pig journey. Although pigs use many sensors to detect the required pipeline parameters,
matching these data with the corresponding pipeline location is considered a very important
parameter. High-end, tactical-grade inertial measurement units (IMUs) are used in pigging
applications to locate the detected problems of pipeline using other sensors, and to reconstruct
the trajectories of the pig. These IMUs are accurate; however, their high cost and large sizes limit
their use in small diameter pipelines (8” or less). This paper describes a new methodology for
the use of MEMS-based IMUs using an extended Kalman filter (EKF) and the pipeline junctions
to increase the position parameters’ accuracy and to reduce the total RMS errors even during the
unavailability of above ground markers (AGMs). The results of this new proposed method using a
micro-electro-mechanical systems (MEMS)-based IMU revealed that the position RMS errors were
reduced by approximately 85% compared to the standard EKF solution. Therefore, this approach will
enable the mapping of small diameter pipelines, which was not possible before.
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1. Introduction

Advances in micro-electromechanical-systems (MEMS) technology combined with the
miniaturization of electronics, have made it possible to produce low cost and lightweight chip-based
inertial sensors. These chips are small, lightweight, reliable and they consume very little power.
They have therefore found a wide spectrum of applications in the automotive sector and other
industrial applications. MEMS technology, therefore, can be used to develop navigation systems that
are inexpensive, small, and consume low (microwatt) power. The attractive advantages of MEMS
technology have led to remarkable research progress in the field of MEMS inertial sensors. However,
on the negative side, the performance currently achieved by these low cost sensors is relatively poor
due to their sensor errors. The goal of this paper is henceforth to introduce new constraints for pipeline
navigation to increase the position parameters’ accuracy and reduce the total RMS.

Pipelines are the lifelines of a dynamic country’s infrastructure; they provide fuel, water, and
all kinds of other needs that touch millions of lives. In addition, they represent one of the safest
transportation methods available for crude oil, natural gas, and chemical fluids; they provide
a transport medium with speed, efficiency and reliability. Furthermore, they are considered an
eco-friendly option. So-called smart pipeline inspection gauges (pigs, Figure 1) commonly carry out
inspection and fault identification of these pipelines.
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Figure 1. Smart Pipeline Inspection Gauge (Nord Stream AG). 

Pigs are devices/tools that can be inserted into the pipeline and travel throughout the length of 
the pipeline, driven forward by the differential pressure across the tool [1,2]. Pigs carry embedded 
computers and sensors, to acquire information and to perform various maintenance operations in a 
pipeline. The pigging procedure requires the pipeline contents to be flowing to facilitate the pig’s 
movement. In general, the pig’s total journey length can vary from hundreds of meters to hundreds 
of kilometers [3]. A variety of methods are used for pipeline inspection such as ultrasonic techniques, 
echo sounding, radiography, and cameras. In the past, the position determination of the pig used to 
be achieved with a set of velocity wheels (odometers). These wheels provide the longitudinal speed 
of the pig that can be integrated to provide the distance traveled along the pipeline. Fiber Optic Gyro 
(FOG)- and/or Ring Laser Gyro (RLG)-based high-end inertial navigation systems has been proposed 
to be included in the positioning solution [4], which is currently being used for this purpose in the 
large diameter inspection tools. 

This work addresses the issue of providing a MEMS-based aided inertial navigation system to 
replace the current high-end tactical grade IMUs. MEMS-based inertial sensors are characterized by 
large uncertainties and high noise (i.e., bias, scale factor and non-orthogonality). Therefore, the errors 
in position, velocity and attitude of the motion pig grow rapidly in standalone mode. Therefore, 
aiding navigation systems become essential to solve the unpredictable problems of sensor errors and 
noises [1]. The aided information will be derived mainly from odometer sensors, pipeline modeling 
and Global Navigation Satellite System (GNSS). 

