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Abstract

interactions between the microbiota and the development of heart
Objective: The purpose of this review is to stress the complicated
failure. Moreover, the feasibility of modulating intestinal microbes and metabolites as novel therapeutic strategies is discussed.
Data sources:This study was based on data obtained from PubMed up toMarch 31, 2019. Articles were selected using the following
search terms: “gut microbiota,” “heart failure,” “trimethylamineN-oxide (TMAO),” “short-chain fatty acid (SCFA),” “bile acid,”
“uremic toxin,” “treatment,” “diet,” “probiotic,” “prebiotic,” “antibiotic,” and “fecal microbiota transplantation.”
Results: Accumulated evidence has revealed that the composition of the gut microbiota varies obviously in people with heart failure
compared to those with healthy status. Altered gut microbial communities contribute to heart failure through bacterial translocation
or affecting multiple metabolic pathways, including the trimethylamine/TMAO, SCFA, bile acid, and uremic toxin pathways.
Meanwhile, modulation of the gut microbiota through diet, pre/probiotics, fecal transplantation, and microbial enzyme inhibitors
has become a potential therapeutic approach for many metabolic disorders. Specifically, a few studies have focused on the
cardioprotective effects of probiotics on heart failure.
Conclusions: The composition of the gut microbiota in people with heart failure is different from those with healthy status. A
reduction in SCFA-producing bacteria in patients with heart failure might be a notable characteristic for patients with heart failure.
Moreover, an increase in the microbial potential to produce TMAO and lipopolysaccharides is prominent. More researches focused
on the mechanisms of microbial metabolites and the clinical application of multiple therapeutic interventions is necessarily required.
Keywords: Heart failure; Gut microbiota; Dysbiosis; Treatment

Introduction

Heart failure is the end stage of various cardiovascular

patients’ social functioning. Prevention of heart failure,
timely diagnosis, and initiation of early treatment are
diseases (CVDs). The prevalence of heart failure in adults is
1% to 2%and increases tomore than 10% in patients over
70 years old.[1] The lifetime risk of heart failure is 33% for
men and 28% for women at 55 years old. Two major
components of the pathogenesis of heart failure are
pathologic myocardial remodeling and stimulation of
the neuroendocrine system, including the renin-angioten-
sin-aldosterone system and the sympathetic nervous
system.[2,3] The typical symptoms of heart failure include
dyspnea, fatigue, and edema of the lower extremities. Some
heart failure patients may not exhibit early symptoms,
which could lead to missed diagnoses.[4] According to the
onset severity and course of symptoms and signs, heart
failure is classified into chronic heart failure and acute
heart failure. Heart failure leads to a poor prognosis by
negatively affecting the quality of life and impairing
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critical to successfully reducing mortality and improving
prognosis.

Although physicians have accumulated considerable
experience in treating heart failure during the past 30 years,
the effectiveness of the current treatment regimen is still far
from satisfactory. The high incidence and mortality of
heart failure have imposed heavy burdens on medical
spending and have become a major public health problem,
hindering the economic development of all countries.[5]

The latest European study (previous European Society of
Cardiology heart failure study) revealed that the 12-month
all-cause mortality rates were 17% for hospitalized
patients with heart failure and 7% for outpatients with
stable heart failure and that the 12-month readmission
rates were 44% and 32%, respectively.[6] One main reason
for the poor prognosis of heart failure is the incomplete
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knowledge we have regarding associated risk factors.
Additionally, the available prognostic markers are not

priate inflammation.[13,18] The gut microbiota assists with
the maturation of immunologic tissues by stimulating gut
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sufficiently precise.[7,8] The gut microbiota plays a critical
physiologic and metabolic role in the human body. The gut
microbiota could be regarded as an endocrine organ
because it not only releases its own products but also
metabolizes host metabolites and external nutrients into
hormone-like signals, which impact both normal physio-
logic processes and chronic diseases.[9] It is not surprising
that significant interest is focused on the roles of the human
gut microbiota in CVD and metabolic disorders, including
heart failure.

Human Gut Microbiota
The human intestine is a large bacterial reservoir
containing on its surface over 2000 species and at least
1014 bacterial organisms, which is 10 times more than the
number of human cells.[10-12] The entirety of micro-
organisms that coexist with their hosts refers to the gut
microbiota, which contains at least 100 times more genetic
information than the human genome.[11] It is now well
established that the human gut microbiome is pre-
dominated by phyla such as Bacteroidetes and Firmicutes.
Phyla with lower abundances include Proteobacteria,
Actinobacteria, and Verrucomicrobia.[10,13]

The gut microbiota interacts with the host through
metabolism-independent pathways such as bacterial
translocation-associated endotoxemia and metabolism-
dependent pathways, such as the trimethylamine (TMA)/
trimethylamine N-oxide (TMAO), short-chain fatty acid
(SCFA), bile acid (BA), and uremic toxin pathways.[9] To
some extent, human beings’ own cells coexist with the gut
microbiota to form a “superorganism.”Human genes and
the gut microbiota collectively affect metabolism and
immune and inflammatory responses.[14-16]

