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Abstract

Does taxing cognitive resources improve people’s choices in repeated binary prediction? Wolford, Newman, Miller, and Wig
(2004, Canadian Journal of Experimental Psychology, 58, 221-228) found that a secondary verbal working memory task, which
competed for cognitive resources with a repeated binary choice task, steered participants toward adopting the optimal strategy,
namely, probability maximizing. By contrast, under single-task conditions, an inferior strategy prevailed, namely, probability
matching. We conducted a preregistered direct replication of Experiment 1 in Wolford et al. (2004) with a sample of participants
more than 5 times larger than the original sample. We did not find a statistically significant effect of cognitive load on strategy
selection in repeated binary choice. Moreover, in many cases, Bayesian analyses, which were performed in addition to conven-
tional methods of null hypothesis significance testing, yielded substantial evidence in favor of the absence of cognitive load
effects on choice behavior. Thus, we found no reliable support for the claim that taxing cognitive resources leads to improved

decision-making in repeated binary prediction.
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Proverbial wisdom suggests that “to do two things at once is to
do neither.”! Yet in simple binary prediction, people’s choices
have been found to improve when an additional task is intro-
duced that competes for cognitive resources (Wolford,
Newman, Miller, & Wig, 2004). Consider, for example, the
task of predicting which of two light bulbs will illuminate over
a series of trials in which one light turns on more frequently
than the other (e.g., with probability .75 vs. .25). Provided these
probabilities remain stationary and are serially independent,
one should always pick the light bulb with the higher illumi-
nation frequency in order to maximize probability and predic-
tion accuracy. Yet a common finding in the literature on repeat-
ed binary choice is that people often instead allocate their

! Attributed to the Roman slave Publius Syrus (see Lyman, 1856).
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guesses in proportion to the outcome frequencies—a behavior
known as probability matching. This strategy leads to a sub-
stantial loss in prediction accuracy (for reviews, see, e.g.,
Koehler & James, 2014; Newell & Schulze, 2017; Vulkan,
2000). Surprisingly, however, Wolford et al. (2004) found that,
relative to participants in a control group who completed only a
binary choice prediction task, participants who completed a
concurrent n-back verbal working memory task—in which a
series of numbers was concurrently presented on the screen,
and participants were periodically asked to recall the last n
numbers—showed a lower rate of probability matching (i.e.,
a higher rate of probability maximizing) in the binary choice
task. Participants in a third group, who completed a concurrent
visual-spatial memory task in which they judged randomly
constructed polygons, performed much like the control group.

Wolford et al. (2004) interpreted these results as supporting
the view that probability matching arises from a search for
patterns in the (random) outcome sequence. They reasoned
that the n-back task selectively taxes the cognitive resources
needed for vigilant pattern search and thus undercuts this be-
havior (the visual-spatial task was assumed to tax cognitive
functions not involved in pattern search). In other words,
Wolford et al. argued that probability matching was reduced
as a by-product of impeded search behavior. Yet the view that
probability matching represents a cognitively sophisticated

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.3758/s13421-018-0888-3&domain=pdf
mailto:cschulze@mpib-berlin.mpg.de

512

Mem Cogn (2019) 47:511-518

and ecologically adaptive response associated with the search
for patterns (see also Gaissmaier & Schooler, 2008; Peterson
& Ulehla, 1965) remains contested. In fact, there is ongoing
debate among researchers about whether probability matching
instead arises from cognitive constraints that motivate people
to fall back on cognitively simpler heuristic choice strategies
(see, e.g., Koehler & James, 2009, 2014; Kogler & Kiihberger,
2007; West & Stanovich, 2003).

Wolford et al.’s (2004) results are an important and oft-
cited piece of evidence in this debate, but they rest on a single
experiment (Experiment 1) in which the sample size was fairly
modest (n = 10 per condition). Moreover, other research on
the role of cognitive capacity in repeated binary choice has
failed to find any difference between rates of probability
matching and maximizing under conditions of taxed cognitive
resources versus single-task conditions (see, e.g., Otto, Taylor,
& Markman, 2011; Schulze & Newell, 2016). Establishing the
replicability of the original results is thus an important contri-
bution to the debate on the causes of probability matching and
the conditions under which it is more or less likely to occur.

