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Abstract
Biomedical simulations are widely used to understand disease, engineer cells,
and model cellular processes. In this article, we explore how to improve the
quality of biomedical simulations by developing simulation models using tools
and practices employed in software engineering. We refer to this direction as
model engineering. Not all techniques used by software engineers are directly
applicable to model engineering, and so some adaptations are required. That
said, we believe that simulation models can benefit from software engineering
practices for requirements, design, and construction as well as from software
engineering tools for version control, error checking, and testing. Here we
survey current efforts to improve simulation quality and discuss promising
research directions for model engineering.
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Introduction
Quantitative models are at the core of science and engineering. 
For example, the field of atmospheric sciences has provided 
increasingly accurate weather predictions over ever longer time 
horizons1, capabilities that greatly benefit agriculture, shipping, 
and many leisure pursuits.

A simulation model (hereafter, just model) quantifies relationships 
between input variables and output variables using differential 
equations, Boolean expressions, Petri Nets, and/or other 
techniques2–4. Figure 1(a) contains a model of enzyme kinetics 
expressed in the Antimony5 language. A simulation is a software 
implementation of a model. Sometimes, the model is embedded 
within the computer codes such as Python or MATLAB. How-
ever, a recommended practice is to have models in a computer-
readable representation from which simulation codes are derived 
automatically, as in Figure 1(b). An experiment is an execution 
of simulation codes for values of simulation parameters, such as 
specifying initial concentrations for S and E in Figure 1(c). A 
biomedical modeling project typically constructs models, con-
ducts validation experiments (e.g. by comparing simulation results 
with empirical data), and runs experiments that make predictions 
of biological significance.

Current practice in biomedical simulations has numerous 
shortcomings that greatly limit the value provided to translational 
medicine and related areas. One common complaint is that the 
results of published biomedical models are difficult to reproduce 
and so are not widely used or trusted. Another concern is that 
published models are difficult to understand, especially to ascer-
tain the biology being modeled. Furthermore, existing models are 
not constructed with an eye towards reuse, and so it is challenging 

to use existing models as building blocks to construct larger 
models, such as whole-cell models.

This article reviews current practice in biomedical simulations, 
especially how models are specified, designed, and constructed. 
Our central observation is that the issues raised in the above 
critiques of biomedical simulations have close analogues in 
software projects, an observation made by others as well  
(e.g. 6) This motivates a research initiative that we refer to as 
model engineering: how biomedical models can be improved by  
using best practices and tools adapted from software engineering.

The impact of model engineering will in part depend on address-
ing two challenges. First, some central principles of software 
engineering are difficult to apply to biomedical models, and so it 
may be impossible to use software techniques that rely on these 
principles. For example, reuse of software is often achieved by 
creating modules that hide the internals of their operation. How-
ever, as others have noted7, information hiding is problematic for 
biomedical models because having models work in combination 
requires an understanding of all chemical species and reactions 
that they model. Second, some of the benefits of model engineer-
ing may require changes in how modeling is done, such as using 
meaningful names for chemical species. Such behavioral changes 
can be difficult to achieve.

Critiques of current practice
Reproducibility
Scientific inquiry is largely based on conducting experiments. 
An experiment is reproducible if it can be conducted by many 
researchers, possibly with modest variations, and similar results 
are obtained. Reproducibility is at the heart of scientific progress.

Figure 1. Illustration of core concepts. (a) A model of enzyme kinetics is expressed in the Antimony Language. (b) The simulation object 
rr is created from the model in (a). (c) The experiment uses the simulation object to specify initial values for S and E, runs the simulation, 
and prints the results.
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Unfortunately, many scientific papers contain results that cannot 
be reproduced. For example, a survey of 1,500 scientists found 
that over 70% had been unsuccessful in reproducing published 
results8. A tangible impact is an increased number of retracted 
papers and failed clinical trials9.

Ensuring reproducibility seems manageable (even trivial) for 
computational studies if the same simulations are run repeatedly 
in the same computing environment. Unfortunately, reproducibility 
of simulation experiments is often problematic. The authors of 
9 cite issues such as (1) the computer codes may not be run-
nable in environments other than those used in the published 
work (e.g. a special purpose supercomputer) and (2) the specif-
ics of the computational environment may not be documented in 
sufficient detail and thus cannot be reconstructed by others.

Much work has addressed improving the reproducibility of 
biomedical simulations. The most well-known examples are 
standardized formats that ensure reproducibility and exchange-
ability of simulation studies. Standards such as Systems Biology  
Markup Language (SBML)10 and CellML11 provide community- 
approved formats for sharing simulation models, and public 
repositories with models in these formats are available12. 
The Simulation Experiment Description Markup Language 
(SEDML)13 provides a standard for describing simulation  
experiments. More broadly, the MIRIAM system14 establishes  
standards for the information that must be contained in a model  
so that it is reproducible, and the Systems Biology Ontology14  
provides a way to specify what is being modeled in a common 
way.

