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Finite element modelling predicts changes in joint shape and cell
behaviour due to loss of muscle strain in jaw development
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Abnormal joint morphogenesis is linked to clinical conditions such as Developmental Dysplasia of the
Hip (DDH) and to osteoarthritis (OA). Muscle activity is known to be important during the developmental
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process of joint morphogenesis. However, less is known about how this mechanical stimulus affects the
behaviour of joint cells to generate altered morphology. Using zebrafish, in which we can image all joint
musculoskeletal tissues at high resolution, we show that removal of muscle activity through anaes-
thetisation or genetic manipulation causes a change to the shape of the joint between the Meckel's
cartilage and Palatoquadrate (the jaw joint), such that the joint develops asymmetrically leading to an
overlap of the cartilage elements on the medial side which inhibits normal joint function. We identify the
time during which muscle activity is critical to produce a normal joint. Using Finite Element Analysis
(FEA), to model the strains exerted by muscle on the skeletal elements, we identify that minimum
principal strains are located at the medial region of the joint and interzone during mouth opening. Then,
by studying the cells immediately proximal to the joint, we demonstrate that biomechanical strain
regulates cell orientation within the developing joint, such that when muscle-induced strain is removed,
cells on the medial side of the joint notably change their orientation. Together, these data show that
biomechanical forces are required to establish symmetry in the joint during development.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The development of reciprocal interlocking joints at cartilage ele-
ments is central to ensuring normal skeletal function (Nowlan et al.,
2010). Processes that disrupt joint shape formation can cause abnor-
mal loading and joint function (Michaeli et al., 1997), e.g. hip shape
correlates strongly with risk of osteoarthritis (Jacobsen and Sonne-
Holm, 2005). The initial formation of the cartilage template from
mesenchymal cell condensations, mostly replaced by bone, is well
understood (DeLise et al., 2000; Thorogood and Hinchliffe, 1975).
However, how the early joint structures undergo morphogenesis to
form their mature shape remains less clear (Pacifici et al., 2005).

Zebrafish, with relevant fluorescent transgenic lines (Apschner
et al., 2014; Hammond andMoro, 2012), allow dynamic imaging of the
musculoskeletal system at cellular resolution. Zebrafish are, therefore,
a useful model to examine how mechanical loading from muscle
impacts on cartilage behaviour. By 48 h post-fertilisation (hpf),
r Ltd. This is an open access article
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.

mesenchymal cells have condensed to form the mandibular arches
(Eames et al., 2013; Kimmel et al., 1995). At 53–55 hpf, the cartilagi-
nous elements of the Meckel's cartilage (MC), palatoquadrate (PQ) and
ceratohyal appear, as does the adductor mandibulae jaw musculature,
with the intermandibularis anterior and protractor hyoideus, identifi-
able by 62 hpf (Schilling and Kimmel, 1997). Larval zebrafish use the
protractor hyoideus to constrict the buccal chamber of the jaw and
adductor mandibulae to close the mouth (Diogo et al., 2008; Her-
nandez et al., 2002). The joint between the MC and PQ (Figs. 1A and
2A) is described as the jaw joint in (Talbot et al., 2010) and referred to
as such hereafter. In the joint structure, the retroarticular process
(RAP) of the MC protrudes ventrally to interlock with the PQ (Miller
et al., 2003), typically cavitation of this joint occurs at around 7 dpf
(http://zfatlas.psu.edu/).