Preregistered replication

In this study, we sought to replicate Experiment 1 in Wolford
et al. (2004). The preregistration form for the replication
(Replication Recipe; see Brandt et al., 2014) is available on
the Open Science Framework (https://osf.io/au3p8/).

Method

Participants The planned target sample size was 150 partici-
pants, that is, n = 50 in each of three between-subjects condi-
tions: single-task control, n-back dual task, and polygon dual
task. We planned to recruit 75 participants (25 in each condi-
tion) at both the University of New South Wales, Australia,
and the University of Waterloo, Canada. The planned sample
size was determined via power calculation (using G*Power
software) based on effect sizes estimated from the original
study and the “small telescopes™” approach suggested by
Simonsohn (2015).2 Seventy-five undergraduate students
from the University of New South Wales and 87 undergradu-
ate students from the University of Waterloo participated in
this experiment.® Participants at each location were randomly
assigned to one of the three conditions: single-task control (n
= 57), n-back dual task (n = 54), and polygon dual task (n =
51). One additional participant aborted the experiment prema-
turely. In return for their participation, students received
course credit and a small performance-based payoff; earnings
ranged from AU$1.65 to AU$3.89 for Australian participants
and CA$2.33 to CA$3.83 for Canadian participants.
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Participants’ mean age was 19.44 years (SD = 1.95 years,
range: 17-29 years), and 110 self-identified as female.

Materials and procedure The instructions and experimental
materials of the original study were reconstructed as closely
as possible on the basis of the published journal article and
correspondence with the first author. Participants were tested
individually in a computer-based lab experiment, which was
run on Windows computers with the screen resolution set to
800 x 600 pixels. The size of the program interface was
constrained to 640 x 480 pixels. Participants in all experimen-
tal conditions completed a binary prediction task over 500
trials; for participants in the two cognitive-load conditions,
the prediction task was interleaved with either a concurrent
verbal (n-back) or visual-spatial (polygon) working memory
task. Participants were instructed to be as accurate as they
could on both tasks and were informed that the prediction task
consisted of five blocks of 100 trials. At the end of the exper-
iment, participants were informed about their total earnings
and paid in cash.

Binary choice prediction task Participants were asked to pre-
dict whether a colored square would appear at the top or bot-
tom of the screen over a series of 500 choice trials. They were
informed that the sequence of outcomes was completely ran-
dom. Each trial started with the presentation of either a

2 Specifically, based on the information displayed in Figure 1 in Wolford et al.
(2004)—which shows the proportions of participants’ choices of the more
likely outcome in each block of 100 trials and each of the three cognitive-
load conditions—we estimated means and standard errors for each block and
each condition. Because the difference between conditions emerged only after
participants had had the opportunity to learn the relevant outcome probabili-
ties, Wolford et al. focused on the interaction between choice block and con-
dition, and conducted independent-samples ¢ test comparisons between condi-
tions in the final two blocks of 100 choice trials. Because the interaction
statistics are difficult to reproduce from their Figure 1 (and the effect size itself
is not reported in the article), we simplified our power calculations by focusing
on independent-samples ¢ test comparisons between conditions for the final
block of 100 trials. The effect size for the critical comparison between the n-
back dual-task and single-task control conditions was estimated as d = 1.09;
the effect size for the comparison between polygon dual-task and single-task
control conditions was estimated as d = —0.48 (the sign is negative because the
maximizing rate was lower in the polygon than in the control condition). For
an independent-samples 7 test (one-tailed with alpha = .05) comparing n-back
and control conditions, the power calculation gives a power of .98 for n = 25
per condition, suggesting that even if the Australian and Canadian samples
were analyzed separately, the replication study would be sufficiently powered.
The effect size estimated from Wolford et al.’s results may of course be an
overestimate (e.g., due to publication bias; see Lane & Dunlap, 1978); com-
bining data from the two samples allows us to attain sufficient power to detect
even a substantially smaller effect size (e.g., for an effect size of only d = 0.50,
the same ¢ test would have a power of .80 with n = 50). Moreover, the target
sample size of 50 subjects per condition (as well as the smaller sample size at
each location) also satisfies the criterion of Simonsohn’s (2015) “small
telescopes” approach, which requires a sample size at least 2.5 times that of
the original study to achieve sufficient statistical power (approximately .80) to
reject the null hypothesis of a detectable effect for the original sample size if
the true effect is zero.

