

Open Peer Review

F1000 Faculty Reviews are commissioned
from members of the prestigious F1000

. In order to make these reviews asFaculty
comprehensive and accessible as possible,
peer review takes place before publication; the
referees are listed below, but their reports are
not formally published.

Any comments on the article can be found at
the end of the article.

REVIEW

Recent advances in biomedical simulations: a manifesto for
 model engineering [version 1; referees: 3 approved]

Joseph L. Hellerstein , Stanley Gu , Kiri Choi , Herbert M. Sauro2

eScience Institute, University of Washington, Seattle, WA, USA
Department of Bioengineering, William H. Foege Building, University of Washington, Seattle, WA, Box 355061, USA

Abstract
Biomedical simulations are widely used to understand disease, engineer cells,
and model cellular processes. In this article, we explore how to improve the
quality of biomedical simulations by developing simulation models using tools
and practices employed in software engineering. We refer to this direction as
model engineering. Not all techniques used by software engineers are directly
applicable to model engineering, and so some adaptations are required. That
said, we believe that simulation models can benefit from software engineering
practices for requirements, design, and construction as well as from software
engineering tools for version control, error checking, and testing. Here we
survey current efforts to improve simulation quality and discuss promising
research directions for model engineering.

Keywords
Modeling, Systems Biology, Best Practice, Software Engineering

1 2 2 2

1

2

 Referee Status:

 Invited Referees

 version 1
published
05 Mar 2019

 1 2 3

, King AbdullahRobert Hoehndorf

University Science and Technology, Saudi
Arabia

1

, RIKEN Center forShuichi Onami

Biosystems Dynamics Research, Japan
2

, NationalMartin Meier-Schellersheim

Institutes of Health, USA
3

 05 Mar 2019, (F1000 Faculty Rev):261 (First published: 8
)https://doi.org/10.12688/f1000research.15997.1

 05 Mar 2019, (F1000 Faculty Rev):261 (Latest published: 8
)https://doi.org/10.12688/f1000research.15997.1

v1

Page 1 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

http://f1000.com/prime/thefaculty
http://f1000.com/prime/thefaculty
https://f1000research.com/articles/8-261/v1
https://f1000research.com/articles/8-261/v1
https://f1000research.com/articles/8-261/v1
https://doi.org/10.12688/f1000research.15997.1
https://doi.org/10.12688/f1000research.15997.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.15997.1&domain=pdf&date_stamp=2019-03-05

 Joseph L. Hellerstein ()Corresponding author: joseph.hellerstein@gmail.com
 : Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; : Writing – Review &Author roles: Hellerstein JL Gu S

Editing; : Writing – Review & Editing; : Conceptualization, Funding Acquisition, Writing – Original Draft Preparation, Writing –Choi K Sauro HM
Review & Editing

 No competing interests were disclosed.Competing interests:
 HMS was supported by NIH grants GM123032-01, NHLBI U01HL122199-02, and P41EB023912. KC was supported by NIHGrant information:

grants GM081070-01 and GM123032-01A1. SG was supported by a subcontract via HMS from Mount Sinai (Stuart Sealfon) NIAID Modeling
Immunity for Biodefense HHSN266200500021C. JH is supported by the Moore/Sloan Data Science Environments Project at the University of
Washington supported by grants from the Gordon and Betty Moore Foundation (Award #3835) and the Alfred P. Sloan Foundation (Award
#2013-10-29).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 © 2019 Hellerstein JL . This is an open access article distributed under the terms of the ,Copyright: et al Creative Commons Attribution Licence
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 Hellerstein JL, Gu S, Choi K and Sauro HM. How to cite this article: Recent advances in biomedical simulations: a manifesto for model
 2019, (F1000 Faculty Rev):261 (engineering [version 1; referees: 3 approved] F1000Research 8
)https://doi.org/10.12688/f1000research.15997.1

 05 Mar 2019, (F1000 Faculty Rev):261 () First published: 8 https://doi.org/10.12688/f1000research.15997.1

Page 2 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.15997.1
https://doi.org/10.12688/f1000research.15997.1

Introduction
Quantitative models are at the core of science and engineering.
For example, the field of atmospheric sciences has provided
increasingly accurate weather predictions over ever longer time
horizons1, capabilities that greatly benefit agriculture, shipping,
and many leisure pursuits.

A simulation model (hereafter, just model) quantifies relationships
between input variables and output variables using differential
equations, Boolean expressions, Petri Nets, and/or other
techniques2–4. Figure 1(a) contains a model of enzyme kinetics
expressed in the Antimony5 language. A simulation is a software
implementation of a model. Sometimes, the model is embedded
within the computer codes such as Python or MATLAB. How-
ever, a recommended practice is to have models in a computer-
readable representation from which simulation codes are derived
automatically, as in Figure 1(b). An experiment is an execution
of simulation codes for values of simulation parameters, such as
specifying initial concentrations for S and E in Figure 1(c). A
biomedical modeling project typically constructs models, con-
ducts validation experiments (e.g. by comparing simulation results
with empirical data), and runs experiments that make predictions
of biological significance.

Current practice in biomedical simulations has numerous
shortcomings that greatly limit the value provided to translational
medicine and related areas. One common complaint is that the
results of published biomedical models are difficult to reproduce
and so are not widely used or trusted. Another concern is that
published models are difficult to understand, especially to ascer-
tain the biology being modeled. Furthermore, existing models are
not constructed with an eye towards reuse, and so it is challenging

to use existing models as building blocks to construct larger
models, such as whole-cell models.

This article reviews current practice in biomedical simulations,
especially how models are specified, designed, and constructed.
Our central observation is that the issues raised in the above
critiques of biomedical simulations have close analogues in
software projects, an observation made by others as well
(e.g. 6) This motivates a research initiative that we refer to as
model engineering: how biomedical models can be improved by
using best practices and tools adapted from software engineering.