Due to the distance underwater or underground, and/or the material that the pipeline is made 
of, it is not possible for the pig to communicate directly with the outside world. The collected data is 
saved internally and processed later (post-processed). The process requires that extra navigation 
sensors be used to improve the performance of the pig’s location estimation methods. A wheel 
odometer, for instance, can measure traveled distances (by counting the number of wheel 
revolutions) that are translated later into velocity measurements. These measurements can be used 
as external updates for the navigation algorithms. Figure 2 illustrates the main parts of the navigation 
sensors of a typical pig tool. Supports are mainly the front and end parts that provide the sealing for 
the main parts. These supports have nominal diameters larger than the pipe diameter to produce 
efficient sealing [2]. The pig body is contained between the two supports. 
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Pigs are devices/tools that can be inserted into the pipeline and travel throughout the length of
the pipeline, driven forward by the differential pressure across the tool [1,2]. Pigs carry embedded
computers and sensors, to acquire information and to perform various maintenance operations in
a pipeline. The pigging procedure requires the pipeline contents to be flowing to facilitate the pig’s
movement. In general, the pig’s total journey length can vary from hundreds of meters to hundreds of
kilometers [3]. A variety of methods are used for pipeline inspection such as ultrasonic techniques,
echo sounding, radiography, and cameras. In the past, the position determination of the pig used to be
achieved with a set of velocity wheels (odometers). These wheels provide the longitudinal speed of
the pig that can be integrated to provide the distance traveled along the pipeline. Fiber Optic Gyro
(FOG)- and/or Ring Laser Gyro (RLG)-based high-end inertial navigation systems has been proposed
to be included in the positioning solution [4], which is currently being used for this purpose in the
large diameter inspection tools.

This work addresses the issue of providing a MEMS-based aided inertial navigation system to
replace the current high-end tactical grade IMUs. MEMS-based inertial sensors are characterized
by large uncertainties and high noise (i.e., bias, scale factor and non-orthogonality). Therefore, the
errors in position, velocity and attitude of the motion pig grow rapidly in standalone mode. Therefore,
aiding navigation systems become essential to solve the unpredictable problems of sensor errors and
noises [1]. The aided information will be derived mainly from odometer sensors, pipeline modeling
and Global Navigation Satellite System (GNSS).

Due to the distance underwater or underground, and/or the material that the pipeline is made of,
it is not possible for the pig to communicate directly with the outside world. The collected data is saved
internally and processed later (post-processed). The process requires that extra navigation sensors
be used to improve the performance of the pig’s location estimation methods. A wheel odometer,
for instance, can measure traveled distances (by counting the number of wheel revolutions) that are
translated later into velocity measurements. These measurements can be used as external updates for
the navigation algorithms. Figure 2 illustrates the main parts of the navigation sensors of a typical pig
tool. Supports are mainly the front and end parts that provide the sealing for the main parts. These
supports have nominal diameters larger than the pipe diameter to produce efficient sealing [2]. The
pig body is contained between the two supports.
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An above ground marker (AGM) is another device that can be installed on the surface of the
ground above the pipeline. This device detects and records the passage of the pig in the pipeline.
AGMs provide the navigation coordinates of their position (latitude, longitude, and height) along with
the pig’s time passage. This information is used as a coordinate update (typically called CUPT) in the
estimation algorithm. The cost of these devices often minimizes their use. Usually, these AGMs are
installed every 1–3 km [5] when the pig uses high-end tactical grade IMUs.

A nonlinear sensor fusion algorithm has been applied in [6] to estimate the trajectory of pipeline
pigs. IMUs along with odometers and AGMs are the sensors that have been used for navigation
purposes. The filter states have been propagated using the IMU with an update from the odometer
while the AGM is not reached. The AGM performs position updates when the pig passes underneath.

Similarly, in [7], an IMU along with an odometer and reference GPS have been used to simulate
pig data. The results shows that by decreasing the position reference updates, the accuracy increased
due to the propagation of IMU errors.

To allow proper maintenance operations and to reconstruct the pipeline trajectory in certain
projects, a position referencing technique is required to find the exact coordinates of the defective parts
detected by the pig’s sensors. The core of this work, therefore, is to improve the accuracy of the final
reconstructed trajectories by introducing new sources of information and adding new constraints to
the estimation technique.

Generally, the pig carries inertial sensors (accelerometers and gyroscopes), along with other
sensors, to assess its position coordinates. To minimize possible cumulative errors arising from the
MEMS-IMU, the sensor fusion technique, which involves pairing inertial sensors with non-inertial
sensors, is implemented. An odometer and AGM, employed as non-inertial sensors, are used to update
the algorithm.