3 The slightly higher number of participants at the University of Waterloo was
due to an unexpectedly high turnout rate during recruitment.
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fixation cross (in the single-task and polygon conditions) or a
digit between zero and nine (in the n-back condition) in the
center of the computer screen. The fixation cross or digit was
displayed until the participant made a choice (there was no time
limit) by pressing one of two designated keys on the computer
keyboard (top = 9 key; bottom = comma key). After each
choice, a colored square was displayed on the screen for 1
second. With a probability of p = .75, the square was red and
appeared at the top of the screen; with 1 — p = .25, the square
was green and appeared at the bottom. For each correct predic-
tion, participants earned 1 cent in the local currency (AU$ or
CAS, respectively), as per the incentive scheme in the original
study (although there are, of course, small differences due to
exchange rates between U.S., Australian, and Canadian curren-
cies, plus inflation). After each block of 100 trials, participants
were informed about their earnings and their accuracy on the
prediction task (as a percentage of correct guesses) in the past
block. The primary dependent measure was participants’ pro-
portion of choices of the more probable outcome.

Verbal working memory (n-back) task In the three-back mem-
ory task that was interleaved with the prediction task, partic-
ipants were asked to memorize the three numbers displayed
most recently on the screen. A number between zero and nine
was randomly selected and displayed in the center of the
screen at the start of each choice task trial. After each choice
and display of the outcome, a new digit appeared. Participants
were asked to remember only the last three numbers they had
seen. During each block of 100 choice trials, participants were
probed four times. The probe asked participants to “please
enter the last three digits:” followed by a question mark and
three underlined slots (? _ ) in which they entered the
numbers seen in the order of appearance. Participants con-
firmed their responses by pressing the return key. The place-
ment of probes was random but restricted to occur between
trials 11-25, 26-50, 51-75, and 76-100 of each block.
Feedback on the accuracy of the answer was provided after
each response. Participants were told that errors on the n-back
memory task would reduce their earnings on the binary choice
prediction task. In fact, in line with the original study, partic-
ipants’ earnings were not contingent on performance in the
secondary tasks.

Visual-spatial (polygon) task In the polygon task that was in-
terleaved with the prediction task, participants were asked to
judge whether a six-sided polygon shown in the center of the
screen was the same as or different than the one shown the trial
before. A blue polygon with six vertices was drawn at random

* The size of cach polygon was constrained so that, initially, all vertices were at
least 210 pixels away from all screen boundaries (and no lines crossed).
Similarly, all subsequent randomly occurring changes to the polygon were
constrained to not cause sides to intersect or vertices to touch the edges of
the screen.

for each participant before the first trial of the prediction task.*
On each subsequent trial, the polygon was altered with prob-
ability .50 by randomly selecting one of the six vertices and
moving it 30 pixels in a randomly selected cardinal direction
(N, E, S, W). The polygon was displayed until a response was
made; there was no time limit for making a judgment. After
each judgment, which was made by pressing a designated key
on the computer keyboard (same = S key; different = D key), a
500-ms delay was inserted before presentation of the fixation
cross, which served as the cue for the participant to make a
prediction in the choice task. There was no trial-by-trial feed-
back on participants’ accuracy in the polygon task. However,
after each block of 100 trials of the choice task, participants
were informed about the proportion of correct judgments on
the polygon task in that block (in percentages). Participants
were told that errors on the polygon task would reduce their
earnings on the binary choice prediction task. In fact, in line
with the original study, participants’ earnings were not contin-
gent on performance in the secondary tasks.