Physiologic Roles of the Gut Microbiota
844
In the healthy human gut, the overall microbial community
structure remains stable over time within an individual but
varies greatly across individuals. Environmental factors
that contribute most to interindividual diversity include
diet, lifestyle, and antibiotic use. Host genotype, age, and
sex also contribute to gut microbiota diversity.[11,16,17] The
gut microbiota can interact with the host and perform
multiple physiologic functions. A principal role of the gut
microbiota is participating in food digestion and nutrient
uptake. The gut microbiota produces SCFAs by breaking
down dietary fibers through mainly the saccharolytic
pathway.[13] A major role of SCFAs is serving as energy
substrates for epithelial cells of the gut. Binding of SCFAs
to G-protein-coupled receptor 41 (Gpr41) can induce
expression of the enteroendocrine hormone peptide YY in
gut epithelial L cells, which regulates host appetite and
helps increase energy harvesting from the diet. The gut
microbiota also digests food through the proteolytic
pathway, thus contributing to SCFAs production and
formation of cometabolites, such as ammonia, various
amines, and thiols.[13] In addition, the gut microbiota plays
a role in constituting and regulating intestinal barriers and
modulating the host immune system to prevent inappro-
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lymphatic tissue, which forms an essential mechanism of
defense against pathogens.[13] Furthermore, the gut micro-
biota can participate in neurologic development. The “gut-
brain axis” refers to the assembly of the gut microbiota and
the central, parasympathetic, and sympathetic nervous
systems. Altered gut microbial composition is associated
with neurodegeneration and neuroimmune activation.
Finally, the gut microbiota is also involved in maintaining
host energy homeostasis and vitamin synthesis.[19]

Gut Microbiota and Diseases
Gut dysbiosis refers to quantitative and qualitative
alterations in the composition of the gut microbiota,
which has been associated with the pathogenesis of a wide
spectrum of diseases, including cancer, infectious diseases,
inflammatory bowel disease, metabolic diseases such as
diabetes and obesity, autoimmune diseases, autism, and
CVD.[20-27] In particular, the relationship between gut
dysbiosis and CVD, including hypertension, atherosclero-
sis, thrombosis and heart failure, has been focused on.[28-
31] Accumulated evidence suggests a potential role that
dysbiosis of the gut microbiota might play in the onset and
progression of heart failure. An overview of the inter-
actions between gut microbiota and heart failure is seen
in Figure 1.

Gut Microbiota Dysbiosis in Heart Failure
The objective of microbiome analysis is to detect and
characterize the gut microbiota via assessment and
classification of its genomes and corresponding metabo-
lites, therefore finding a more comprehensive explanation
for the composition and function of the gut microbiota.
With the development of sequencing technology, “16S”
analysis, which detects the sequence difference of the
hypervariable region of the 16S ribosomal ribonucleic
acids for taxonomic identification of bacteria, is able to
characterize the gut microbiota at a species-level resolu-
tion. Furthermore, metagenomics sequencing, which
evaluates the composite genetic material present in the
microbiome, is capable of characterizing specific taxa of
the gut microbiota at a strain-level resolution. With
the help of bioinformatics methods, the current technology
enables us to study the underlying relationships
between exact compositions of the gut microbiome and
CVD.[11,19,32,33]

For a healthy individual, anaerobic Bacteroidetes and
Firmicutes constitute more than 90% of the total gut
bacterial species.[10] Compared to healthy controls, heart
failure patients usually have decreased gut microbial
richness and a shift in the composition of the gut
microbiota. According to Luedde et al’s[34] research based
on 16S rRNA sequencing, a significant decrease in the
abundance of Coriobacteriaceae, Erysipelotrichaceae, and
Ruminococcaceae at the family level and a significant
decrease in the abundance of Blautia, Collinsella,
unclassified Erysipelotrichaceae, and unclassified Rumi-
nococcaceae at the genus level have been shown in the gut
of heart failure patients. Moreover, Kummen et al[35]
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discovered a depletion of the Lachnospiraceae family,
which consists of several butyrate-producing species, in

to 16S rRNA or metagenomics sequencing, traditional
methods for identifying gut microorganisms such as stool