Many studies have linked absence of muscle activity with
abnormal joint shaping and fusions of articular surfaces in long
bones. Early studies used Decamethonium Bromide and botulinum
toxin to generate paralysis in chick models; leading to a flattening
of articular surfaces and a failure of joint cavitation (Drachman and
Sokoloff, 1966; Murray and Drachman, 1969). More recently,
(Roddy et al., 2011b) found that rigid paralysis of chicks during
early development caused the knee joint to appear flattened.
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. FE-model simulating jaw displacement in a 5 day old fish (5 dpf) for different cartilage and interzone Young's moduli. (A, B): Confocal image stacks of the ventral (A) and lateral
(B) zebrafish jaw at 3, 4, and 5 dpf with cartilage labelled by Tg(Col2a1aBAC:mcherry) and muscle labelled by Smyhc:GFP. AM¼adductor mandibulae, IA¼ intermandibularis anterior,
PH¼protractor hyoideus, MC¼Meckel's cartilage, PQ¼palatoquadrate, M¼medial, L¼ lateral, A¼anterior, P¼posterior. (C–H): Jaw displacement (open to closed in mm) is marked on
the jaw; recorded using the colour key. Each model (C–H) has a different combination of cartilage (c¼1.1, 3.1, or 6.1 MPa) or interzone (i¼0.25 or 0.75 MPa) properties. Horizontal black
arrow highlights the value of jaw displacement at the tip of the Meckel's cartilage (represented by the vertical black arrow).
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Additionally, genetic models in mice, such as Splotch mutants that
lack limb muscle, exhibit abnormal limb joint shaping (Kahn et al.,
2009; Nowlan et al., 2010). While muscle force has been shown to
be necessary for normal joint morphogenesis and chondrocyte
intercalation (Shwartz et al., 2012), it remains largely unclear how
cells within the joint interpret such forces to bring about changes
in behaviour. Little is known concerning the effects of paralysis on
jaw joint morphology, though the temporomandibular joint region
shows signs of adaptation when the mechanical environment is
altered (Enomoto et al., 2014; McNamara and Carlson, 1979).

Finite element (FE) models simulating the biophysical response to
muscle-induced loading have been used to investigate joint development,
endochondral ossification, and joint development, including develop-
mental dysplasia of the hip (DDH) (Carter and Wong, 1988; Heegaard
et al., 1999; Nowlan et al., 2008; Roddy et al., 2011a; Shefelbine and
Carter, 2004). Thus far, developmental FE-models have focused primarily
on the femur, particularly in humans and chick. Whilst there are a
handful of studies using FE to deduce the mechanical performance of
extant shark jaws (Ferrara et al., 2011) and other jawed vertebrates
(Rayfield, 2007), FE-modelling has not been used to explore the
mechanobiology of the developing zebrafish jaw pre-cavitation.
Here, we document the process of joint morphogenesis in wild
type zebrafish jaws from the time of first muscle activity to gen-
eration of the refined interlocking joint shape. Then, by removing
muscle activity pharmacologically and genetically, we quantify the
timing and extent of the response to lack of muscle activity on
joint morphogenesis. Using FE analysis (FEA) we identify the
locations of muscle-induced strain acting on the zebrafish jaw
cartilage throughout normal joint morphogenesis. To understand
the mechanobiological changes that underpin joint shape we
quantify differences in cellular orientation between wild type,
anaesthetised and mutant models.
2. Methods

2.1. Zebrafish husbandry/zebrafish lines

Zebrafish were maintained as described (Westerfield, 2000). All zebrafish
experiments were approved by the local ethics committee and the Home Office
(Project license number 30/2863). The Tg(Col2a1aBAC:mcherry) zebrafish line has
been previously described (Hammond and Moro, 2012; Hammond and Schulte-
Merker, 2009) and labels all chondrocytes (Fig. 2A). The line Tg(smhyc:EGFP)i104
labels all slow twitch muscle fibres (Elworthy et al., 2008). myodfh261 mutants have