Preregistration and data analyses The preregistration form
(Replication Recipe; Brandt et al., 2014), the instructions giv-
en to participants, and the actual program used to run the
experiment were preregistered on the Open Science
Framework on February 16, 2015, and can be found at
https://osf.io/au3p8/. Data collection started on August 12,
2015, and concluded on September 21, 2016; all data are
available at https://osf.io/hemp4/. As far as possible, we
followed the analysis plan reported in the original
publication. Additionally, we conducted Bayesian inference,
based on Bayesian ANOVAs (Rouder, Morey, Speckman, &
Province, 2012), Bayesian ¢ tests (Rouder, Speckman, Sun,
Morey, & Iverson, 2009), and Bayesian contingency analyses
using independent multinomial sampling (Jamil et al., 2017).
For these analyses, we report Bayes factors that quantify how
much more likely it is for the data to have occurred under one
hypothesis than another. All Bayes factors were estimated in
JASP (Version 0.8.4; JASP Team, 2018), which, for Bayesian
ANOVAs, provides inclusion Bayes factors (denoted as
BFi,cusion) that quantify the strength of evidence for the pres-
ence of a particular effect averaged across models that include
that effect (Rouder, Morey, Verhagen, Swagman, &
Wagenmakers, 2017; Wagenmakers et al., 2017). For all re-
maining Bayesian analyses, we report Bayes factors that quan-
tify the strength of evidence in favor of the alternative hypoth-
esis (denoted as BF), where BF'jo > 1 indicates support for
the alternative hypothesis and BF( < 1 indicates support for
the null hypothesis. Conventionally, a BFj, between 3 and 20
(0.33-0.05) is interpreted as indicating positive evidence for
the alternative (null) hypothesis, 20 to 150 (.05-.0067) as
strong evidence, and greater than 150 (<.0067) as very strong
evidence (Kass & Raftery, 1995). For brevity, extremely large
Bayes factors are reported as BF > 100,000.
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A successful replication was defined as (a) a greater prob-
ability maximization rate (lower matching rate) on the final
block of 100 trials in the n-back dual-task condition than in the
single-task control condition (critical test); (b) an interaction
between condition (n-back dual-task vs. single-task control)
and trial block; and (c) a lack of relationships (a) and (b) for
the comparison between the polygon dual-task and single-task
control condition. We used three approaches to evaluate the
success of the replication on the critical test: First, we deter-
mined whether our results revealed a statistically significant
effect in the same direction as the original study (n-back dual-
task > single-task control) and whether the original effect size
(estimated at d = 1.09) was within the 95% CI of the effect-
size estimate we obtained (see, e.g., Open Science
Collaboration, 2015). Second, we compared the 95% CI of
the replication effect size with an effect size that would give
only 33% power to the original study to determine whether the
replication obtained an effect large enough to have been de-
tectable with the original sample size (based on the original
sample size in Wolford et al., 2004, this effect size d33¢, =.72;
see Simonsohn, 2015). Third, we took a Bayes factor ap-
proach to quantify the degree to which our data support either
the null or the original hypothesis. This multipronged ap-
proach is in line with the current debate on best practice in
replication studies, which suggests that robust inferences
across multiple approaches and the combined use of both
frequentist estimation and Bayesian inference are more likely
to yield defensible conclusions (Maxwell, Lau, & Howard,
2015; Simonsohn, 2015; Zwaan, Etz, Lucas, & Donnellan,
2017).

In addition to the preregistered analyses mirroring those
of the original study, we conducted further robustness
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Fig. 1 Mean (+ standard error) proportion of participants’ choices of the
high-probability option in each block of 100 choice trials and each exper-
imental condition
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checks as well as exploratory analyses regarding the exper-
iment location (Australia or Canada), for which we had no
prior hypotheses. These auxiliary analyses are reported in
the Exploratory analyses section below.

Results

Prediction task performance The proportions of participants’
choices of the high-probability option across each block of
100 trials and for each cognitive load condition (see Fig. 1)
were subjected to a 3 (condition) X 5 (block) mixed-model
ANOVA. The main effect of learning across trial blocks was
significant, F(3.105, 493.617) = 87.886, p < .001, r1p2 =.356,
BFnctusion > 100,000, and is illustrated by the upward trajec-
tory of all group lines in Fig. 1. Neither the main effect of
condition, F(2, 159) = 0.692, p = .502, qu = .009,
BFicusion = 0.153, nor the condition by block interaction,
F(6.209, 493.617) = 0.518, p = .801, qu = .006, BFctusion
= 0.002, was significant; in fact, the Bayesian analysis provid-
ed evidence against both effects. The critical follow-up ¢ test
indicated that the proportion of choices of the high-probability
option in the final trial block did not differ between the n-back
dual-task and single-task control groups, #109) =—0.562, p =
576, d = —0.107, 95% CI for d = [-0.479, 0.266], BF|o =
0.232. In fact, all evaluation criteria we applied for the critical
test point to a failure to replicate the original result.
Specifically, using frequentist estimation, we found that the
focal effect was not statistically significant (and not in the
same direction as in the original study) and that the 95% CI
of the effect size estimate we obtained in the replication ex-
cluded both the original effect size (estimated at d = 1.09) and
the small effect size that would give only 33% power to the
original study (d334, = .72; see Simonsohn, 2015), suggesting
that the original study could not have meaningfully examined
an effect that small.’ Using Bayesian inference, we found that
the data are 4.31 times more likely to have occurred under the
null than the alternative hypothesis.