Failure

Figure 1: Gut microbiota dysbiosis and bacterial translocation involved in the progression of heart failure. Decreased cardiac output leads to intestinal mucosal ischemia and/or edema, thus
leading to a “leaky gut.” Bacterial translocation and systematic inflammation occur subsequently. Moreover, heart failure is accompanied by a shift of the gut microbiota composition as well
as varied metabolic pathways, which exacerbate the disease. BA: Bile acid; FMT: Fecal microbiota transplantation; HF: Heart failure LPS: Lipopolysaccharide; MAMPs: Microbe-associated
molecular patterns; NOD: Nucleotide oligomerization domain; SCFA: Short-chain fatty acid; TLRs: Toll-like receptors; TMA: Trimethylamine; TMAO: Trimethylamine N-oxide.
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heart failure patients through 16S rRNA sequencing
technology. In addition, there is an inverse correlation
between Lachnospiraceae and sCD25, which is a T-cell
activation marker. Such a correlation was even more
prominent in patients whose disease was more severe than
in those whose disease was less severe. A 16S analysis
based on 22 hospitalized patients with heart failure by
Kamo et al[36] also reported a reduction in SCFA-
producing bacteria such as Eubacterium rectale andDorea
longicatena. In addition, a shift in the gut microbiota
compositions in different age groups exists. A major
butyrate-producing species (Faecalibacterium prausnitzii)
was revealed to be less abundant in old patients with heart
failure than in young patients with heart failure.
Metagenomics sequencing technology has also been
involved in the identification of the gut microbiome in
patients with heart failure. Recently, Cui et al[31] discov-
ered decreased enrichment of F. prausnitzii, Oscillibacter
sp., and Sutterella wadsworthensis in fecal samples from
heart failure patients through metagenomic analyses. For
functional analysis, an elevation in the abundance of
microbial genes for lipopolysaccharide (LPS) biosynthesis
and TMAO generation and a decrease in microbial
genes for butyrate-acetoacetate coenzyme A transferases
were noted in the gut microbiota of patients with chronic
heart failure. Metabolomic and correlation analyses
confirmed that the composition of metabolites in fecal
and plasma samples from chronic heart failure patients
significantly changed compared with those from
healthy controls, and the varied metabolic profile was
associated with a shift in the gut microbiome. In addition
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sample collection, bacterial incubation, and isolation have
been applied to study the gut flora of patients with heart
failure. According to Pasini et al,[37] chronic heart failure
patients develop an increased abundance of pathogenic
bacterial colonies in their stools. Specifically, patients with
relatively more severe disease tend to have a significantly
increased ratio of Candida, Campylobacter, and Shigella
species.

A summary of current research on the composition of gut
microbiota in heart failure is shown in Table 1. The
summary was based on data obtained from PubMed up to
March 31, 2019. Articles were selected using the following
search terms: “gut microbiota” and “heart failure.” We
reviewed the medical literature one by one.

“Leaky Gut” and Bacterial Translocation in Chronic Heart
Under physiologic conditions, the gut microbiota con-
stitutes an essential part of intestinal mucosal barriers that
play a necessary role in systemic immunity and metabo-
lism. Healthy gut microbiota is largely responsible for the
overall health of the host. However, under pathologic
conditions, the gut microbiota may harm the human body
by disturbing normal systemic immunity and metabolism
through releasing toxic substances into the peripheral
circulation. As early as 1999, scientists hypothesized that
the intestinal permeability observed in chronic heart
failure patients was altered by edema, which in turn led
to bacterial translocation as well as endotoxemia.
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Endotoxemia could trigger systemic inflammatory
responses, which aggravate the progression of heart

suggests that decreased cardiac output, aggravating
systemic congestion and hypoperfusion, can lead to

Table 1: Current research on the composition of gut microbiota in heart failure by high-throughput sequencing technology.

Author (year) Patients Technology Discovery References

Luedde et al (2017) 20 patients with HF due
to ischemic
cardiomyopathy or
dilated
cardiomyopathy

16S rRNA V1-V2
sequencing

Compared to in control subjects, HF
cases showed a significant decrease in
Coriobacteriaceae,
Erysipelotrichaceae, and
Ruminococcaceae at the family level
and a significant decrease in Blautia,
Collinsella, uncl. Erysipelotrichaceae,
and uncl. Ruminococcaceae at the
genus level

34

Kummen et al (2018) 44 patients with stable
systolic HF

16S rRNA V3-V4
sequencing

Patients with HF had decreased
microbial richness; a depletion of the
Lachnospiraceae family was
remarkable, which consists of several
butyrate-producing species; an
inverse correlation between
Lachnospiraceae and sCD25 was
detected.

35

Kamo et al (2018) 22 patients with HF
hospitalized for acute
decompensated HF or
acute exacerbation of
chronic HF

16S rRNA V1-V2
sequencing

Abundances of Eubacterium rectale
and Dorea longicatena were reduced
in HF; Faecalibacterium prausnitzii
and Clostridium clostridioforme were
less abundant in older patients (≥60
years) than they were in younger
patients (<60 years) with HF

36

Cui et al (2018) 29 patients with CHF
due to ischemic
myocardiopathy and
24 patients with CHF
due to dilated
myocardiopathy

Metagenomic
sequencing

A decrease in F. prausnitzii and
increase in Ruminococcus gnavus
were essential characteristics in CHF;
microbial genes for LPS biosynthesis
and TMAO generation were up-
regulated and genes for butyrate-
acetoacetate coenzyme A transferases
were down-regulated in CHF

31

HF: Heart failure; uncl.: Unclassified; CHF: Chronic heart failure; LPS: Lipopolysaccharide; TMAO: Trimethylamine N-oxide.
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failure.[38] In 2007, Sandek et al[39] proved that compared
with control group subjects, patients with chronic heart
failure had increased thickness of the intestinal wall,
intestinal permeability, and intestinal insufficiency. More-
over, the serum level of anti-Escherichia coli J5 endotoxin
IgA was higher in patients with heart failure than that in
control subjects. These findings provided evidence for
pathologic changes in the gut of patients with heart failure.
Based on previous studies, Sandek et al[40] found through
in situ fluorescence hybridization that high levels of
anaerobic E. rectale in the sigmoid colon mucosa
(juxtamucosal bacteria) in patients with heart failure were
associated with low perfusion of the mucosa. Decreased
blood perfusion resulted in exaggerated hypoxia in
intestinal villi, which might account for enrichment of
gut-specific anaerobes in patients with heart failure.
Increased intestinal mucosal bacteria could trigger inflam-
mation in the body by releasing large quantities of
endotoxins into the bloodstream, resulting in cachexia.