Different estimation techniques can be used in such applications. The Extended Kalman Filter
(EKF) [8,9] is commonly used for sensor fusion integration in navigation applications, especially
for nonlinear dynamic models. It has been selected to demonstrate the newly proposed algorithm
in this paper. In Section 2, the idea of the new algorithm will be introduced. The Methodology
section (Section 3) will demonstrate the algorithm implementation, and the results will be discussed in
Section 4.

2. New Information

2.1. Pipeline Junctions

Pipelines consist of multiple pieces of pipeline and fittings (bends, T-connections, valves . . . etc.).
The pipeline pieces are fabricated in straight-line shapes. Different methods can be used to connect
these pipeline pieces with each other, such as push on, flanges, and welding techniques, as shown in
Figure 3. In all cases, a small gap tolerance will appear between two pieces.
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The connection point between two pipelines is called the pipeline junction/joint. These junctions
can be detected using magnetic flux leakage (MFL) and electromagnetic acoustic transducers for
pipeline analysis purposes. However, due to sudden vibrations of the pig while passing through
pipeline junctions, INS sensors are sensitive enough to capture these junctions. Sample accelerometer
pipeline data outputs for a MEMS-based IMU (SiIMU02) and a high-end tactical grade IMU (LN200)
are illustrated in Figures 4 and 5 respectively. As seen, repetitive pattern spikes appear. Studying
different IMUs signals collected from different pigs for different pipelines trajectories shows a repetitive
signal/pattern in all the accelerometers’ signals. Taking into consideration the speed of the pig, the
distance between two spikes is equal to the length of the fitting or the pipeline pieces. Therefore, the
pattern represents the pipeline junction (PLJ). Such information is used as a new constraint to the
estimation techniques (as explained in Section 3.2).
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2.2. Detecting Pipeline Junctions

To detect the spikes in the signal, different methods have been used in the signal processing
literature. In this paper, a discrete wavelet transformation (DWT) has been used to detect these spikes
due to its simple implementation. The definition of wavelet transform can be written as:

Xw pa, bq “
1
?

b

ż

x ptqM
ˆ

t´ a
b

˙

dt (1)

Here x p.q is the input, and M p.q is the mother wavelet. The parameters paq is real number that
represent a time location. pbq is a positive real number that represents the scaling. Many types of
mother wavelets can be used in signal pattern detection applications, such as the Haar basis and
Mexican Hat. Figure 6 illustrates the Mexican Hat mother wavelet that has the following model:

M ptq “
2

5
4
?

3

´

1´ 2πt2
¯

e´πt2
(2)
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The Mexican Hat mother wavelet has been applied to detect the signal patterns (pipeline junctions)
as shown in Figure 7. For more details about the wavelet detection technique, please refer to [10–14].
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Since these patterns represent the pipeline junctions, a constraint is introduced here and called
Pipeline Junction Constraint (PJC). This constraint fixes both the heading and pitch angles during the
movement inside the pipeline piece (not during the junctions) [15]. New measurement model for PJC
will be introduced in Section 3.2. It is noticeable that roll angle is free to rotate along the pipeline axis.
Therefore, roll angle will not be included in PJC measurement model.
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Until now, we assumed that the period between two junctions represents a straight pipe. However,
due to the fittings (i.e., bends), this assumption cannot be considered true all the time. Therefore, the
PJC model will be supported by a bend detection algorithm (BDA) to detect the bends and disable the
PJC model during the bend periods. BDA is introduced in the next section.

Finally, it is useful to mention that any junction detection function should be executed prior to the
navigation offline process to save the pipeline junctions file. This file will be used as an input to the
navigation offline process.

2.3. Bend Detection Algorithm (BDA)

The used IMU has three gyroscopes that measure and record the angular rates
`

ωx, ωy, ωz
˘

of
pig’s motion around three axes x, y, and z, respectively. The axes are defined as shown in Figure 8.
The x-axis angular rate pωxqmeasures the rate change of the roll angle, while ωy and ωz measure the
rate change of the pitch and heading angles, respectively.
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Figure 8. Pig defined axes.