Comparing the proportion of choices of the high-
probability option in the final trial block between the n-back
dual-task and polygon dual-task groups, we again found no
significant difference, #(103) = —0.604, p = .547, d = —0.118,
95% Cl ford = [-0.501, 0.265], BF';o = 0.243. Finally, for the
penultimate trial block, the effect sizes were smaller for both
the n-back dual-task versus single-task control comparison (d
=—0.037; 95% CI [—0.409, 0.335]) and the n-back dual-task
versus polygon dual-task comparison (d = —0.105; 95% CI
[-0.488, 0.278)).

Figure 2 displays the full range of individual participants’
choice proportions for all trial blocks and conditions. To

> In fact, the upper bound of the confidence interval we obtained suggests that
the original study was, at best, powered to a very low 8.7%.
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assess strategy selection in individual participants toward the
end of learning, Wolford et al. (2004) defined maximizing as
choosing the high-probability option on no less than 95% of
trials in each of the last two blocks. In our study, the choice
proportions of 18 participants in the polygon dual-task condi-
tion, 15 participants in the n-back dual-task condition, and 10
participants in the single-task control condition met this defi-
nition of maximizing; the association between probability
maximizing and choice condition was not significant, x*(2)
= 4413, p = .110, BFo = 0.344. Defining maximizing as
choosing the high-probability option on no less than 95% of
trials in the final block (e.g., Newell & Rakow, 2007), we
found that 22 participants in the polygon dual-task condition,
17 participants in the n-back dual-task condition, and 18 par-
ticipants in the single-task control condition were classified as
maximizers, X2(2) =2.064, p = .356, BF, = 0.121.

Secondary task performance Table 1 shows participants’ per-
formance on the secondary tasks for each block and each of
the two dual-task conditions. Specifically, the table summa-
rizes participants’ mean proportion of correctly recalled digits
in each block of the verbal working-memory (n-back) task and
the mean proportion of correct judgments about whether the
polygon shown was the same as or different than the one
shown in the previous trial for each block of the visual-
spatial (polygon) task. Across all trials, participants were sig-
nificantly more accurate on the n-back task (M = .849) than on
the polygon task (M = .651), #(103) = 7.823, p < .001, d =
1.528, 95% CI for d = [1.089, 1.960], BF, > 100,000. There
was no correlation between accuracy on the secondary tasks
and the proportion of choices of the high-probability option
averaged across the last two blocks, 7(103) = .054, p = .582,
BF,=0.142.

Exploratory analyses The analyses reported above directly re-
produce the experimental protocol of the original study con-
ducted by Wolford et al. (2004) and utilize data from all par-
ticipants we tested. These analyses failed to replicate an effect
of cognitive load on strategy selection in repeated binary
choice. We went to considerable lengths to conduct a well-
powered, close replication of the original study; nevertheless,
slight methodological differences between the original study
and our replication may have contributed to our failure to
replicate the original result. In this section, we therefore report
supplementary analyses aimed at establishing the robustness
of our conclusions. These analyses are purely exploratory, and
we had no theory-based, a priori reason to anticipate system-
atic effects.

Figure 2 shows that some participants strictly maximized
probability from the very first block of 100 trials and contin-
ued to do so throughout the entire experiment; that is, they
never once selected the low-probability event. As we would
have expected at least some period of probability learning

a Single-task control condition

g 1rg = - —

i) 09+ & >

8 ost s - = =

°3 2

ag Orr « :

_'53.8 0.6 é ! e

c © 0.5¢F o [ ]

= £ ® °

oo 04r ° °

5% o3

£ 02¢ v

8— 0.1}

& o - - - -
Block 1 Block 2 Block3 Block4 Block 5

b Dual-task polygon condition

2 1r —

2 ull ¥

- 2 0.8} ﬂ .l,

58 0.7 r 1.