Currently, the accumulated literature supports the “gut
hypothesis of heart failure,” which affirmed the role of the
gut in the pathogenesis of heart failure. The gut hypothesis
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intestinal mucosal ischemia and/or edema, which creates
hypoxia and a hypercapnia status. Subsequently, a
decrease in intestinal mucosal pH and diminished passive
carrier-mediated transport of D-xylose occurs, leading to a
“leaky gut,” which describes increased gut permeability as
well as intestinal barrier dysfunction. As a result, increased
bacterial translocation occurs, which is accompanied by
increased circulating endotoxin release into the peripheral
circulatory system. The circulating endotoxins produced
by bacteria refer to main structural components of bacteria
including LPS, flagellin, peptidoglycans, and formylated
peptides, which are recognized as microbe-associated
molecular patterns (MAMPs). MAMPs are selectively
recognized by pattern recognition receptors (PRRs) such as
host Toll-like receptors and nucleotide oligomerization
domain-containing receptors. Microbial activation of
PRRs could reverse cholesterol transport while promoting
insulin resistance and hyperlipidemia.[9] Furthermore,
microbial activation of PRRs either on gut epithelial cells
or within the vasculature stimulates the host immune
response by triggering numerous downstream signaling
processes, thus leading to vascular inflammation.[15,41] In
addition, LPS could activate systemic inflammation by
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inducing elevated proinflammatory cytokines such as
interleukin-1, interleukin-2, high-sensitivity C-reactive

associated with relatively poor New York Heart Associa-
tion (NYHA) grades. Patients with high TMAO levels had
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protein, interleukin-6, and tumor necrosis factor-alpha,
therefore adversely impacting the disease progression of
heart failure.[13,18,19]

Metabolite-Driven Pathways of the Gut Microbiota in Chronic

Heart Failure
The gut microbiota can influence host physiologic
activities through quantities of processes. In addition to
direct translocation of bacteria and releasing gut microbial
signals, the gut microbiota can impact hosts through
bioactive metabolites that act on distal organs either
directly or indirectly.[42] Accumulated evidence suggests
that among the numerous metabolites produced by the
gut microbiota, a large portion is biologically active and
directly absorbed into systemic circulation, whereas
others may serve as mediators between microbes and
the host after being further metabolized by host
enzymes.[13,30,43-46] The gut microbiota interacts with
the host through a number of pathways, including the
TMA/TMAO, SCFA, BA, and uremic toxin pathways.

TMA/TMAO pathway
847
Novel technologies herald great advances in gut microbiota
studies.[47,48] Wang et al[43] used metabonomics to investi-
gate the relationship between the gut microbiota and CVD.
They found that plasma TMA, a metabolite produced by
intestinal flora from choline and L-carnitine in food, could
be oxidized toTMAOby flavin-containingmonooxygenase
in the liver. Evidence supports apositive correlationbetween
increased levels of TMAO and the incidence of cardiovas-
cular events in patients with coronary heart disease. Further
studies have confirmed that TMAO could promote the
process of atherosclerosis.[44,49] Moreover, scientists have
pointed out that TMAO is also associatedwith heart failure.
Tang et al[50] found a positive relationship between plasma
TMAO levels and 5-year all-cause mortality in 720 patients
with stable heart failure. The TMAO level was higher in
patients with heart failure than that in control group
subjects. The risk of death increased 3 to 4 times in patients
with high plasma TMAO levels compared with patients
with low plasma TMAO levels. After adjusting for
traditional cardiovascular risk factors andB-typenatriuretic
peptide (BNP) levels, the increased TMAO level still
predicted an increased 5-year mortality rate. Suzuki
et al[51] also examined plasma TMAO levels in 972 patients
with acute heart failure and evaluated the relationship
between TMAO levels and in-hospital mortality, all-cause
mortality, and the overall incidence of death or readmission
due to heart failure within a year. Elevated TMAO levels
were correlated with unfavorable outcomes in patients with
acute heart failure. In addition, the combination of TMAO
levels andN-terminal pro-BNP (NT-proBNP) values could
more precisely predict the mortality risk of hospitalized
patients with acute heart failure than TMAO levels alone.

Furthermore, Tang et al[52] confirmed that the plasma
TMAO levels in patients with chronic heart failure were
higher than those in healthy controls. In addition, in
patients with heart failure, increased levels of TMAOwere
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worse left ventricular diastolic dysfunction and clinical
prognoses than patients with low TMAO levels. In a
prospective observational study (155 patients with heart
failure, 100 patients with stable coronary heart disease,
and 33 healthy controls were included), plasma TMAO
levels in patients with heart failure were significantly
higher than those in the controls. In addition, TMAO levels
were positively associated with increases in NYHA grade
and NT-proBNP levels. TMAO levels were not related to
the levels of LPS or left ventricular ejection fraction
(LVEF), but they were negatively correlated with the non-
transplant history of chronic heart failure patients.[53]

Another study in 2016 showed increased incidences of
pulmonary edema, higher atrial natriuretic peptide levels, and
enhanced left ventricular remodeling, and aortic arch
constriction in mice fed with choline or TMAO than those
in controlmice. Adiminished ejection fraction observed in the
treatedmicealso indicatedanexacerbationofheart failure.[54]

It has been reported that plasma choline, betaine, andTMAO
levels are correlated with BNP levels and electrocardiogram
indices of diastolic function but not systolic function. TMAO
levels were associated with poor prognosis in chronic systolic
heart failure after adjustment for cardiorenal indices.[55] The
known pathways of TMAO formation and its relationship
with heart failure are present in Figure 2.