The impact of model engineering will in part depend on address-
ing two challenges. First, some central principles of software
engineering are difficult to apply to biomedical models, and so it
may be impossible to use software techniques that rely on these
principles. For example, reuse of software is often achieved by
creating modules that hide the internals of their operation. How-
ever, as others have noted7, information hiding is problematic for
biomedical models because having models work in combination
requires an understanding of all chemical species and reactions
that they model. Second, some of the benefits of model engineer-
ing may require changes in how modeling is done, such as using
meaningful names for chemical species. Such behavioral changes
can be difficult to achieve.

Critiques of current practice
Reproducibility
Scientific inquiry is largely based on conducting experiments.
An experiment is reproducible if it can be conducted by many
researchers, possibly with modest variations, and similar results
are obtained. Reproducibility is at the heart of scientific progress.

Figure 1. Illustration of core concepts. (a) A model of enzyme kinetics is expressed in the Antimony Language. (b) The simulation object
rr is created from the model in (a). (c) The experiment uses the simulation object to specify initial values for S and E, runs the simulation,
and prints the results.

Page 3 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

Unfortunately, many scientific papers contain results that cannot
be reproduced. For example, a survey of 1,500 scientists found
that over 70% had been unsuccessful in reproducing published
results8. A tangible impact is an increased number of retracted
papers and failed clinical trials9.

Ensuring reproducibility seems manageable (even trivial) for
computational studies if the same simulations are run repeatedly
in the same computing environment. Unfortunately, reproducibility
of simulation experiments is often problematic. The authors of
9 cite issues such as (1) the computer codes may not be run-
nable in environments other than those used in the published
work (e.g. a special purpose supercomputer) and (2) the specif-
ics of the computational environment may not be documented in
sufficient detail and thus cannot be reconstructed by others.

Much work has addressed improving the reproducibility of
biomedical simulations. The most well-known examples are
standardized formats that ensure reproducibility and exchange-
ability of simulation studies. Standards such as Systems Biology
Markup Language (SBML)10 and CellML11 provide community-
approved formats for sharing simulation models, and public
repositories with models in these formats are available12.
The Simulation Experiment Description Markup Language
(SEDML)13 provides a standard for describing simulation
experiments. More broadly, the MIRIAM system14 establishes
standards for the information that must be contained in a model
so that it is reproducible, and the Systems Biology Ontology14
provides a way to specify what is being modeled in a common
way.

Software engineering has several techniques that can comple-
ment current efforts to create reproducible biomedical simulations.
Consider a situation in which an SBML model of modest
complexity (e.g. a hundred or more reactions) does not reproduce
a published result. We are faced with the problem of determin-
ing why the model is not reproducible. A similar situation arises
when a software package is installed and fails to work properly.

Several techniques are used by software engineers to address
this problem. First, the best practices for building software
include the development of unit tests that assess the correct-
ness of fine-grain parts (units) of a software package. By running
unit tests, we can isolate the cause of the package failure. Oth-
ers have noted the potential value of unit tests for biomedical
models15. Second, software, like biomedical models, is eas-
ily changed. Software engineers use version control16 to identify
when a change caused unit tests to fail, which is akin to a loss of
reproducibility. Here too, others have recommended the use of
version control for biomedical models17. Last, it may be that a
software failure is not the result of a problem with the new
package per se. Rather, the failure may be due to conflicts
between the new package and other software installed on the same
computer (e.g. inconsistent versions of Python). Software
engineers use package managers to handle the consistency of
software versions. As biomedical models grow in size, it is likely
that there will be attempts to combine models that conflict in
some way. A package manager for models may benefit biomedical
simulations as reuse becomes common.

Readability
Model readability is about the ability of humans to read and
understand a model. Readability is often overlooked, and this can
have serious consequences. For example, the Therac-25 radia-
tion therapy machine was involved in at least six accidents in
which patients were given massive overdoses, result-
ing in several deaths because of legacy code that was poorly
understood18.

Much work has been done to remove ambiguity in biomedical
models. For example, annotations (e.g. 19) can be applied to detect
that two names refer to the same chemical species, and annotations
can be used to clarify which pathways are being modeled.

Another contribution to readability is rule-based systems
(e.g. 20). Rules can improve human understanding by using
hierarchies to organize details of models, such as an organization
by cell structures.

Still other contributions to model readability are tools that
convert computer encodings into a human-readable equivalent.
Two examples are converting SBML into LaTex21 and translating
SED-ML into readable text22.

Software engineering addresses readability in a much more
comprehensive way (e.g., 23). This is in part because of the
commercial importance of software to companies such as Google,
Facebook, and Microsoft. Another reason for the focus on read-
ability is the scale and complexity of software. Open source
projects such as Firefox and Linux have several million lines of
code, and human understanding of these codes is essential for
fixing errors and adding features. In contrast, a typical model in
BioModels has under 100 reactions. Even very large models
such as whole-cell models24 have a far lower complexity than
popular open source software projects. However, to develop
whole-tissue, whole-organ, and even whole-organism models, the
complexity of biomedical models will grow dramatically.
We believe that the experience with readability of software offers
guidance for the readability of biomedical models.

One insight from software relates to a seemingly mundane
consideration––the choice of variable names. The biomedical
modeling community has devoted much effort to annotations (e.g.
identifying the chemical species associated with a name) but not
to the choice of names per se.

We illustrate the importance of the choice of species name
to readability. Consider two models of the MAPK cascade that
are curated in the BioModels repository12 according to the
MIRIAM standard. Figure 2 displays a snippet of model
BIOMD0000000019. This model uses numbered values of the
letter x to denote different chemical species. Although this is rea-
sonable for a computer representation of the chemical species,
human readability is impaired. Now, consider BIOMD0000000010
and the snippet of this model in Figure 3. We see that the names
are chosen in a systematic way that promotes readability.
Specifically, KK denotes the MAPK kinase, KKK denotes the MAPK
kinase kinase, E1 and E2 are enzymes, and P_X indicates the
phosphorylation of the molecule X.