To detect whether the pig is located inside a fitting (bend), the change in heading and/or pitch
angles of the pig in motion should not exceed a certain threshold pCthq. This threshold can be selected
by sensor calibration. The change rate for both the y and z axes are monitored at every epoch. The
change of the angular velocity magnitude can be compared to the selected threshold pCthq. For
simplicity, both values are merged as follows:

ωR “
b

ω2
y `ω2

z (3)

Here ωR is called a resultant angular rate. Selecting the threshold is the most important part
in this method. By plotting different resultant angular rates for different IMUs, it has been noticed
that the best value to select pCthq is the mean value of the static period (during the calibration time).
Checking the condition of this threshold should be done at every iteration and before applying the PJC
constraints as shown in Figure 9.
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Figure 10 illustrates the ωR values that have been calculated before compensating for gyro biases
and scale factors. Threshold pCthq can be selected as the mean value of all resultant angular rates of ωy

and ωz during the static period of the pig before it begins moving.Sensors 2016, 16, 567 7 of 16 
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3. Methodology

To cater for all three-dimensional dynamics of the pig motion, a total of six sensors are used in
a full IMU, which comprises three gyroscopes and three accelerometers. In addition to the IMU, the
odometer is used to measure the displaced travel distance of the pig. AGMs and their measurement
model will be shown in this section, although the target is to use the fewest number of AGMs
as possible.

3.1. Dynamic Error Model

A MEMS-based IMU was the main sensor used to collect the pig’s motion data. EKF was used as
an estimation technique to overcome the poor performance and non-linearity of the dynamic system
in this work. Both dynamic and measurement models developed in this section to estimate the states
of the system. The state vector to be estimated was designed to include the errors associated with
the position, velocity, attitude, and the stochastic bias errors associated with the gyroscopes and
accelerometers. The state vector was defined as follows [16]:

δx “
“

δr δv δε δbg δba
‰T (4)

where:

δr Position error p3ˆ 1q
δv Velocity error p3ˆ 1q
δε Attitude error p3ˆ 1q
δbg Gyroscope bias error p3ˆ 1q
δba Accelerometer bias error p3ˆ 1q.

The dynamic model is non-linear and can be represented in discrete form as follows [17,18]:

xk`1 “ f pxk, kq ` g pxk, kqwk (5)
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where f is the dynamic model, g is the stochastic model, and w is the process noise.
The linearized error state system model can be expressed as:

δxk`1 “ Φkδxk ` Gkwk (6)

where:

δxk`1: is the p15ˆ 1q state vector
Φk: is the p15ˆ 15q transition matrix
Gk: is the p15ˆ 1q noise distribution matrix
wk: is the unit-variance white Gaussian noise.

By applying Taylor series expansion and ignoring the higher order terms, the linearized system
model in the local level frame (LLF), represented as north, east, and down (NED), can be expressed
as follows:

δxk`1 “

»

—

—

—

—

—

–

I F1 0 0 0
0 I F2 0 F3

0 F4 I F3 0
0 0 0 F5 0
0 0 0 0 F6

fi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

δrk
δvk
δε

δbg

δba

fi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

–

σr

σv

σε

F7

F8

fi

ffi

ffi

ffi

ffi

ffi

fl

wk (7)

where:
δrk “

”

δϕk, δλk, δhk

ıT
, δvk “

”

δvN
k , δvE

k , δvD
k

ıT

δεk “
”

δrk, δpk, δAk

ıT
, δbg “

”

δbgx, δbgy, δbgz

ıT
(8)

δba “
”

δbax, δbay, δbaz

ıT

F1 “

»

—

–

1
RM`h 0 0

0 1
pRN`hqcosϕ

0

0 0 ´1

fi

ffi

fl

.∆t (9)

F2 “

»

—

–

0 fu ´ fn

´ fu 0 fe

fn ´ fe 0

fi

ffi

fl

.∆t (10)

F3 “

»

—

–

R11 R12 R13

R21 R22 R23

R31 R32 R33

fi

ffi

fl

.∆t (11)

F3 “

»

—

–

R11 R12 R13

R21 R22 R23

R31 R32 R33

fi

ffi

fl

.∆t (12)

F4 “

»