SCFA pathway
SCFAs are major products of microbial fermentation of
dietary fibers in the gut. Both the saccharolytic pathway
and proteolytic pathway participate in the production of
SCFAs, but the former contributes more than the latter.
Since several correlation analyses have revealed a
remarkable decrease of SCFA-producing bacteria in
patients with heart failure, a cardioprotective role of
SCFAs seems to exist. SCFAs seem to promote post-
infarction cardiac repair through inducing infiltration of
CX3CR1+ monocytes in the peri-infarct zone.[56] Accu-
mulated evidence indicates that SCFAs play a role in
mediating the host immune system. For example, butyrate
plays an anti-inflammatory role through inducing Foxp3+
Treg cell proliferation and suppressing the generation of
Th17 cells by activating G protein-coupled receptor 43.[57]

Moreover, SCFAs play a gut barrier-protective role.
Through activating the hypoxia-inducible factor, butyrates
help to maintain the physiologic relative hypoxia state in
colon epithelial mucosa, which is essential in maintaining
gut barrier function.[58] In addition, SCFAs could modu-
late host blood pressure. Propionate, which is an SCFA
shown to induce vasodilation in vitro, could modulate
mouse blood pressure in a mutually antagonistic way.
Propionate induces renin secretion and thus elevates blood
pressure through binding to Olfr78, which is an olfactory
receptor expressed in the renal juxtaglomerular apparatus.
However, propionate also presents powerful hypotensive
effects by binding to Gpr41, which is another SCFA
receptor expressed in smooth muscle cells of small
vessels.[59] Considering the roles that SCFAs play in gut
barrier protection, blood pressure modulation, and the
immune system, SCFAs probably play an essential role in

http://www.cmj.org


pathways associated with heart failure, which still requires
further investigation. A summary of the known cardio-

gut microbiota profoundly impacts BA metabolism by
promoting deconjugation, dehydrogenation, and dihy-

Figure 2: Pathways of trimethylamine N-oxide formation and its relationship with heart failure. TMA is formed through metabolization of choline and choline-containing compounds from
diets by gut microbiota in the intestinal lumen. TMA can be absorbed from the intestine and delivered to the liver where FMO convert it to TMAO. It is found that TMAO is correlated with poor
prognosis and severity of HF. BNP: B-type natriuretic peptide; FMO: Flavin-containing monooxygenase; HF: Heart failure; NT-proBNP: N-terminal pro-BNP; NYHA: New York Heart Association;
TMA: Trimethylamine; TMAO: Trimethylamine N-oxide.

Figure 3: Roles of short-chain fatty acids involved in cardiovascular diseases. SCFAs are major products of microbial fermentation of dietary fibers. SCFAs mainly present cardioprotective
effects, including modulating blood pressure, promoting post-infarction cardiac repair, anti-inflammation and maintaining gut barrier. Gpr41: G-protein-coupled receptor 41; Gpr43:
G-protein-coupled receptor 43; HIF: Hypoxia-inducible factor; SCFA: Short-chain fatty acid; Treg: Regulatory T cell.
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protective roles of SCFAs is present in Figure 3.

Bile acid pathway
848
Primary BAs are produced in the liver and secreted into the
gut through the biliary system. It is well established that the
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droxylation of primary BAs.[60] The physiologic function
of BAs is to facilitate the absorption of dietary fat, fat-
soluble molecules and cholesterol.[61] Farnesoid X receptor
is highly expressed in the liver and ileum, which negatively
regulates BA synthesis by regulating distinct transcription-
al networks. However, tauro-beta-muricholic acid
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(TbMCA), which is an abundant primary BA, could up-
regulate the BA pool size and composition by acting as a

clinical practice.[66] Many clinical studies proved that
dietary nutritional intervention was effective in reducing

Chinese Medical Journal 2019;132(15) www.cmj.org
farnesoid X receptor antagonist. It is suggested that
particular microbiota may have the capacity to suppress
BA synthesis by reducing the levels of TbMCA.[60]

According to a cross-sectional study, an increased ratio
of secondary to primary BAs in serum was found in
patients with chronic heart failure, and this ratio was
revealed to be associated with reduced overall survival in
univariate analysis.[55] Considering that the production of
secondary BAs depends on the gut microbiota, identifying
specific BAs and correlated microbial enzymes as well as
host receptors might help for understanding the underlying
mechanism through which the gut microbiota plays a role
in modifying BA composition and thus impact metabolic
disorders involved in the progression of heart failure.