Page 4 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

Because of the importance of readability in software engineer-
ing, there are style guides for every major computer language
(e.g. see 25 for Python style) that dictate details such as how
to name variables, structure codes, and even the location of white
spaces to improve human readability. In recent years, the scope
of readability of software codes has been extended to an idea
called literate programming that mixes human written text with
computer codes26. Literate programming motivated the develop-
ment of tools such as Jupyter Notebooks27, R markdown28, and
the Tellurium Notebook29. These tools are a kind of living
laboratory notebook that describes the assumptions made, pro-
cedures used, and outcomes observed. Literate programming
provides the additional benefit of being able to easily change
modeling assumptions and/or procedures and then re-run the
simulation.

Reuse
A component is reusable if it can be readily embedded into
many different systems. The multi-trillion-dollar software indus-
try is largely built on reusable components. Waltemath et al.15
and Goldberg et al.6 argue for building models so that they can
be reused, but both observe that in current practice it is rare for
a model to be embedded as-is into another model.

At first glance, it seems surprising that models are rarely reused,
since there are hundreds of models in each of the BioModels
and CellML repositories that are in computer-readable stand-
ard formats. Furthermore, the use of constructs such as the
Antimony5 model statement provides a convenient way to reuse
model subparts. Given this, why not approach reuse as is done
in software engineering?

To date, model reuse has largely focused on modularization–
–organizing codes as a collection of fairly coarse-grain com-
ponents called modules; modules are the unit of reuse. This
approach is widely used in software systems and largely rests on
the principle of information hiding. That is, a component exposes
an interface that describes what inputs it takes and what outputs
it produces. How the outputs are produced is hidden. Software
components that abide by the principle of information hiding
and have no side-effects can be combined without concerns of
unintended interactions with other components, since the compo-
nent internals are hidden from one another.

Unfortunately, information hiding can be difficult to achieve
when embedding biomedical models, at least if the embedded
models describe pathways in the same biological compartment.
Consider how to build an integrated model of the glycolysis
and pentose phosphate pathways from two separately devel-
oped models of each pathway. The problem is that to correctly
simulate the pathways in combination, the integrated model must
take into account chemical species that are in common to both
(e.g. fructose 6-phosphate).

Annotations are an important part of solving this problem by
allowing the identification of identical chemical species in dif-
ferent models. Indeed, the use of annotations with appropriate
software tools can greatly facilitate the detection of situations
in which the same chemical species is present in multiple
modules7.

We observe that annotations alone do not solve the problem of
model reuse because reuse has integration considerations such as
(a) defining equivalences between chemical species in different
submodels, (b) adding side-reactions to handle interactions
between intermediate species in submodels, and (c) handling reac-
tions that are duplicated across submodels. Fortunately, software
engineering has developed a number of ways to structure codes
that enable a more fine-grain integration of components than is
possible with modularization. We further note that it is important
to record the changes made when reusing a model and the rea-
sons for making these changes to better understand differences in
experimental results.

Model engineering
The previous section discusses shortcomings in current practice
for biomedical simulations in reproducibility, readability, and
reuse. Concerns in these areas are very similar to challenges faced
by the software industry with creating, evolving, and maintain-
ing large software systems. Indeed, the huge success of the soft-
ware industry over the last 50 years is in many ways a result of
providing solutions for reproducibility, readability, and reusabil-
ity. In this section, we explore the extent to which the tools and
practices of software engineering can improve the quality of
biomedical simulations.

Software engineering can be described as “the application of a
systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software”16. Practitioners often

Figure 3. Snippets of a model of the MAPK cascade that uses
variable names that promote readability.

Figure 2. Snippets of a model of the MAPK cascade that uses
variable names that impair readability.

Page 5 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

segment software projects into phases referred to as the software
life cycle.

•	 The requirements phase defines what is to be built.

•	 The design phase specifies the components used and how
they interact to address the requirements.

•	 The construction phase implements the design.

Even though phases are listed in sequence, phases are not strictly
linear. Rather, software development is an iterative process, and
there is considerable variability in the steps used from project
to project30,31. That said, there are activities that are common
to a diverse set of projects. As a result, a variety of tools have
been developed to aid the engineering process.

To illustrate the application of software engineering to biomedi-
cal simulations, we use a running example: building a simu-
lation that combines the glycolysis pathway with the pentose
phosphate pathway (PPP)7,32.

Requirements
A requirement is a description of what a system should do. In
our running example, the requirement is to create an integrated
model of the glycolysis and PPP pathways by combining separate
models of each pathway.

Requirements can be further refined by describing use cases.
In software, a use case describes how the user interacts with the
system. For simulation models, we define a use case as the
information provided by running the simulation model.

Some elements of a model use case are:

•	 Biological process: the chemical pathways that are
addressed by the model (e.g. glycolysis, MAPK
cascade)

•	 Coverage: the parts of the biological scope that are
included in the model, such as the chemical species,
reactions, and regulators

•	 Location: the biological compartment in which the
reaction takes place.

Here, we explore a limited part of software design––code struc-
ture––and the application of code structuring techniques to improv-
ing biomedical models.

Explicit articulation of use cases can address some of the cri-
tiques of current practice for biomedical simulations. Use cases
provide a clear statement of the purpose of the model. This
enhances readability in the same way that it is easier to read a book
with a familiar plot. Further, use cases increase model reuse by
allowing modelers to identify existing models that are similar
to what is required for a new modeling project.