—

–

1
RM`h 0 0

0 ´1
RN`h 0

0 ´tanϕ
RN`h 0

fi

ffi

fl

.∆t (13)

F5 “

»

—

–

´βωx 0 0
0 ´βωy 0
0 0 ´βωz

fi

ffi

fl

.∆t (14)
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F6 “

»

—

–

´β f x 0 0
0 ´β f y 0
0 0 ´β f z

fi

ffi

fl

.∆t (15)

σr “

»

—

–

σϕ

σλ

σh

fi

ffi

fl

, σv “

»

—

–

σvn

σve

σvd

fi

ffi

fl

, σε “

»

—

–

σr

σp

σA

fi

ffi

fl

(16)

F7 “

»

—

–

a

2βωxσ2
ωx

b

2βωyσ2
ωy

a

2βωzσ2
ωz

fi

ffi

fl

, F8 “

»

—

—

—

–

b

2β f xσ2
f x

b

2β f yσ2
f y

b

2β f zσ2
f z

fi

ffi

ffi

ffi

fl

(17)

where:

β Reciprocal of the correlation time of the process
σ2 Variance of the white noise associated with the random process
RM Meridian radius of curvature (North-South)
RN Prime vertical radius of curvature of the Earth’s surface (East-West)
ϕ, λ, h Latitude, longitude and height, respectively
f n, f e, f d Specific forces in east, north and up directions, respectively.

Rij Rotation matrix
´

Rl
b

¯

elements from body to local level frame.

∆t Rate change of time.

The linearized measurement error model can be expressed as:

δzk “ Hδxk ` δνk (18)

Here H is the design matrix and ν is the measurement noise. Both process and measurement
noises are assumed to be white and uncorrelated to each other. Readers can refer to [19] for more details
about measurement models. In this work, a new measurement model has been developed specifically
for pipeline navigation. The mathematical equations will be demonstrated in the next section.

3.2. Pitch & Heading Measurement Model

The rotation matrix (direct cosine matrix—DCM) is updated at every epoch. The attitude angles
(roll, pitch, and heading) can be calculated using this matrix. Heading and pitch angles of the pig in
the pipeline are computed from the elements of the following (DCM) [19]:

R̂l
v “ R̂l

b
`

Rv
b
˘T
“ rI ´ΨsRl

b
`

Rv
b
˘T
“

»

—

–

â11 â12 â13

â21 â22 â23

â31 â32 â33

fi

ffi

fl

(19)

where
´

Rk
j

¯

represents the DCM from pjq to pkq frames, pb, l, vq represent the IMU body, local level
(navigation), and vehicle (pig) frames, respectively. The rotation matrix from the body to vehicle
(pig) frame is calculated after installing the IMU in the pig. Rv

b is constant and does not change. pΨq
represents the skew-symmetric matrix of the rotation vector pertaining to the error of the attitude
DCM and can be expressed as follows:

Ψ “

»

—

–

0 ´δA δp
δA 0 ´δr
´δp δr 0

fi

ffi

fl

(20)
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Let bij and cij represent the ijth elements of Rv
b and Rl

b, respectively. The Rl
b can be written

as follows:

Rl
b “

»

—

–

cosp cosA ´cosr sinA` sinr sinp cosA sinr sinA` cosr sinp cosA
cosp sinA cosr cosA` sinr sinp sinA ´sinr cosA` cosr sinp sinA
´sinp sinr cosp cosr cosp

fi

ffi

fl

(21)

From Equation (19), the required âij elements to be used for heading and pitch angles calculation
can be expressed as follows:

â11 “ b11 pc11 ` c21δA´ c31δpq ` b12 pc12 ` c22δA´ c32δpq ` b13 pc13 ` c23δA´ c33δpq

â21 “ b11 pc21 ` c31δr´ c11δAq ` b12 pc22 ` c32δr´ c12δAq ` b13 pc23 ` c33δr´ c13δAq

â31 “ b11 pc31 ` c11δp´ c21δrq ` b12 pc32 ` c12δp´ c22δrq ` b13 pc33 ` c13δp´ c23δrq (22)

â32 “ b21 pc31 ` c11δp´ c21δrq ` b22 pc32 ` c12δp´ c22δrq ` b23 pc33 ` c13δp´ c23δrq