£ 8 0.6 | +

55 04f - .

5 % 0.3 ¢ " =

k=t 021

o ]

8 01 .

Dh. O 1 1 m 1 o
Block 1 Block2 Block3 Block4 Block5

(o Dual-task n-back condition

> 10 # —

3 09f = —

S osf

o w

a_g 0.7 ¢

£ 067 $ #

£ O 05F} * » ? 9

56 04f ¢ 4

88 03r ¢

8— 0.1¢F

e : - : :
Block 1 Block 2 Block3 Block4 Block 5

Fig. 2 Distribution of participants’ proportions of choices of the high-
probability option across each block of 100 trials for (a) the single-task
control condition, (b) the dual-task polygon condition, and (¢) the dual-
task n-back condition. Each shape represents the choice proportion of one
participant during a particular trial block and in the specified condition.
Gray lines connect the choice proportions of individual participants
across blocks

Table 1 Mean (SD) response accuracy on the secondary tasks in each
block of 100 choice trials
n-back Polygon

Block 1 769 (221) .675 (.100)
Block 2 .898 (.166) .665 (.077)
Block 3 .880 (.206) .641 (.079)
Block 4 .863 (.204) .634 (.084)
Block 5 .838 (.226) .639 (.102)
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before the adoption of a maximizing strategy, this finding
might indicate that some participants had prior knowledge
about the purpose and design of the task. Moreover, our final
sample size slightly overshot the planned sample size,
resulting in a somewhat unbalanced design. Addressing these
issues, we reran all data analyses, restricting the sample to the
planned 150 participants (n = 50 per condition, 75 per loca-
tion), excluding participants who maximized in the first block
(at least 95% choices of the high-probability option; N = 148),
or applying both of these criteria (NV = 136). None of these
restrictions changed the conclusions reported above. That is,
the ordinal patterns of choices across conditions remained
largely the same (or collapsed virtually on top of each other),
significant/insignificant p values remained either significant
or insignificant, and, where BF's indicated positive evidence
in favor of/against the presence of an effect, this continued to
be the case (except for the chi-squared test assessing the asso-
ciation between probability maximizing, as defined in
Wolford et al., 2004, and choice condition, for which previ-
ously inconclusive Bayesian evidence in favor of the null
hypothesis became more substantial when we restricted the
analysis to the 150 participants originally planned).

Finally, we included experiment location (Australia or
Canada) as an additional factor in the mixed-model
ANOVA on participants’ choices of the high-probability
option, allowing us to explore potential differences be-
tween nationalities. This analysis revealed a significant
main effect of location, F(1, 156) = 6.209, p = .014, 1]p2
= .038, BFinclusion = 3.994, and a location by condition
interaction, F(2, 156) = 6.178, p = .003, qu = .073,
BFpciusion = 4.716. Neither the main effect of condition
nor any of the other interactions including the condition
factor reached statistical significance (all ps > .296; all
BFhctusion < 1.079). Moreover, analyzing the data obtain-
ed from each location separately,® we found that neither of
the two data sets provided evidence for the effect we
attempted to replicate. When we focused on Australian
participants only, neither the main effect of condition,
F(2, 72) = 1.148, p = .323, n,° = .031, BFinciusion =
0.326, nor the condition by block interaction, F(5.796,
208.670) = 0.707, p = .639, rlpz = .019, BFluclusion =
0.027, was significant, and choice proportions in the final
trial block did not differ between the n-back dual-task and
single-task control group, #48) = 1.748, p = .087, d =
0.494, 95% CI for d = [-0.071, 1.055], BFo = 0.973,
although the ordinal pattern of choice proportions approx-
imated that of the original study (n-back dual-task >