We see a number of research directions related to the require-
ments phase of model engineering. First, there is considerable

benefit in developing a formal vocabulary for expressing use
cases for biomedical simulations. A good foundation exists
already––the BioModels12 advanced search capability that allows
for a search by categories within the gene ontology. More work
is needed, however, to flesh out the elements of a model use
case and to provide a controlled vocabulary for considerations
such as coverage. A second research direction is to develop
algorithms for searching model repositories based on elements of
use cases and effectively present results for complex searches.

Design
A design specifies the components used and how they inter-
act to address the requirements. We use the term component to
mean something more general than a module. For example, a
component of a biomedical model might be as fine grain as a
reaction or even the kinetics of a reaction. Here, we explore a
limited part of software design––code structure––and the appli-
cation of code structuring techniques to improving biomedical
models.

As noted earlier, a common way to structure software is modu-
larization, in which code is organized into relatively independent
pieces called modules. Each module performs a limited set of
functions, and modules do not expose the internals of how their
functions are accomplished.

We consider a modular design for the integrated glycolysis and
PPP pathways. A first step is to find existing models for each
pathway. To this end, we search BioModels using the control-
led vocabularies that are part of the MIRIAM standard. Using
the glycolysis process annotation from the gene ontology,
GO:0006096, we find 35 models. Similarly, we search for
models labeled with the pentose phosphate shunt, GO:0006098.
We obtain 11 results.

We create a glycolysis module using Nielsen et al.33 and a
PPP module using Chassagnole et al.34. Figure 4 contains a
snippet of the glycolysis module using Antimony syntax, and
Figure 5 does the same for PPP.

We see that both modules reference the names ADP, ATP, G6P,
and F6P. Although it may be obvious to the reader that the
intent is to refer to the same chemical species, the semantics
of the model statement are that the names in Figure 4 refer to
different chemical species from the same names in Figure 5.
One way to resolve this problem is to make explicit equiva-
lences between chemical species7. Figure 6 demonstrates how to
accomplish this in Antimony.

Figure 4. Snippet of the glycolysis model in 33.

model Gly():
GLU + ATP→ F6P +ADP
F6P + ATP → FBP+ ADP
...
PEP + ADP → PYR + ATP

end

Page 6 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

Making specific equivalences is burdensome if there are many
models with chemical species in common. Similar problems
arise in software as well. The software solution is to use name
scoping35. A scope is the codes for which a name refers to the
same entity. For the running example, the appropriate scope is a
biological compartment––in this case, the cytoplasm. Using
names with a compartment scope eliminates the need for mak-
ing explicit equivalences as in Figure 6. Furthermore, with name
scoping and consistent use of names, name equivalences are
made automatically when a new model is added.

A key shortcoming of modularization is that a module must
be either used in its entirety or not used at all. Often, we need
greater selectivity as to which model elements are reused. One
way to provide this is with object oriented programming36. Object-
oriented approaches structure shared codes into one or more
“parent classes” that are “inherited” to create specialized modules.
This turns out to be useful in the running example. Chassagnole
et al. model parts of the glycolytic pathway as well as PPP.
Using object hierarchies, we can reorganize the models so that
the glycolysis parts of Chassagnole et al. are in a parent class
from which both the reorganized Chassagnole model and a refac-
tored version of the Gly inherit. Object hierarchies are used in
areas of systems biology such as the Functional Model of
Anatomy37. However, we are unaware of the use of object
hierarchies in community standards for reusable models.

Another powerful technique for structuring software is
aspect-oriented programming (AOP)38, in which code is inserted
for every occurrence of a pattern. For example, in software AOP can
be used to count function calls (e.g. as part of a profiler); the pat-
tern is a function definition, and the inserted code is a call to an
instrumentation function. AOP has the potential to simplify bio-
medical models and increase reuse. Consider the specification of
reaction kinetics. AOP (in combination with consistent naming of
enzymes) makes it easy to specify Michaelis-Menten kinetics
for every enzyme-catalyzed reaction and specify mass balance

kinetics if the reaction is not enzyme catalyzed. In this case, the
pattern is the presence or absence of an enzyme, and the inserted
element is the kinetics law.

Construction
Construction is about implementing a design. This involves
implementing new components (coding), revising components,
and detecting errors in components. These tasks have direct
analogs in the construction of biomedical models.

Coding a biomedical model can be done in a general purpose
programming language such as Python, Java, and FORTRAN.
However, there is considerable benefit to using domain-specific
languages (DSLs) that are tailored to biomedical modeling.
Examples of DSLs include Antimony5 and Jarnac39 as well as
interchange formats, such as SBML10 and CellML11.

As we have emphasized throughout, a key reason for the
success of the software industry is the focus on reuse. When
an application incorporates software from many sources, the
embedded software is referred to as dependencies. The embed-
ding application wants to incorporate future changes to embed-
ded software that fixes errors and adds features. However, there
may be changes in dependencies that “break” the applica-
tion because embedded codes work differently. Detecting and
resolving breaking changes is central to dependency manage-
ment. In software systems, this is typically handled by a package
manager16 that can list, add, update, and remove dependen-
cies. Often, dependencies must be analyzed transitively, since a
dependency may itself have dependencies that need to be
managed (e.g. the operating system version on which the web
browser depends).

If biomedical models are going to be reused, then dependency
management must be addressed. For example, changes in the
intermediate species used in an embedded model can affect the
efficiency and correctness of the embedding model. In the running
example, we build a model for the glycolysis and PPP pathways
by combining separate models of each pathway. Dependency
management is required to take advantage of future bug fixes
and enhancements in these embedded models. However, we do
not want to incorporate changes that violate the assumptions of
our combined model (e.g. related to the metabolites present).

Software is testable if it is structured so that components can
be tested independently and in combination. The former are
referred to as unit tests and the latter as system tests. A test has
two parts: (1) the invocation of the code being tested and (2) a
comparison of the outputs returned to their expected values
Waltemath et al.15 note the importance of systematic testing in
building whole-cell models.