Fig. 2. Changes to jaw joint morphology between 3 and 5 dpf and the effect of muscle activity on joint shape. (A): Brightfield lateral and ventral view of 5 dpf zebrafish
expressing Tg(Col2a1aBAC:mcherry) cartilage marker MC¼Meckel's cartilage, PQ¼palatoquadrate, CH¼ceratohyal. (B): The number of mouth openings per minute at 58 h
post-fertilisation (hpf), (n¼10), 72 hpf (n¼6), 96 hpf (n¼6) and 120 hpf (n¼6). ns¼ not significant, nnn¼Pr0.001. (C, D, E): Confocal image stacks of ventral zebrafish jaws
at 3 (C), 4 (D), and 5 dpf (E), marked with a Tg(Col2a1aBAC:mcherry) cartilage marker. The medial and lateral sides of the elements are labelled M and L and the anterior and
posterior surfaces of the elements are labelled A and P. IZ marks the interzone. (C’, D’, E’): 3D Avizo reconstructions from the confocal datasets: cartilage marked red,
interzone marked yellow. RAP denotes the retroarticular process of the Meckel's cartilage (F): Box and whisker plot showing the interval between the anterior MC and
posterior PQ elements on the medial and lateral side of the joints at 3 dpf (n¼12), 4 dpf (n¼16), 5 dpf (n¼13) and in 5 dpf myod (n¼4) and 5 dpf anaesthetised zebrafish
(n¼8), ns¼not significant, nnn¼Pr0.001. Negative measurements indicate an overlap of the anterior MC and posterior PQ elements. (G, H): confocal image stacks of the
ventral jaws of 5 dpf myod mutant (G) and 5 dpf anaesthetised zebrafish (H) marked by Tg(Col2a1aBAC:mcherry) cartilage marker. (G’, H’) 3D Avizo reconstructions from the
confocal datasets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Imaging and quantification of joint shape. (A); zebrafish 5þ dpf jaw joints labelled with the Tg(Col2a1aBAC:mcherry) cartilage marker, anaesthetised with MS222 for
varying time periods between 3 and 4 [2], 4 and 5 [3], 5� and 5þ [4], 4–5þ [5] and 3–5þdpf [6]. (5þdpf¼128 hpf). A black box on the 3–5þdpf timeline indicates
anaesthetisation by MS222 and an empty box indicates no MS222 treatment. The medial and lateral side of the elements are labelled M and L and the anterior and posterior
surfaces of the elements are labelled A and P. (B): Outline of the 5þ dpf jaw joint shape after each anaesthetic treatment, anterior Meckel's cartilage joint element (Bi),
posterior Palatoquadrate joint element (Bii), and the extent of the joint element overlap (Biii) (n¼4, each colour representing an individual fish). All outlines are to the same
scale. (C): Box and whisker plot of the interval between the anterior MC and posterior PQ elements on the medial and lateral side of the joints at 5þdpf (n¼13, 13, 10, 10, 16,
16, 18, 16, 8, 8, 12, 14, 8, 8), ns¼not significant, nnn¼Pr0.001. Negative measurements indicate an overlap of the anterior MC and posterior PQ elements.
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Table 1
The maximum jaw displacement at 5 dpf in 1 min.
The average jaw displacement is 37.2 mm.

5 dpf Max. jaw displacement (mm)

Fish 1 30.5
Fish 2 40.2
Fish 3 37.7
Fish 4 25.6
Fish 5 57.0
Fish 6 31.9
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been previously described and lack craniofacial muscle, with the exception of the
sternohyoideus (Hinits et al., 2011).

2.2. Counting mouth movements and measuring jaw displacement

Zebrafish were anaesthetised with MS222 (Tricaine methanesulfonate),
(Sigma) and mounted laterally onto coverslips in 3% agarose. The agarose sur-
rounding the head was removed and Danieau buffer (Westerfield, 2000) flushed
over the coverslip until jaw movements resumed. The number of mouth move-
ments in 1 min was recorded from at least six fish per timepoint. Movies of jaw
movements were made using fish labelled with Tg(Col2a1aBAC:mcherry) on a Leica
SP8 confocal microscope. Jaw movement was quantified as the positional change at
the anterior end of the MC measured (mm) from individual movie frames.