â33 “ b31 pc31 ` c11δp´ c21δrq ` b32 pc32 ` c12δp´ c22δrq ` b33 pc33 ` c13δp´ c23δrq

From Equation (21), heading and pitch can be calculated as follows:

A “ tan´1 sinA
cosA

“ tan´1 a21

a11
(23)

p “ tan´1 sinp
cosp

“ tan´1 ´a31
b

a2
32 ` a2

33

(24)

Similarly, the estimated heading and pitch angles can be calculated from Equation (19) as follows:

Â “ tan´1 sinÂ
cosÂ

“ tan´1 â21

â11
(25)

p̂ “ tan´1 sinp̂
cosp̂

“ tan´1 ´â31
b

â2
32 ` â2

33

(26)

Ideally as per the algorithm assumption, the heading and pitch angles do not change in the
pipeline piece; the change in these angles should be zero. Therefore, the approximated changes of
heading and pitch angles model can be expressed as follows:

δzv
p,A “ ε̂´ rε (27)

where ε̂ is the computed heading and pitch vector, and rε is the measured heading and pitch vector.
The measurement design matrix can be expressed as follows:

Hp,A “

«

B p̂
Bδr

B p̂
Bδp

B p̂
BδA

BÂ
Bδr

BÂ
Bδp

BÂ
BδA

ff

(28)

The design matrix elements are expanded in the Appendix. Finally, the innovation sequence of
EKF at each epoch can be calculated as follows:

ek “ δzv
p,A ´ Hp,Aδx (29)

where δxk represents the error state vector
”

δr δp δA
ıT

.
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4. Results

This section introduces the equipment used and describes the pipeline inspection test performed
to assess the efficacy of the PLJ algorithm. The results of the proposed method—Pipeline junctions
integration—Will be discussed in detail and compared with the results of the traditional method of the
EKF-based odometer/AGM integration for pipeline navigation. In figures and tables, EKF/PLJ will be
referred to as the new developed method, while EKF will be referred to as the normal EKF method.
Please note that odometer and AGM (if available) are used in both methods. The developed method
was examined through real pipeline inspection trajectories, using as few AGMs as possible.

The pig’s data and the reference trajectory have been provided by M/s ROSEN. A SiIMU02 (by
UTC Aerospace Systems, Brea, CA, USA) MEMS-based inertial sensor was used for the experiment.
SiIMU02 is a six degree of freedom inertial system that uses solid-state devices to measure the angular
rate and linear acceleration. Table 1 shows the IMU specifications. The forward velocity time stamp
was synchronized with the IMU data. The odometer standard deviation (STD) is 0.15 m{s.

Table 1. MEMS-IMU Specifications.

Gyroscope Accelerometer

Bias Repeatability p1σq ď 100˝{h ď 10 mg
Bias Instability ď 6˝{h ď 0.5 mg
Random Walk ď 0.5˝{

?
h ď 0.5 m{s{

?
h

Size (mm)
Diameter (55.88)

Depth (35.56)

One point worth noting is that the pig operator did not provide the AGMs’ positions, however,
they provided the full reference trajectory. As a result, an artificial AGMs were extracted from the true
reference trajectory. The total pig journey distance is almost 3 km over a total travel time of 1 h.

For comparison purposes, the proposed algorithm was applied for two different scenarios. In both
scenarios, the position of the first and last point of the trajectory is known. The first point represents
the pig pipeline inlet and the last point is the pig pipeline outlet.

‚ Scenario #1: Processed IMU & odometer data using one AGM (after 20 min)
‚ Scenario #2: Processed IMU & odometer data using no AGM.