¢ As outlined in footnote 2, analyzing the samples from the two locations
separately still satisfies the criterion of a sample size at least 2.5 times that of
the original study (Simonsohn, 2015) and, based on estimation of the original
effect size, suggests a power of .98 for the critical comparison between n-back
dual-task and single-task control condition in the final trial block via an
independent-samples 7 test.
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single-task control = polygon dual-task). By contrast, for
the Canadian sample, the main effect of condition in the
mixed-model ANOVA on participants’ choices of the
high-probability option was significant, F(2, 84) =
7.941, p < .001, rlpz = .159, BFclusion = 30.854, but
participants in the n-back dual-task condition maximized
significantly /ess during the final trial block than partici-
pants in the single-task control condition, #59) = —2.615,
p = .011, d = —-0.670, 95% CI for d = [-1.185, —0.151],
BFy = 4.266, or participants in the polygon dual-task
condition, #(53) = —2.732, p = .009, d = —0.738, 95% CI
for d = [-1.282, —0.187], BF;o = 5.408. The condition by
block interaction was not significant, F(6.130, 257.463) =
1.078, p = .376, qu =.025, BFpclusion = 0.165.

Discussion

We were unable to replicate the beneficial effect of cogni-
tive load on maximization in repeated binary choice report-
ed by Wolford et al. (2004, Experiment 1). We had
predefined a successful replication as (a) a greater proba-
bility maximization rate on the final block of 100 trials in
the n-back dual-task condition than in the single-task con-
trol condition; (b) an interaction between condition (n-back
dual-task vs. single-task control) and trial block; and (c) a
lack of relationships (a) and (b) for the comparison be-
tween the polygon dual-task and single-task control condi-
tion. Based on data from 162 participants—a sample size
more than 5 times that of the original study—our
preregistered replication study revealed no statistically sig-
nificant effects of cognitive load on strategy selection in
repeated binary choice according to any of the measures
we preregistered. Moreover, multiple evaluation criteria,
including both frequentist and Bayesian approaches, used
to make the critical comparison between choices in the n-
back dual-task and single-task control conditions toward
the end of learning consistently supported the conclusion
that our replication was unsuccessful.

We went to considerable lengths to reconstruct the
original study as closely as possible based on the pub-
lished journal article and correspondence with the first
author. Nevertheless, unavoidable minor differences in
materials, populations, and procedures between our study
and the original may have had an unpredictable impact on
the replicability of the results—although we could think
of no theory-driven reasons to anticipate systematic ef-
fects on the results a priori. The one possible exception
is the secondary polygon task, for which we had the least
information to guide our reconstruction attempt. Indeed,
the results indicate that our reconstruction of this task may
have been substantially more difficult to perform concur-
rently than the original (65% vs. 75% judgment accuracy
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in the replication and original study, respectively).
Importantly, there were no differences in accuracy be-
tween the original and replication study on the n-back
memory task (85% in both studies). Moreover, the stimuli
were very simple (colored squares, digits, shapes) and—
although the original study was conducted in the United
States but the replication in Australia and Canada—
participants in both studies were undergraduate psycholo-
gy students and both experiments were conducted in
English. Thus, we believe that these differences played
only a minor role, if any, in the replicability of the effect
of working memory load on binary choice reported in the
original study.

Our findings suggest that an effect of cognitive load on
maximizing consistent with our data would have been
undetectably different from zero with the original sample
size (n = 10 per condition; see Simonsohn, 2015). This
conclusion is supported by other studies that failed to find
any differences in choice behavior under conditions of taxed
cognitive resources versus single-task conditions (see, e.g.,
Otto et al., 2011; Schulze & Newell, 2016). This prior re-
search has suggested that rather than facilitating optimal
maximizing, cognitive load may instead impact the cognitive
processes underpinning people’s decisions. In particular, it
has been suggested that taxed cognitive resources may limit
people’s ability to track their own choices—rather than their
ability to track patterns in the outcome sequence—and thus
lead to the use of more ecasily implementable strategies
(Schulze & Newell, 2016). Using computational modeling,
Otto et al. (2011) found that cognitive load reduced people’s
sensitivity to current outcomes and led to reliance on longer
windows of past experience. These findings are in line with
recent criticism of the notion that human cognition could
benefit from explicit cognitive effort being withdrawn in
favor of implicit processing (e.g., Newell, 2015) and with
recent computational modeling approaches identifying
choice errors—rather than qualitative shifts in
preferences—as the primary consequence of a reduction in
cognitive resources (Olschewski, Rieskamp, &
Scheibehenne, 2018). In sum, our results do not support
the idea put forward by Wolford et al. (2004) that working
memory load improves performance in simple repeated
choice by undercutting people’s tendency to search for pat-
terns in (random) outcome sequences.
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