2.3. Anaesthetisation

Wild type zebrafish were anaesthetised in MS222 in Danieau buffer. The
solution was refreshed twice daily. Treated fish were observed to ensure that
anaesthesia was effective and jaw movement had ceased, but heart rate was nor-
mal. Jaw element and joint morphology were imaged and quantified at 3, 4 and
5 days post-fertilisation (dpf). A second set of ‘wash-out’ experiments were per-
formed where the anaesthetic was replaced with fresh Danieau buffer at different
time points between 3 dpf and 5 dpf (72–128 hpf; 128 hpf referred to as 5þdpf) to
allow fish to recover muscle activity. Fish were washed in successive changes of
Danieau buffer, until fish recommenced movement. Six different trials were per-
formed, (Fig. 3A): [1] a control without anaesthetic treatment; [2] anaesthesia from
3–4 dpf (72–96 hpf), [3] anaesthesia from 4–5 dpf (96–120 hpf), [4] anaesthesia
from 5–5þdpf (120–128 hpf), [5] anaesthesia from 4–5þdpf (96–128 hpf); pre-
ceded or followed by normal conditions, or [6] constant anaesthesia from 3–5þdpf
(72–128 hpf). The resulting joint shape was imaged at 5þdpf (128 hpf) in all trials.

2.4. Jaw imaging

Confocal images of approximately 100 slices at 1.3 mm intervals were taken of
jaws at 3, 4 and 5 dpf labelled with Tg(Col2a1aBAC:mcherry) using an SP8 Leica
confocal.

2.5. Immunohistochemistry

Immunohistochemistry was performed as previously described (Hammond and
Schulte-Merker, 2009) II-II6B3- (type II collagen, Developmental Studies Hybri-
doma Bank) was added at 1:200 and A4.1025 (skeletal myosin (Dangoor et al.,
1990)) was added at 1:5. Larvae were viewed by confocal and images were pro-
cessed using Leica LAS AF Lite software and ImageJ (Schneider et al., 2012).

2.6. Outline traces

The curve drawing tool in powerpoint was used to produce the outlines of the
jaw joint labelled with Tg(Col2a1aBAC:mcherry) from stacks of confocal images;
each specimen was drawn in a separate colour.

2.7. Interzone measurements

The interval between the MC and PQ cartilage elements of the jaw joint on their
medial and lateral sides (typically the smallest and largest gaps between cartilage
across the joint, respectively) were measured (from both the left and right joints)
from confocal images of the jaw using Leica LAS AF Lite software. Negative values
were recorded for overlapped cartilage elements.

2.8. Geometry and Finite Element Analysis

A 3D 512�512 pixel resolution representation of the stained larval zebrafish
jaw at 3, 4 and 5 dpf was produced using confocal microscopy. These datasets were
imported into Avizo (Version 7.0.0 FEI Visualization Science Group) for material
segmentation and digital reconstruction to produce 3D models of the cartilage
elements. The models were imported into Hypermesh (Version 10, Altair Engi-
neering) to generate a solid mesh of approximately 1.5 million tetrahedral linear
elements (Supp. Fig. 1, Supp. Table 1). Due to the absence of known zebrafish
cartilage material properties, a range of Young's moduli for the cartilage and
interzone material were tested on the 5 dpf model to determine which properties
generated jaw displacements, (measured from the tip of the MC, Fig. 1C), that best
matched those observed in Table 1. When 50% of maximum calculated muscle force
was applied to the models, all models that had a cartilage Young's modulus of
1.1 MPa fell within a physiological range of jaw displacement (Table 1). Young's
modulus of 1.1 MPa for cartilage (as previously reported for unmineralised
embryonic murine cartilage (Tanck et al., 2004)) and 0.75 MPa for the interzone
were chosen for the models (Fig.1). These material properties were assigned
hereafter, with a Poisson's ratio of 0.25, previously described for embryonic
unmineralised murine cartilage (Tanck et al., 2000).