4.1. Scenario #1

In this scenario, one AGM was added after 20 min of motion to provide position update (CUPT)
to the navigation algorithm. Figure 11 shows the solutions of the EKF-based and EKF/PLJ-based,
where both solutions are compared against the reference trajectory. The EKF/PLJ proposed solution
showed an improvement over the standalone EKF solution, which is clearly noticed in Figure 12. The
figures illustrate the north, east, and height position errors for both methods. The errors in the north
and east direction are clearly smaller in the EKF/PLJ algorithm. However, the height error is slightly
smaller using EKF only. The maximum and RMS position errors (in meters) for each solution are
shown by bar graphs in Figures 13 and 14 respectively.
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The bar graphs in Figures 17 and 18 show that the proposed EKF/PLJ method greatly improve
the accuracy of the results.
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EKF/Odometer integration for pipeline navigation, using the developed method of EKF/PLJ,
had a maximum position error of 11.59 m in the north direction, and EKF/odometer solution only had
a maximum position error of 76.41 m in the same direction. This is an overall average improvement of
85%. Despite all the improvements in the horizontal plane (north and east directions), the above bar
graphs reveal that height errors have slight increase using the new EKF/PLJ method. This increase
does not affect the total solution for the pipeline trajectory, especially, if we consider that the pipeline
is usually located 1–5 m below the Earth surface. Finally, the results can be summarized as shown in
Tables 2 and 3 where north, east, height maximum and RMS errors for both scenarios are shown.
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Table 2. North, East & Height Errors.

Maximum Error

Method North (m) East (m) Height (m)

Scenario #1
EKF 31.99 72.89 3.28

EKF/PLJ 11.83 10.77 7.03

Scenario #2
EKF 76.41 51.94 1.99

EKF/PLJ 11.59 8.48 5.99

Table 3. North, East & Height Errors.

RMS Error

Method North (m) East (m) Height (m)

Scenario #1
EKF 17.7 25.05 1.61

EKF/PLJ 7.11 5.80 2.91

Scenario #2
EKF 46.72 34.58 1.03

EKF/PLJ 7.35 5.91 2.31

5. Conclusions

The main objective of this work was to increase the accuracy of pipeline navigation. Based on the
reality of constructing the pipelines (i.e., straight shapes), and how they connect to each other, pipeline
junctions have been modeled and included as new measurements to update the navigation estimation
algorithm. The new developed algorithm will also lead to a reduction in the total required number of
AGMs. Two different testing scenarios were discussed based on real pipeline data that was collected
using a MEMS-IMU-based system. These results show that the newly proposed method is capable of
reducing the trajectory navigation RMS error by around 80% over one hour of operation and without
using any AGM along the pig journey.
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Appendix A

The elements in Equation (28) can be calculated as follows:

Hp,A “

«

B p̂
Bδr

B p̂
Bδp

B p̂
BδA

BÂ
Bδr

BÂ
Bδp

BÂ
BδA

ff

B p̂
Bδr

“

´

EQ5?
EQ7

´
r2pb21c21`b22c22`b23c23qEQ9`2pb31c21`b32c22`b33c23qEQ8sEQ4

EQ3

¯

EQ7

EQ1

B p̂
Bδp

“

´

EQ6?
EQ7

´
r2pb21c11`b22c12`b23c13qEQ9`2pb31c11`b32c12`b33c13qEQ8sEQ4

EQ3

¯

EQ7

EQ1

B p̂
BδA

“ 0
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BÂ
Bδr

“
pb11c11 ` b12c12 ` b13c13q pb11c31 ` b12c32 ` b13c33q

pb11c11 ` b12c12 ` b13c13q
2
` pb11c21 ` b12c22 ` b13c33q

2

BÂ
Bδp

“
pb11c21 ` b12c22 ` b13c23q pb11c31 ` b12c32 ` b13c33q

pb11c11 ` b12c12 ` b13c13q
2
` pb11c21 ` b12c22 ` b13c33q

2

BÂ
BδA

“

ˆ

pb11c21`b12c22`b13c23q
2

pb11c11`b12c12`b13c13q
2 ` 1

˙

pb11c11 ` b12c12 ` b13c13q
2

pb11c11 ` b12c12 ` b13c13q
2
` pb11c21 ` b12c22 ` b13c33q

2 “ ´1

where

EQ1 “ pb11c31 ` b12c32 ` b13c33q
2
` pb21c31 ` b22c32 ` b23c33q

2
` pb31c31 ` b32c32 ` b33c33q

2

EQ2 “ pb11c11 ` b12c12 ` b13c13q
2
` pb11c21 ` b12c22 ` b13c23q

2

Q3 “ 2

c

´

pb21c31 ` b22c32 ` b23c33q
2
` pb31c31 ` b32c32 ` b33c33q

2
¯3

EQ4 “ b11c31 ` b12c32 ` b13c33

EQ5 “ b11c21 ` b12c22 ` b13c23

Q6 “ b11c11 ` b12c12 ` b13c13

EQ7 “ EQ2
8 ` EQ2

9

EQ8 “ b31c31 ` b32c32 ` b33c33

EQ9 “ b21c31 ` b22c32 ` b23c33

References

1. Tiratsoo, J. Pipeline Pigging Technology, 2nd ed.; Butterworth-Heinemann College: Woburn, MA, USA, 2001.
2. Tolmasquim, S.T.; Nieckele, A.O. Design and control of pig operations through pipelines. J. Pet. Sci. Eng.

2008, 62, 102–110. [CrossRef]
3. Davidson, R. An Introduction to Pipeline Pigging: Pigging Products & Services Association; Pipes & Pipelines

International: Beaconsfield, UK, 1995.
4. Hanna, P.L. Strapdown inertial systems for pipeline navigation. In Proceedings of the IEE Colloquium on

Inertial Navigation Sensor Development, London, UK, 9 January 1990.
5. Sahli, H.; Moussa, A.; Noureldin, A.; El-Sheimy, N. Small pipeline trajectory estimation using MEMS based

IMU. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of
Navigation (ION GNSS+ 2014), Tampa, FL, USA, 8–12 September 2014.

6. Santana, D.D.S.; Maruyama, N.; Massatoshi Furukawa, C. Estimation of trajectories of pipeline PIGs using
inertial measurements and non linear sensor fusion. In Proceedings of the 2010 9th IEEE/IAS International
Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 8–10 November 2010.

7. Chowdhury, M.S.; Abdel-Hafez, M.F. Pipeline Inspection Gauge Position Estimation Using Inertial
Measurement Unit, Odometer, and a Set of Reference Stations. ASME. ASME J. Risk Uncertain. Part B
2016, 2, 021001-1–021001-10. [CrossRef]

8. Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 2015.

9. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45.
[CrossRef]

10. Graps, A. An introduction to wavelets. IEEE Comput. Sci. Eng. 1995, 2, 50–61. [CrossRef]
11. Mesa, H. Adapted wavelets for pattern detection. In Progress in Pattern Recognition, Image Analysis and

Applications; Sanfeliu, A., Cortés, M., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2005;
pp. 933–944.

http://dx.doi.org/10.1016/j.petrol.2008.07.002
http://dx.doi.org/10.1115/1.4030945
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/99.388960


Sensors 2016, 16, 567 17 of 17

12. Meyer, Y. Wavelets: Algorithms and Applications, 1st ed.; Society for Industrial & Applied: Philadelphia, PA,
USA, 1993.

13. Vetterli, M.; Herley, C. Wavelet and filter banks: Theory and design. IEEE Trans. Acoust. Speech Signal Process.
1992, 40, 2207–2232. [CrossRef]

14. Wickerhauser, M.V. Adapted Wavelet Analysis from Theory to Software, 1st ed.; A K Peters/CRC Press: Wellesley,
MA, USA, 1994.

15. El-Sheimy, N.; Sahli, H.; Moussa, A. Methods and Systems to Enhance Pipeline Trajectory Reconstruction
Using Pipeline Junctions. Patent Tech. ID# 524.28, 7 July 2015.

16. Noureldin, A.; Karamat, T.B.; Eberts, M.D.; El-Shafie, A. Performance enhancement of mems-based INS/GPS
integration for low-cost navigation applications. IEEE Trans. Veh. Technol. 2009, 58, 1077–1096. [CrossRef]

17. El-Sheimy, N. Introduction to INS—With Applications to Positioning and Mapping; ENGO623 Course Notes;
University of Calgary: Calgary, AB, Canada, 2012.

18. Noureldin, A.; Karamat, T.B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite Positioning and Their
Integration; Springer: New York, NY, USA, 2012.

19. Shin, E.-H. Estimation Techniques for Low-Cost Inertial Navigation; University of Calgary: Calgary, AB,
Canada, 2005.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/78.157221
http://dx.doi.org/10.1109/TVT.2008.926076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	

	
	
	

	
	
	

	