Significant effort is required to write good tests. Indeed, writ-
ing tests can be as demanding as writing the code being tested.
Even so, the experience from the software engineering is that
time devoted to writing tests is well worth the investment because
of the dramatic improvement in software quality. The SciUnit

Figure 6. Some of the equivalences required between Gly and
PPP.

Figure 5. Snippet of the pentose phosphate pathway model in 34.

model PPP():
G6P+ NADP+→ 6PG+NAPDH
F6P + NADP+→ Ribu5P + NADPH
...
PEP + ADP → PYR + ATP

end

Gly.ADP:= PPP.ADP
Gly.ATP:= PPP.ATP
Gly.F6P:= PPP.F6P
GLY.PYR:= PPP.PYR

Page 7 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

project40 provides a way to write tests for any simulation output.
A test specifies simulation outputs and a Boolean valued function
that is evaluated on those outputs.

Contrary to its name, SciUnit provides system tests, not unit
tests, because a full model is being tested; unit tests are more fine
grain. For example, a unit might be an individual reaction, and a
unit test might evaluate if the reaction kinetics provide bounded
reaction rates. We see the development of unit tests for models
as an exciting research direction.

Testing detects errors by running experiments. This is referred
to as dynamic analysis. Dynamic analysis has the benefit of
being able to check a broad range of errors, but it is time con-
suming and often non-trivial to resolve the errors that are discov-
ered. Software engineering complements dynamic analysis with
static analysis of codes. For example, tools called linters exam-
ine source codes for errors such as referencing a variable before
it is assigned a value41.

Static analysis can be applied to simulation models. For exam-
ple, a well-formed reaction should preserve mass balance. That
is, the sum of the masses of the reactants should equal the sum
of the masses of the products. Mass balance is easy to check if
chemical species have annotations that provide machine-readable
chemical formulas. Unfortunately, in current practice, it is unusual
to have such detailed specifications of the chemical species.

Fortunately, static checking for mass balance is possible even
without annotations, although for a somewhat weaker condition
called stoichiometric inconsistency. We illustrate this by example.
Suppose we have the following reactions:

A + B → C

B → C

The first reaction implies that the mass of C is greater than the
mass of B. The second reaction implies that B and C have the same
mass. That is, these reactions have a stoichiometric inconsistency.
Stoichiometric inconsistencies can be detected automatically using
techniques as in 42, and this can be done without annotations.

Other potential errors that can be detected statically include
duplicate reactions, dubious kinetics expressions (e.g. no reactant
is present in the kinetics expression), and superfluous chemical
species that always have a concentration of zero. A very promis-
ing research direction is to develop linters for biomedical models
that detect a wide range of static errors and report on poor
modeling practices such as poorly chosen names for chemical
species.

Conclusions
Common critiques of biomedical simulations point to issues
with reproducibility, readability, and reuse. Many have proposed
addressing these critiques by making use of elements of soft-
ware engineering practice. Herein, we argue for a broad research
agenda, called model engineering, that systematically adapts
techniques from software engineering to building models of
biomedical systems.

We organize model engineering along the lines of software
engineering, with separate phases for model requirements, design,
and construction. For requirements, we advocate the develop-
ment of use cases that describe the information provided by a
model. For design, we focus on model reuse, especially two
techniques from software engineering: name scoping and code
structuring (e.g. modularization, object hierarchies, and aspect
oriented programming). For construction, we emphasize (a)
domain-specific languages (DSLs), (b) dependency manage-
ment that assists with handling embedded models, (c) testing to
detect defects from running models, and (d) linters that do static
error checking. The benefits of these directions are summarized
in Table 1.

The impact of model engineering depends in part on the extent to
which it is possible to adapt principles from software engineering
to biomedical models. For example, the software engineering
principle of information hiding is unlikely to be effective for
biomedical models (at least for combining models whose scope
is the same biological compartment). This is problematic in terms
of using modularization as a way to construct reusable models.
Fortunately, software engineering provides many techniques other
than modularization to structure codes for reuse (e.g. object-
oriented programming and AOP). It may be that these alternative

Table 1. Benefits of model engineering. The benefits are improvements
in reproducibility, readability, and reuse. The benefits are organized by
lifecycle phase: requirements (R), design (D), and construction (C).

SWE Practice Reproducible Readable Reuse

R: Use Cases ✓ ✓

D: Name scope ✓ ✓

D: Code Structure ✓ ✓

C: Domain Specific Languages ✓ ✓

C: Dependency Management ✓ ✓

C: Unit tests ✓ ✓

C: Linters ✓ ✓

Page 8 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

techniques are more effective for structuring biomedical models for
reuse.

A second constraint on the impact of model engineering is
that realizing some of its benefits requires changes in current
modeling practice. For example, one of our recommendations
is that modelers use meaningful names to make models more
readable. Such behavioral changes can be difficult to achieve.

Model engineering can be advanced in many ways. Consider-
able impact is possible by working directly with journals and
funding agencies to argue for the inclusion of model engineer-
ing in paper submissions and funding proposals by requiring
discussions of model requirements, designs, and construction.
A second approach is to advocate for model engineering
directly with the modeling community through publications and
workshops. Last, some leverage may be possible by working with
the computer science community where there is great interest in

the problems addressed by model engineering and the use of
software engineering to solve these problems (e.g. 43).

Grant information
HMS was supported by NIH grants GM123032-01, NHLBI
U01HL122199-02, and P41EB023912. KC was supported
by NIH grants GM081070-01 and GM123032-01A1. SG was sup-
ported by a subcontract via HMS from Mount Sinai (Stuart Sealfon)
NIAID Modeling Immunity for Biodefense HHSN266200500021C.
JH is supported by the Moore/Sloan Data Science Environments
Project at the University of Washington supported by grants
from the Gordon and Betty Moore Foundation (Award #3835)
and the Alfred P. Sloan Foundation (Award #2013-10-29).