Uremic toxin pathway
It is well accepted that CVD and chronic kidney disease are
closely interrelated via the so-called cardiorenal syndrome,
which could accelerate the progression of failure in both
organs.[18] The microbial urease of the gut microbiota is
able to hydrolyze urea to form ammonia, which is later
transformed into ammonium hydroxide, leading to the
production of uremic toxins such as indoxyl sulfate and p-
cresyl sulfate. It was reported that indoxyl sulfate and p-
cresyl sulfate were associated with adverse cardiovascular
outcomes. A direct effect of indoxyl sulfate on cardio-
myocytes is the stimulation of cardiac fibroblasts and
collagen synthesis via activation of the p38 mitogen-
activated protein kinase, p42/44 mitogen-activated protein
kinase, and nuclear factor kB pathways, thus leading to
adverse cardiac remodeling.[17,62]

Targeting the Gut Microbiota for Treatment
The already known correlations between altered gut
microbial compositions and susceptibility for cardiometa-
bolic disorders remind us of the possibility of the gut
microbiome as a potential novel target for therapeutics.
Regulating the gut microbiota has shown promising
prospects in curing various diseases, including diabetes,
cancer, and so on.[63-65] Threemajor intervention principles
have been focused on, namely, targeting microbiota
compositions, targeting metabolic pathways, and applying
mucosal barrier protectors. We discuss mainly treatment
strategies based on modulating gut microbiota composi-
tions and metabolic pathways in this review.

A summary of current research on targeting gut microbiota
for the treatment of heart failure is shown in Table 2. The
summary was based on data obtained from PubMed up to
March 31, 2019. Articles were selected using the following
search terms: “gut microbiota,” “heart failure,” “cardiovas-
cular disease,” “treatment,” “diet,” “probiotic,” “prebiot-
ic,”“antibiotic,”and“fecalmicrobiota transplantation.”We
reviewed the medical literature one by one.

Diet modulation
849
Currently, diet modulation represents a major therapeutic
strategy utilized to treat chronic metabolic diseases in
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cardiovascular risk.[67-70] A retrospective cohort study
based on 3215 post-menopausal female participants
revealed that relatively high dietary approaches to stop
hypertension diet scores were modestly associated with a
low mortality in women with heart failure. The Mediter-
ranean diet presented a trend toward an association with
decreased heart failure mortality, although statistical
significance was not reached.[71] It has been reported
that a high-fiber diet can prevent the development of
heart failure and effectively improve myocardial remodel-
ing in hypertensive mice by increasing the abundance of
acetate-producing microbiota.[69] However, although
many studies confirmed that dietary interaction was
associated with improved cardiac function and heart
failure biomarkers, few of them focused on the impact
that such lifestyle intervention had on the gut microbial
community structure and function as well as the underly-
ing mechanistic interplay.[72,73] Studies exploring the
impact of dietary interventions on heart failure from
the perspective of the gut microbiome in humans are
needed.

Probiotics/prebiotics
Probiotics are defined as live “beneficial” bacteria utilized
to re-establish an appropriate intestinal balance. Potential
mechanisms of probiotics include mainly pHmodulation,
antibacterial substance production, and competition
with pathogens.[74,75] Plasma cytokine levels are generally
increased in patients with heart failure, and inflammatory
pathways are widely involved in the onset and develop-
ment of chronic heart failure.[76] Regulating the intestinal
microecosystem may be a potential therapeutic strategy
to improve cardiac function and clinical prognosis by
optimizing gut flora metabolism and reducing inflamma-
tion responses in humans. Another approach to achieve
similar effects on modulating intestinal microbiota is
the use of prebiotics. Prebiotics are defined as “selectively
fermented ingredients that result in specific changes, in
the composition and/or activity of the gastrointestinal
microbiota, thus conferring benefit(s) upon host
health.”[77] Typical prebiotics refer to indigestible
molecules such as oligosaccharides or complex saccha-
rides. According to Gan et al’s[78] research, although no
changes in the gut microbial compositions were detected
by 16S rRNA sequencing afterwards, oral supplement of
Lactobacillus rhamnosus GR-1 can effectively attenuate
left ventricular hypertrophy and significantly improve
hemodynamic parameters in post-infarction heart failure
rat models. This effect may be achieved by improving
myocardial metabolite status, such as decreasing the
leptin/adiponectin plasma concentration ratio. In
another animal experiment, Lin et al[79] reported that
probiotic-fermented purple sweet potato yogurt might
reverse congestive heart failure induced by hypertension
through attenuating cardiomyocyte apoptosis by inhibit-
ing Fas receptor-dependent apoptotic pathways but
activating compensatory IGF-IR-dependent pathways in
spontaneously hypertensive rats. Similar findings were
validated in humans, as Costanza et al[80] conducted a
randomized placebo-controlled pilot trial focusing on
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Table 2: Current research on targeting gut microbiota for the treatment of heart failure.

Treatment
Author
(year) Research objects Intervention Research method Conclusions References

Diet Levitan
et al
(2013)

3215 post-
menopausal
female patients
hospitalized for
HF

None Retrospective
cohort study

Higher DASH diet scores
were associated with
lower mortality in
women with HF; a
trend toward an
association between
higher Mediterranean
diet scores and lower
mortality in women
with HF existed but did
not reach statistical
significance.