2.9. Muscle force measurement and calculation

To model strains acting on the jaw, we calculated muscle forces during jaw
opening (protractor hyoideus and intermandibularis) and closing movements
(adductor mandibulae). The Tg(smhyc:EGFP)i104 (slow twitch skeletal muscle)
transgenic line was used to determine muscle attachment points. However, as jaw
muscles are composed of a mixture of fast and slow twitch fibres (Hernandez et al.,
2005), we performed immunohistochemistry for the antibody A4.1025, which
detects both slow and fast twitch fibres (Dangoor et al., 1990), allowing us to count
the actual number of muscle fibres in each muscle (Table 2).

Cross-sectional area of each fibre was used to determine the force that each
muscle group exerts at 40 nN/mm2 (Table 2), the force for skeletal larval zebrafish
muscle previously described (Iorga et al., 2011). Muscle attachments were added to
the FE-models for mouth closure (adductor mandibulae) and opening (protractor
hyoideus and intermandibularis) using confocal datasets for reference for attach-
ment sites (Supp. Figs. 1, 1A and B). Models were constrained from movement at
the junction between the hyosymplectic and palatoquadrate where the jaw atta-
ches the skull and the ceratohyal (Supp. Table 1, Supp. Fig. 1). The left and right side
of the models were constrained in y and z, whilst the ceratohyal was constrained in
x, y and z. The geometrically linear models were imported from Hypermesh into
Abaqus FE-software (v6.10.2 Simulia, Dassault Systèmes) for analysis. Maximum
principal strain, (tension), and minimum principal strain (compression) were
recorded.

2.10. Cell orientation measurements

Cell orientation analysis on the Meckel's cartilage joint was performed using
confocal images of joints labelled with II-II6B3 antibody (expanded methodology in
Supp. Fig. 2). Cells from three joints per condition were identified by thresholding
in ImageJ (Supp. Table 2, Supp. Fig. 2B). The angle of the joint from the horizontal
axis was recorded (Supp. Fig. 2B). An automated readout of cell orientation was
produced (Supp. Fig. 2C). These data were exported into Excel, and angles corrected
in relation to the joint axis, (Supp. Fig. 2C). Joint cell orientation was plotted in
circular histograms using PAST software (Hammer et al., 2001).

2.11. Statistics

Statistics were performed using SPSS software. Kruskal–Wallis tests were
performed to compare the size of the cartilage interval at the medial and lateral
edges of the joint following each anaesthesia treatment (Figs. 2F and 3C). The
Kruskal–Wallis test was used to make multi-comparisons between non-normal
data.
3. Results

3.1. Jaw mobility

The first stage at which jaw opening was reliably present was
72 hpf (Fig. 2B). Subsequently, there was a significant increase in
jaw motility between 72 and 96 hpf, whereas there was no sig-
nificant difference between 96 hpf and 120 hpf. Mouth opening
had therefore reached its maximal frequency by 96 hpf.



Table 2
Muscle forces at (40 nN/mm2). 50% of maximum muscle force was applied to the
models.

Number of
muscle
fibres

Muscle
fibre area
(mm2)

Muscle
group area
(mm2)

Force (N)

3 dpf Intermandibularis
anterior

5 22.1 110.5 4.42e�6

4 dpf Intermandibularis
anterior

5 23.8 119 4.76e�6

5 dpf Intermandibularis
anterior

5 23.8 119 4.76e�6

3 dpf Protractor hyoideus 6 22.1 132.6 5.30e�6
4 dpf Protractor hyoideus 6 23.8 142.8 5.71e�6
5 dpf Protractor hyoideus 6 23.8 142.8 5.71e�6
3 dpf Adductor
mandibulae

9 22.1 198.9 7.96e�6

4 dpf Adductor
mandibulae

9 23.8 214.2 8.57e�6

5 dpf Adductor
mandibulae

9 23.8 214.2 8.57e�6
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3.2. Jaw morphology