The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

1.	 Kerr RA: Meteorology. Weather forecasts slowly clearing up. Science. 2012;
338(6108): 734–737.
PubMed Abstract | Publisher Full Text

2.	 Goss PJ, Peccoud J: Quantitative modeling of stochastic systems in molecular
biology by using stochastic Petri nets. Proc Natl Acad Sci U S A. 1998; 95(12):
6750–6755.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Wang RS, Saadatpour A, Albert R: Boolean modeling in systems biology:
an overview of methodology and applications. Phys Biol. 2012; 9(5): 055001.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

4.	 Kitano H: Systems biology: a brief overview. Science. 2002; 295(5560): 1662–1664.
PubMed Abstract | Publisher Full Text

5.	 Smith LP, Bergmann FT, Chandran D, et al.: Antimony: a modular model
definition language. Bioinformatics. 2009; 25(18): 2452–2454.
PubMed Abstract | Publisher Full Text | Free Full Text

6.	 Goldberg AP, Szigeti B, Chew YH, et al.: Emerging whole-cell modeling
principles and methods. Curr Opin Biotechnol. 2018; 51: 97–102.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

7.	 Neal ML, Cooling MT, Smith LP, et al.: A reappraisal of how to build modular,
reusable models of biological systems. PLoS Comput Biol. 2014; 10(10):
e1003849.
PubMed Abstract | Publisher Full Text | Free Full Text

8.	 Baker M: 1,500 scientists lift the lid on reproducibility. Nature. 2016; 533(7604):
452–4.
PubMed Abstract | Publisher Full Text

9.	 Sandve GK, Nekrutenko A, Taylor J, et al.: Ten simple rules for reproducible
computational research. PLoS Comput Biol. 2013; 9(10): e1003285.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

10.	 Hucka M, Finney A, Sauro HM, et al.: The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics. 2003; 19(4): 524–31.
PubMed Abstract | Publisher Full Text

11.	 Cuellar AA, Lloyd CM, Nielsen PF, et al.: An overview of cellml 1.1, a biological
model description language. Simulation. 2003; 79(12): 740–747.
Publisher Full Text

12.	 Le Novère N, Bornstein B, Broicher A, et al.: BioModels Database: a free,
centralized database of curated, published, quantitative kinetic models of
biochemical and cellular systems. Nucleic Acids Res. 2006; 34(Database issue):
D689–D691.
PubMed Abstract | Publisher Full Text | Free Full Text

13.	 Waltemath D, Adams R, Bergmann FT, et al.: Reproducible computational
biology experiments with SED-ML--the Simulation Experiment Description
Markup Language. BMC Syst Biol. 2011; 5(1): 198.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

14.	 Hoehndorf R, Dumontier M, Gennari JH, et al.: Integrating systems biology
models and biomedical ontologies. BMC Syst Biol. 2011; 5(1): 124.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

15.	 Waltemath D, Karr JR, Bergmann FT, et al.: Toward Community Standards
and Software for Whole-Cell Modeling. IEEE Trans Biomed Eng. 2016; 63(10):
2007–2014.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

16.	 Society IC, Bourque P, Fairley RE: Guide to the Software Engineering Body
of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society Press, Los
Alamitos, CA, USA, 3rd edition, 2014.
Reference Source

17.	 McDougal RA, Bulanova AS, Lytton WW: Reproducibility in Computational
Neuroscience Models and Simulations. IEEE Trans Biomed Eng. 2016; 63(10):
2021–35.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

18.	 AP: Fatal radiation dose in therapy attributed to computer mistake.New York
Times. June 1986.
Reference Source

19.	 Neal ML, Carlson BE, Thompson CT, et al.: Semantics-Based Composition
of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.
PLoS One. 2015; 10(12): e0145621.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20.	 Harris LA, Hogg JS, Tapia JJ, et al.: BioNetGen 2.2: advances in rule-based
modeling. Bioinformatics. 2016; 32(21): 3366–3368.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

21.	 Dräger A, Planatscher H, Motsou Wouamba D, et al.: SBML2LATEX: conversion of
SBML files into human-readable reports. Bioinformatics. 2009; 25(11): 1455–1456.
PubMed Abstract | Publisher Full Text | Free Full Text

22.	 Choi K, Smith LP, Medley JK, et al.: phraSED-ML: A paraphrased, human-
readable adaptation of SED-ML. J Bioinform Comput Biol. 2016; 14(06): 1650035.
PubMed Abstract | Publisher Full Text | Free Full Text

23.	 Buse RP, Weimer WR: A metric for software readability. In Proceedings of the
2008 International Symposium on Software Testing and Analysis. ISSTA’08, Seattle,
WA, USA. ACM, 2008; 121–130.
Reference Source

24.	 Karr JR, Sanghvi JC, Macklin DN, et al.: A whole-cell computational model
predicts phenotype from genotype. Cell. 2012; 150(2): 389–401.
PubMed Abstract | Publisher Full Text | Free Full Text

25.	 Reitz K, Schlusser T: The Hitchhiker’s Guide to Python: Best Practices for
Development. O’Reilly Media, 2016.
Reference Source