79

Marques
et al
(2017)

C57BL/6 mice
underwent
sham or DOCA
surgery

Oral uptake of
high-fiber diet
or acetate

Animal
experiments
and 16S
sequencing

Acetate-producing
bacteria increased in
the gut microbiota;
supplementation of
fiber and acetate
lowered blood pressure,
decreased cardiac
hypertrophy and
fibrosis, and improved
heart function in
experimental HTN

77

Probiotics Lin et al
(2013)

Spontaneously
hypertensive
rats

Oral uptake of
Lactobacillus
acidophilus-
fermented
purple sweet
potato yogurt

Animal
experiments

Cardiomyocyte apoptosis
was attenuated by
inhibiting the Fas
receptor-dependent
apoptotic pathway and
activating the
compensatory IGF-IR-
dependent survival
signaling pathway

86

Gan et al
(2014)

Male Sprague-
Dawley rats
underwent
coronary artery
ligation surgery

Oral uptake of
Lactobacillus
rhamnosus
GR-1

Animal
experiments
and 16S
sequencing

Attenuated left
ventricular hypertrophy
and improved cardiac
function; improved
myocardial metabolite
status; no change in the
gut microbial
composition was
detected compared to
that of controls

85

Costanza
et al
(2014)

20 NYHA class II
or III HF
patients with an
LVEF <50%

Oral uptake of
Saccharomyces
boulardii

A randomized,
double-blind,
placebo-
controlled
pilot trial

Patients with chronic
systolic HF submitted
to a short-term
probiotic therapy
presented an
improvement in LVEF
(P = 0.005) and a
reduction in left atrial
diameter

87

(continued )
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treating chronic systolic heart failure patients with
Saccharomyces boulardii probiotics, which yielded a

myocardial infarction size and reduced circulating leptin
levels in an ischemia/reperfusion rat model. According to

Table 2

(continued).

Treatment
Author
(year) Research objects Intervention Research method Conclusions References

Tang
et al
(2019)

C57BL/6J mice
underwent LAD
ligation surgery

Oral
supplementation
of Lactobacillus
probiotic

Animal
experiments
and 16S
sequencing

Supplementation of
Lactobacillus probiotic
increase survival rate of
post-infarction mice
pre-treated with
antibiotics; Probiotic
supplementation
increase the level of
myeloid cells in the
hearts of mice

59

Antibiotics Conraads
et al
(2003)

10 patients with
CHF (NYHA
classes III–IV)

Oral uptake of
enteral a non-
absorbable
polymyxin B/
tobramycin
regimen

Non-randomized,
non-placebo-
controlled pilot
study

Antibiotics eradicated
intestinal aerobic gram-
negative bacilli and
reduced fecal endotoxin
concentrations; a
significant decline in
inflammatory
biomarkers and
improved vascular
endothelial function
were discovered

91

Lam et al
(2012)

Dahl S rats
underwent
ischemia/
reperfusion
surgery

Oral uptake of
vancomycin

Animal
experiments
and microbial
DNA qPCR

Vancomycin led to
altered abundance of
microbial species and
reduced total microbe
number;
cardioprotective effects
including smaller
infarct size, decreased
circulating leptin levels
and improved recovery
of post-ischemic
mechanical function
were discovered

89

HF: Heart failure; DASH: Dietary approaches to stop hypertension; DOCA: Deoxycorticosterone acetate; HTN: Hypertension; IGF-IR: Insulin-like
growth factor-I receptor; NYHA: New York Heart Association (classification); LVEF: Left ventricular ejection fraction; LAD: Left anterior descending
coronary artery; CHF: Chronic heart failure.
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decrease in cholesterol, uric acid, and left ventricle
diameter; an improvement in LVEF; and a reduction in
left atrial diameter.

Antibiotics
851
Scientists tried to cure disease by eliminating the
pathogens. It has been reported that oral administration
of vancomycin significantly impacts host microbiota
diversity by inducing a decrease in gram-positive bacteria
and a compensatory increase in gram-negative bacteria.
Subsequently, BA dihydroxylation and peripheral
insulin sensitivity were suppressed as a result.[81] Lam
et al[82,83] suggested that taking vancomycin orally led to a
reduced total microbial number in Dahl S rats and
presented cardioprotective effects including reduced

1

Conraads et al,[84] selective decontamination of the
digestive tract (SDD, using an enteral non-absorbable
polymyxin B/tobramycin regimen) induced decreased fecal
endotoxin concentrations and showed anti-inflammatory
effects. In addition, improved vascular endothelial func-
tion presented as an increase in flow-mediated dilation.
However, the listed variations returned to baseline
levels after discontinuation of the SDD. Although anti-
biotics show cardiovascular protective impacts to some
extent, such impacts seem to be limited within the period
of medication. In addition, antibiotics usually reduce
the total microbiota in the gut, which probably
includes beneficial bacteria. Currently, the general con-
sensus for antibiotic intervention is that such non-specific
antimicrobial approaches may be more harmful than
beneficial.
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Fecal microbiota transplantation correlations between microbes, SCFAs and host cardio-
vascular health.