Confocal imaging and the resulting 3D digital reconstructions
show that the interval between cartilage elements (the joint
interzone) changes in morphology across the time period in the
control fish (Fig. 2). At 3 dpf there is a smaller interval between the
Meckel's cartilage (MC) and the palatoquadrate (PQ) on the medial
side than on the opposing lateral side (Fig. 2C, C’), i.e. the joint
interzone is asymmetrically shaped at 3 dpf. By 5dpf the interzone
is similar in width across its extent (Fig. 2 C–E’). To quantify this
change in morphology we measured the interval between the MC
and the PQ at the medial and lateral side at each time point
(Fig. 2F). Kruskal–Wallis tests showed a significant difference in
the relative size of the interzone at its greatest and smallest extent
at 3 dpf, which decreases over time, such that by 5 dpf the dif-
ference in the size of the interval across the joint is no longer
significant and the interval is roughly uniform across its extent.
myod mutants, (which lacks all jaw movement), have a similar
morphology to wild type at 3 dpf (Supp. Fig. 4) but a significant
difference between the cartilage element interval on the medial
and lateral side at 5 dpf compared to 5 dpf wild type (Fig. 2F, G and
G’). We also tested the size of the cartilage interval of the myod
compared to younger wild type fish; myod fish at 5 dpf retain a
joint interzone shape comparable with that of a 3 day old wild
type (Fig. 2F and G, Supp. Table 3).

Fish anaesthetised from 3–5 dpf have a significant difference in
the extent of the cartilage interval between the medial and lateral
side compared to wild type fish at 5 dpf (Fig. 2F, H, and H’), but are
not significantly different to the myod mutants (Fig. 2F–H, Supp.
Table 3). Therefore, it is the activity rather than the presence of
muscle which leads to joint morphogenesis.

3.3. Variable anaesthesia and joint morphology

Kruskal–Wallis tests show that anaesthesia from 3 to 4 dpf does
not lead to any significant difference in joint spacing between the
medial and lateral sides at 5 dpf relative to control fish (Fig. 3A1–2,
C). Anaesthesia from 4 to 5 dpf, 4 to 5þ dpf, 3 to 5þ dpf or 5 dpf
alone significantly alters the size of the interzone between the
medial and lateral sides (Fig. 3A1, 3–6, C).

Outline traces indicate that the joint surface of the MC is more
plastic than the surface of the palatoquadrate (Fig. 3Bi, ii).
Anaesthesia at 3–4 dpf alone did not lead to a dramatic shape
change of the MC (Fig. 3Bi–iii), as reflected in the interzone
interval analysis (Fig. 3C), however, later anaesthesia leads to a
change in joint morphology such that the MC approaches or
overlaps the surface of the PQ on the medial side (Fig. 3Biii).

3.4. Functional strains within the developing cartilage jaw

FE-models demonstrate maximum principal strains present
upon jaw closure (generated by adductor mandibulae muscle
contraction) (Fig. 4A–I) and minimum principal strains at 3–5 dpf
(Fig. 4J–R). We also generated models of jaw opening via con-
traction of the protractor hyoideus and the intermandibularis
(Diogo et al., 2008) (Fig. 5). From these models it is apparent jaw
closure causes maximum principal strains to be located medially
and laterally at the interzone and minimum principal strains are
located laterally (Fig. 4 D’’–F’’, M’’–O’’). During jaw opening, com-
pressive strains (minimum principal strains) are recorded on the
medial side of the MC joint and at the interzone (Fig. 5G–J).
Relevant interzone strains were always between þ3500 mstrain
(maximum) and �5000 mstrain (minimum), in line with other
models (Nowlan et al., 2008), (Supp. Fig. 5).