26.	 Knuth DE: Literate programming. Comput J. 1984; 27(2): 97–111.
Publisher Full Text

References F1000 recommended

Page 9 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

http://www.ncbi.nlm.nih.gov/pubmed/23139308
http://dx.doi.org/10.1126/science.338.6108.734
http://www.ncbi.nlm.nih.gov/pubmed/9618484
http://dx.doi.org/10.1073/pnas.95.12.6750
http://www.ncbi.nlm.nih.gov/pmc/articles/22622
https://f1000.com/prime/718667672
http://www.ncbi.nlm.nih.gov/pubmed/23011283
http://dx.doi.org/10.1088/1478-3975/9/5/055001
https://f1000.com/prime/718667672
http://www.ncbi.nlm.nih.gov/pubmed/11872829
http://dx.doi.org/10.1126/science.1069492
http://www.ncbi.nlm.nih.gov/pubmed/19578039
http://dx.doi.org/10.1093/bioinformatics/btp401
http://www.ncbi.nlm.nih.gov/pmc/articles/2735663
https://f1000.com/prime/732360246
http://www.ncbi.nlm.nih.gov/pubmed/29275251
http://dx.doi.org/10.1016/j.copbio.2017.12.013
http://www.ncbi.nlm.nih.gov/pmc/articles/5997489
https://f1000.com/prime/732360246
http://www.ncbi.nlm.nih.gov/pubmed/25275523
http://dx.doi.org/10.1371/journal.pcbi.1003849
http://www.ncbi.nlm.nih.gov/pmc/articles/4183381
http://www.ncbi.nlm.nih.gov/pubmed/27225100
http://dx.doi.org/10.1038/533452a
https://f1000.com/prime/720906062
http://www.ncbi.nlm.nih.gov/pubmed/24204232
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://www.ncbi.nlm.nih.gov/pmc/articles/3812051
https://f1000.com/prime/720906062
http://www.ncbi.nlm.nih.gov/pubmed/12611808
http://dx.doi.org/10.1093/bioinformatics/btg015
http://dx.doi.org/10.1177/0037549703040939
http://www.ncbi.nlm.nih.gov/pubmed/16381960
http://dx.doi.org/10.1093/nar/gkj092
http://www.ncbi.nlm.nih.gov/pmc/articles/1347454
https://f1000.com/prime/721960073
http://www.ncbi.nlm.nih.gov/pubmed/22172142
http://dx.doi.org/10.1186/1752-0509-5-198
http://www.ncbi.nlm.nih.gov/pmc/articles/3292844
https://f1000.com/prime/721960073
https://f1000.com/prime/721960145
http://www.ncbi.nlm.nih.gov/pubmed/21835028
http://dx.doi.org/10.1186/1752-0509-5-124
http://www.ncbi.nlm.nih.gov/pmc/articles/3170340
https://f1000.com/prime/721960145
https://f1000.com/prime/726427469
http://www.ncbi.nlm.nih.gov/pubmed/27305665
http://dx.doi.org/10.1109/TBME.2016.2560762
http://www.ncbi.nlm.nih.gov/pmc/articles/5451320
https://f1000.com/prime/726427469
http://beamphys.triumf.ca/info/SWEBOKv3.pdf
https://f1000.com/prime/726266587
http://www.ncbi.nlm.nih.gov/pubmed/27046845
http://dx.doi.org/10.1109/TBME.2016.2539602
http://www.ncbi.nlm.nih.gov/pmc/articles/5016202
https://f1000.com/prime/726266587
https://www.nytimes.com/1986/06/21/us/fatal-radiation-dose-in-therapy-attributed-to-computer-mistake.html
https://f1000.com/prime/726046219
http://www.ncbi.nlm.nih.gov/pubmed/26716837
http://dx.doi.org/10.1371/journal.pone.0145621
http://www.ncbi.nlm.nih.gov/pmc/articles/4696653
https://f1000.com/prime/726046219
https://f1000.com/prime/726500841
http://www.ncbi.nlm.nih.gov/pubmed/27402907
http://dx.doi.org/10.1093/bioinformatics/btw469
http://www.ncbi.nlm.nih.gov/pmc/articles/5079481
https://f1000.com/prime/726500841
http://www.ncbi.nlm.nih.gov/pubmed/19307240
http://dx.doi.org/10.1093/bioinformatics/btp170
http://www.ncbi.nlm.nih.gov/pmc/articles/2682517
http://www.ncbi.nlm.nih.gov/pubmed/27774871
http://dx.doi.org/10.1142/S0219720016500359
http://www.ncbi.nlm.nih.gov/pmc/articles/5313123
https://web.eecs.umich.edu/~weimerw/p/weimer-issta2008-readability.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22817898
http://dx.doi.org/10.1016/j.cell.2012.05.044
http://www.ncbi.nlm.nih.gov/pmc/articles/3413483
http://index-of.es/Varios-2/The Hitchiker's Guide to Python.pdf
http://dx.doi.org/10.1093/comjnl/27.2.97

27.	 Ragan-Kelley M, Perez F, Granger B, et al.: The Jupyter/IPython architecture:
a unified view of computational research, from interactive exploration to
communication and publication. AGU Fall Meeting Abstracts. H44D–07,
H44D-07, Dec. 2014.
Reference Source

28.	 Xie Y: Dynamic Documents with R and Knitr, Second Edition. Chapman & Hall/CRC,
2nd edition, 2015.
Reference Source

29.	 Medley JK, Choi K, König M, et al.: Tellurium notebooks-An environment for
reproducible dynamical modeling in systems biology. PLoS Comput Biol. 2018;
14(6): e1006220.
PubMed Abstract | Publisher Full Text | Free Full Text

30.	 Boehm B: A view of 20th and 21st century software engineering. In Proceedings
of the 28th international conference on Software engineering. ACM. 2006; 12–29.
Publisher Full Text

31.	 Boehm BW: A spiral model of software development and enhancement.
Computer. 1988; 21(5): 61–72.
Publisher Full Text

32.	 Neal ML, Gennari JH, Arts T, et al.: Advances in semantic representation for
multiscale biosimulation: a case study in merging models. In Biocomputing
2009. World Scientific; 2009; 304–315.
Reference Source