Chinese Medical Journal 2019;132(15) www.cmj.org
Fecal microbiota transplantation (FMT) aims at introduc-
ing fecal contents from healthy subjects into the gut of
patients, which seems to be effective in the treatment of
recurrent or refractory Clostridium difficile infection
(CDI).[85] However, for most diseases except CDI, the
efficacy of FMT is somehow limited according to current
studies.[86] In addition, the potential risk of transferring
endotoxins or infectious agents may cause adverse
complications.[13] Further studies will be required to
optimize factors such as dosing, delivery route, and
formulation of FMT to improve the therapeutic efficacy.
It is also anticipated that whole-microbiome transplanta-
tion will eventually be replaced by transplantation of a
defined group of bacteria.[86]

Molecular inhibitors of the TMAO pathway
Recent studies have revealed clear links between the
TMAO pathway and poor prognosis of heart failure. The
development of a small molecule drug for inhibiting
microbial generation of TMA has become a potential
therapeutic strategy for CVDs.[29] The 3,3-dimethyl-1-
butanol, a choline structural analog, is able to inhibit
microbial generation of TMA from quantities of nutrients.
Although temporarily there is no evidence supporting that
a TMA/TMAO inhibitor can improve heart failure, this
molecular therapy has shown great potential in treating
heart failure. This potential also reminds us of the
possibility of developing other molecular drugs as research
on gut microbiomes and metabolomics progresses in the
field of heart failure.

Conclusions and Perspectives
852
Currently, heart failure remains a major health burden.
The rapid development of high-throughput sequencing
technology enables us to uncover the previously unappre-
ciated complexity of the gut microbiome. Since Wang and
Tang et al’s impressive research thoroughly revealed the
interplay between gut microbes and atherosclerosis
through the TMA/TMAO pathway, it has gradually
become consensus that the gut microbiota contributes to
cardiovascular pathophysiology via multiple metabolic
and physiologic pathways. Through the identification of
bacterial metabolites, it is possible for us to explore
numerous microbial pathways that may be involved in the
pathogenesis of cardiometabolic disorders and search for
potential biomarkers for diagnosis and treatment. Except
for the many clinical studies that have already demon-
strated an association between TMA/TMAO and adverse
outcomes of patients, a few studies based on 16S or
metagenomics sequencing have discovered a reduction in
SCFA-producing bacterial species in patients with heart
failure, especially some butyrate-producing species such as
F. prausnitzii and E. rectale. In addition to being major
energy substrates of gut epithelial cells, SCFAs play
essential roles in the maintenance of host glucose
homeostasis and the immune system. A shift in the gut
microbiota into a composition lacking in SCFA-producing
bacteria might be a notable characteristic for patients with
heart failure. Future studies are needed to explore the deep

1

By modulation of gut microbiota composition and
function through diet, pre/probiotics, FMT, and microbial
enzyme inhibitors, it may become feasible for us to alter
metabolic profiles in a preferred direction that is beneficial
for host health in the long term. Transplantation of a
defined group of bacteria or utilization of special microbial
enzyme inhibitors, such as DMB, can probably adjust
blood levels of biologically active microbial-derived
metabolites by modulating gut microbial compositions
or targeting specific microbial pathways, thus achieving a
more personalized and accurate therapeutic intervention.
However, neither approach has been studied to date in
patients with heart failure. Future research is required to
complement this gap. Finally, the use of pre/probiotics has
shown great potential in treating heart failure. However,
most studies have focused on a correlation between the
oral uptake of probiotics and changes in heart failure
phenotypes; only a few studies have explored the
variations of gut microbial compositions and functions
brought about by intervention with pre/probiotics, let
alone the underlying metabolic and physiologic mecha-
nisms. Pre/probiotics remain a cost-effective and practical
option for intervention that is an area of active investiga-
tion, but mechanistic understanding is strongly needed.

Although several studies revealed significant correlations
between either the gut microbiota composition or their
derived metabolites and the phenotypes of heart failure,
the sample size of each study is not large enough. Heart
failure is the end stage of cardiogenic diseases and is
usually accompanied by multiple complications. Many
factors including etiology, complications, drugs, host
genetic heterogeneity, and lifestyles may contribute to
confounding effects in the clinical study. Therefore, well-
designed, prospective, and longitudinal clinical studies
based on large cohorts are still needed to reveal the actual
transformation of the gut microbiota composition and
metabolic profile in heart failure.

Doubtlessly, a striking and intriguing association exists
between the gut microbiota and the cardiovascular system
that probably plays a large role in CVDs. However, few
studies have investigated in depth a direct role of the gut
microbiota in heart failure and associated complications at
the mechanistic and causal levels. Further investigations
are definitely in demand to better understand intermicro-
bial interactions and microbial-host interactions and how
they are related to the underlying molecular entities
involved in disease progression.

Cardiac disease has been a burden throughout history.
With improved quality of life and prolonged life
expectancy, the prevalence of cardiac diseases currently
continues to escalate, which means that more people will
enter the stage of heart failure. More innovative diagnostic
and therapeutic approaches for heart failure are urgently in
demand. As we gradually gain a deeper understanding of
gut microbiota and heart failure interplay, the question of
how to bring microbial information into clinical practice
remains a major challenge. Of course, high-throughput
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technologies including 16S and metagenomics sequencing
can provide profound information about a single patient’s

14. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R,
Gordon JI. The human microbiome project. Nature 2007;449:804–
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gut microbiota compositions, but such technologies are
quite expensive and no evidence clearly clarified their
utility in clinical practice as yet. Instead, studying
metabolic profiles in blood and urine may be a practical
way to guide personalized interventions. Undoubtedly,
further investigations to explore the translational potential
of mechanism research and the clinical application
values of multiple therapeutic interventions are necessarily
required.
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