3.5. Joint cell orientation

Joint morphology changes from an initially asymmetric shape
to an increasingly symmetrical shape from 3−5 dpf (Fig. 2) and in
the absence of muscle contraction joint shape remains asymmetric
with the medial side of the MC joint protruding over the PQ
(Figs. 2 and 3). Minimum strains are located on the medial side
during mouth opening. We, therefore, tested whether cells change
their orientation over time to reflect the pattern of strain on the
joint and interzone (Figs. 4 and 5). As the joint surface of the MC is
more plastic than the surface of the PQ (Fig. 3), we only considered
cells from this element. During normal joint morphogenesis, cells
on the joint surface of the MC did not show a significant change in
cell orientation, apart from those located at the medial side
(Fig. 6A, Supp. Table 4). However, for zebrafish that were anaes-
thetised for 3–5 dpf (Fig. 6B) or myod mutants (Fig. 6C), a sig-
nificant change in orientation in cells on the medial side of the
joint was observed at 5 dpf compared to the 5 dpf control medial
cell orientations (Supp. Table 4).
4. Discussion

Here we present data describing the morphology of the
developing zebrafish jaw joint over time, and the effect of
removing muscle loads and subsequent biomechanical strain on
joint morphology. Normal, wild type joint morphology changes
from an initial flattened shape to an interlocking morphology
between 3 and 5 dpf. Building on previous work from mouse and
chick models showing that joint formation and integrity require
muscle activity during development (Drachman and Sokoloff,
1966; Kahn et al., 2009; Nowlan et al., 2010; Roddy et al., 2011b),
we show muscle activity is critical for refining the morphology of
the zebrafish jaw joint. Critically, our myod mutant and anaes-
thetisation experiments demonstrate that muscle activity is
required for joint integrity, rather than the presence of muscle
per se. By performing temporal experiments in which we anaes-
thetise fish for differing time periods we show early muscle
activity (from 3 to 4 dpf) is dispensable for normal joint mor-
phogenesis, but movement during later time periods is required
for normal joint shape. Therefore the joint retains a degree of
plasticity such that loss of early muscle activity does not lead to
significantly altered morphology, similar to the situation in chick
(Nowlan et al., 2014). In part this may be because muscle activity
does not peak until day 4, therefore fewer mechanical cycles will



Fig. 4. Finite Element Analysis (FEA) showing location of strains at the wild type jaw joint. (A–I): Finite element models of maximum principal strain (Emax, tension) created
from confocal stacks for 3, 4, and 5 dpf zebrafish jaws. Ventral views of the jaw (A–C), with an enlarged image of the joint from the boxed area (D–F). Proximal–distal view of
the joint (D’–F’) and proximal–distal view of the interzone (D’’–F’’), (as illustrated as slices through the joint in D–F). Lateral views of the jaw (G–I) with an enlarged image of
the joint from the boxed area. (J–R): Finite Element models of minimum principal strain (Emin, compression) created from confocal stacks for 3–5 dpf zebrafish jaws. Ventral
views of the jaw (J–L), with an enlarged image of the joint from the boxed area (M–O). Proximal–distal view of the joint (M’–O’) and proximal–distal view of the interzone
(M’’–O’’), (as illustrated as slices through the joint in M–O). Lateral views of the jaw (P–R) with an enlarged image of the joint from the boxed area.
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Fig. 5. FE-model simulation of maximum and minimum principal strains in the 5 dpf wild type zebrafish jaw during jaw opening. (A–F): Maximum principal strain in
(A) ventral jaw view; (B) ventral joint view; (C) proximal–distal view through the joint (illustrated on (B)); (D) proximal–distal view through the interzone (illustrated on
(B)); (E) lateral jaw view; (F) lateral joint view. (G–L): minimum principal strain in (G) ventral jaw view; (H) ventral joint view; (I) proxima–distal view through the joint
(illustrated on (H)); (J) proximal–distal view through the interzone (illustrated on (H)); (K) lateral jaw view; (L) lateral joint view.
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Fig. 6. Cell orientations in wild type, anaesthetised and myod mutant zebrafish jaw joints. Orientation angle of chondrocytes in (A) 3–5 dpf control; (B) 3–5þ dpf anaes-
thetised; and (C) myod mutant zebrafish in the Meckel's cartilage element of the joint, plotted on circular histograms (rose plots), where 0° lies on the medial side of the joint
and 180° at the lateral side of the joint. n¼3 joints per experimental condition (1 or 2 refers to number of joints per blue wedge). The number of cells analysed per condition
are listed in Supp. Table 2. Histogram bins equal 20°. The red line marks mean orientation and the green line marks the 95% confidence interval.
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have been experienced during this period. Alternatively, recovery
of muscle activity could be sufficient to recover altered joint shape.