33.	 Nielsen K, Sørensen PG, Hynne F, et al.: Sustained oscillations in glycolysis: an
experimental and theoretical study of chaotic and complex periodic behavior
and of quenching of simple oscillations. Biophys Chem. 1998; 72(1–2): 49–62.
PubMed Abstract | Publisher Full Text

34.	 Chassagnole C, Noisommit-Rizzi N, Schmid JW, et al.: Dynamic modeling of the
central carbon metabolism of Escherichia coli. Biotechnol Bioeng. 2002; 79(1):
53–73.
PubMed Abstract | Publisher Full Text

35.	 Blume M, Appel AW: Hierarchical modularity. ACM T Progr Lang Sys. 1999; 21(4):

813–847.
Publisher Full Text

36.	 Wirfs-Brock RJ, Johnson RE: Surveying current research in object-oriented
design. Communications of the ACM. 1990; 33(9): 104–124.
Publisher Full Text

37.	 Hoehndorf R, Dumontier M, Gennari JH, et al.: Formalizing Systems Biology
Models with Biomedical Ontologies. Systems Biology. 2011.

38.	 Kiczales G, Lamping J, Mendhekar A, et al.: Aspect-oriented programming. In:
Akşit M, Matsuoka S, editors, ECOOP’97 — Object-Oriented Programming. Berlin,
Heidelberg. Springer Berlin Heidelberg. 1997; 220–242.
Publisher Full Text

39.	 Sauro HM: Jarnac: A System for Interactive Metabolic Analysis. In: Hofmeyr
JHS, Rohwer JM, Snoep JL, editors, Animating the Cellular Map: Proceedings of
the 9th International Meeting on BioThermoKinetics. Stellenbosch University Press.
2000.
Reference Source

40.	 That DHT, Fils G, Yuan Z, et al.: Sciunits: Reusable research objects.
Proceedings - 13th IEEE International Conference on eScience, eScience 2017.
2017; 374–383.
Publisher Full Text

41.	 Potočnik M, Čibej U, Slivnik B: Linter: a tool for finding bugs and potential
problems in scala code. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, Gyeongju, Republic of Korea. ACM, 2014. 1615–1616.
Publisher Full Text

42.	 Gevorgyan A, Poolman MG, Fell DA: Detection of stoichiometric inconsistencies
in biomolecular models. Bioinformatics. 2008; 24(19): 2245–2251.
PubMed Abstract | Publisher Full Text

43.	 Kitzes J, Turek D, Deniz F: The practice of reproducible research: case studies
and lessons from the data-intensive sciences. Univ of California Press, 2017.
Reference Source

Page 10 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

http://adsabs.harvard.edu/abs/2014AGUFM.H44D..07R
https://www.crcpress.com/Dynamic-Documents-with-R-and-knitr/Xie/p/book/9781498716963
http://www.ncbi.nlm.nih.gov/pubmed/29906293
http://dx.doi.org/10.1371/journal.pcbi.1006220
http://www.ncbi.nlm.nih.gov/pmc/articles/6021116
http://dx.doi.org/10.1145/1134285.1134288
http://dx.doi.org/10.1109/2.59
https://books.google.co.in/books?id=b61pDQAAQBAJ&pg=PA304&lpg=PA304&dq=Advances+in+semantic+representation+for+multiscale+biosimulation:+a+case+study+in+merging+models&source=bl&ots=TK4WwTfSVa&sig=ACfU3U2c-473QBojkwf4aCxgoUcl4Q4xTQ&hl=en&sa=X&ved=2ahUKEwj7yZf10NbgAhXMfn0KHU02BfQQ6AEwA3oECAcQAQ#v=onepage&q&f=false
http://www.ncbi.nlm.nih.gov/pubmed/17029704
http://dx.doi.org/10.1016/S0301-4622(98)00122-7
http://www.ncbi.nlm.nih.gov/pubmed/17590932
http://dx.doi.org/10.1002/bit.10288
http://dx.doi.org/10.1145/325478.325518
http://dx.doi.org/10.1145/83880.84526
http://dx.doi.org/10.1007/BFb0053381
https://www.scienceopen.com/document?vid=3b3d171b-904f-4b30-8f9c-ba77d59293ef
http://dx.doi.org/10.1109/eScience.2017.51
http://dx.doi.org/10.1145/2554850.2555129
http://www.ncbi.nlm.nih.gov/pubmed/18697772
http://dx.doi.org/10.1093/bioinformatics/btn425
https://www.researchgate.net/profile/R_Slaybaugh/publication/313193995_Reproducible_Computational_Science_on_High_Performance_Computers/links/589221ebaca272f9a5584b77/Reproducible-Computational-Science-on-High-Performance-Computers.pdf

Open Peer Review

 Current Referee Status:

Editorial Note on the Review Process
 are commissioned from members of the prestigious and are edited as aF1000 Faculty Reviews F1000 Faculty

service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees
provide input before publication and only the final, revised version is published. The referees who approved the
final version are listed with their names and affiliations but without their reports on earlier versions (any comments
will already have been addressed in the published version).

The referees who approved this article are:
Version 1

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com

 Laboratory of Systems Biology (LSB), Computational Biology Unit (CBU),Martin Meier-Schellersheim
National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA

 No competing interests were disclosed.Competing Interests:

1

 Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research,Shuichi Onami
Chuo-ku, Kobe, Hyogo, Japan

 No competing interests were disclosed.Competing Interests:

2

 Computational Bioscience Research Center, Computer, Electrical and MathematicalRobert Hoehndorf
Sciences & Engineering Division, King Abdullah University Science and Technology, Thuwal, Saudi Arabia

 No competing interests were disclosed.Competing Interests:

3

Page 11 of 11

F1000Research 2019, 8(F1000 Faculty Rev):261 Last updated: 14 MAR 2019

http://f1000research.com/collections/f1000-faculty-reviews/about-this-channel
http://f1000.com/prime/thefaculty