The MC surface of the jaw joint is more affected by muscle
paralysis than the PQ, suggesting the PQ is less mechanosensitive
than the MC. Differential mechanosensitivity of bones has pre-
viously been described in limbs (Nowlan et al., 2008) and the
mandible (Enomoto et al., 2014).

Our models represent the first FE models for the zebrafish
craniofacial skeletal system. Zebrafish are increasingly used as a
model for biomechanics, but so far these studies have focused
mainly on the ontogeny of swimming behaviour (Fiaz et al., 2012;
Fontaine et al., 2008; Green et al., 2011; Li et al., 2012), though
studies exist that describe the onset of different jaw movements
for respiration and feeding (Hernandez et al., 2002., 2005) and the
description of early cell behaviour in forming the jaw elements is
well described (Eames et al., 2013; Talbot et al., 2010). Our models
show that the strains occurring in the interzone, which drive the
changes to zebrafish joint shape are similar in magnitude (up to
þ3500 m strain) to those seen in comparable models such as
embryonic chick limb (Nowlan et al., 2008), and those used in
vitro to elicit cell behaviour changes that drive joint cavitation
(Dowthwaite et al., 2003., 1999). Higher strains were generated at
constraints and muscle attachment points, but are unlikely to have
a significant impact on the model, as the location rather than
magnitude of strain is primarily studied.

We show that cell orientation within the joint is significantly
affected in fish subjected to a period of immobility. This demon-
strates that the cells are altering their behaviour in a strain
dependant fashion. Cells on the medial side of the joint change
their orientation over time partially accounting for the natural
change in joint shape; whereas, in joints where biomechanical
strains are reduced, medial cells fail to adopt the correct orienta-
tion, leading to an overlapped, non-functional joint. The role of
strain in mediating cell orientation in vitro is well characterised
for many cell types including chondrocytes (Ghezzi et al., 2014)
and ex vivo (Clark et al., 2003).

The FE models show that strains during mouth closure are
higher than those during opening. During jaw closure minimum
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(compressive) principal strains are higher than maximum strains
and predominantly seen laterally, loss of strain during immobili-
sation could lead to a change in cellular processes on the lateral
side, with a secondary effect on the medial side. Alternatively,
changes to strain location may arise in the morphologically altered
immobilised jaws.

During mouth opening peak minimum strains are located at
the medial side of the joint interzone. The loss of compression at
the medial side of the joint and interzone, could explain the
change in chondrocyte behaviour that leads to a switch in cell
orientation at the medial side in anaesthetised and myod mutant
zebrafish. The change in orientation, while significantly con-
tributing to the change in joint shape does not completely explain
it, suggesting that there is an additional component, which could
be a change to rates of differentiation, proliferation, or migration
of chondroprogenitors of the joint. Indeed the failure of chon-
drocytes to mature fully and intercalate has been previously
reported (Shwartz et al., 2012).

We believe that adding 3-dimensional modelling of the joints
using FEA to this emerging field will further increase the utility of
the zebrafish model for biomechanical studies. Better description
of the ontology of the skeletal system that relates zebrafish to
higher vertebrate models (Dahdul et al., 2012) will also facilitate
future comparisons between model organisms for skeletal biology.
Excitingly, use of the zebrafish model with its genetic amenability,
opens up the possibility of directly manipulating mechan-
osensitive genes using transgenic tools to switch genes on or off in
the skeletal system, unpicking the relationship between genes and
biomechanical influences in shaping a joint.
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