Software engineering has several techniques that can comple-
ment current efforts to create reproducible biomedical simulations. 
Consider a situation in which an SBML model of modest 
complexity (e.g. a hundred or more reactions) does not reproduce 
a published result. We are faced with the problem of determin-
ing why the model is not reproducible. A similar situation arises  
when a software package is installed and fails to work properly.

Several techniques are used by software engineers to address 
this problem. First, the best practices for building software 
include the development of unit tests that assess the correct-
ness of fine-grain parts (units) of a software package. By running 
unit tests, we can isolate the cause of the package failure. Oth-
ers have noted the potential value of unit tests for biomedical 
models15. Second, software, like biomedical models, is eas-
ily changed. Software engineers use version control16 to identify 
when a change caused unit tests to fail, which is akin to a loss of 
reproducibility. Here too, others have recommended the use of 
version control for biomedical models17. Last, it may be that a 
software failure is not the result of a problem with the new 
package per se. Rather, the failure may be due to conflicts 
between the new package and other software installed on the same 
computer (e.g. inconsistent versions of Python). Software 
engineers use package managers to handle the consistency of 
software versions. As biomedical models grow in size, it is likely 
that there will be attempts to combine models that conflict in 
some way. A package manager for models may benefit biomedical 
simulations as reuse becomes common.

Readability
Model readability is about the ability of humans to read and 
understand a model. Readability is often overlooked, and this can 
have serious consequences. For example, the Therac-25 radia-
tion therapy machine was involved in at least six accidents in 
which patients were given massive overdoses, result-
ing in several deaths because of legacy code that was poorly 
understood18.

Much work has been done to remove ambiguity in biomedical 
models. For example, annotations (e.g. 19) can be applied to detect 
that two names refer to the same chemical species, and annotations 
can be used to clarify which pathways are being modeled.

Another contribution to readability is rule-based systems 
(e.g. 20). Rules can improve human understanding by using 
hierarchies to organize details of models, such as an organization 
by cell structures.

Still other contributions to model readability are tools that 
convert computer encodings into a human-readable equivalent. 
Two examples are converting SBML into LaTex21 and translating 
SED-ML into readable text22.

Software engineering addresses readability in a much more 
comprehensive way (e.g., 23). This is in part because of the 
commercial importance of software to companies such as Google, 
Facebook, and Microsoft. Another reason for the focus on read-
ability is the scale and complexity of software. Open source 
projects such as Firefox and Linux have several million lines of 
code, and human understanding of these codes is essential for 
fixing errors and adding features. In contrast, a typical model in 
BioModels has under 100 reactions. Even very large models 
such as whole-cell models24 have a far lower complexity than 
popular open source software projects. However, to develop 
whole-tissue, whole-organ, and even whole-organism models, the 
complexity of biomedical models will grow dramatically. 
We believe that the experience with readability of software offers 
guidance for the readability of biomedical models.

One insight from software relates to a seemingly mundane 
consideration––the choice of variable names. The biomedical 
modeling community has devoted much effort to annotations (e.g. 
identifying the chemical species associated with a name) but not 
to the choice of names per se.

We illustrate the importance of the choice of species name 
to readability. Consider two models of the MAPK cascade that 
are curated in the BioModels repository12 according to the 
MIRIAM standard. Figure 2 displays a snippet of model 
BIOMD0000000019. This model uses numbered values of the 
letter x to denote different chemical species. Although this is rea-
sonable for a computer representation of the chemical species, 
human readability is impaired. Now, consider BIOMD0000000010 
and the snippet of this model in Figure 3. We see that the names 
are chosen in a systematic way that promotes readability. 
Specifically, KK denotes the MAPK kinase, KKK denotes the MAPK 
kinase kinase, E1 and E2 are enzymes, and P_X indicates the 
phosphorylation of the molecule X.
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Because of the importance of readability in software engineer-
ing, there are style guides for every major computer language 
(e.g. see 25 for Python style) that dictate details such as how 
to name variables, structure codes, and even the location of white 
spaces to improve human readability. In recent years, the scope 
of readability of software codes has been extended to an idea 
called literate programming that mixes human written text with 
computer codes26. Literate programming motivated the develop-
ment of tools such as Jupyter Notebooks27, R markdown28, and 
the Tellurium Notebook29. These tools are a kind of living  
laboratory notebook that describes the assumptions made, pro-
cedures used, and outcomes observed. Literate programming  
provides the additional benefit of being able to easily change  
modeling assumptions and/or procedures and then re-run the  
simulation.

Reuse
A component is reusable if it can be readily embedded into 
many different systems. The multi-trillion-dollar software indus-
try is largely built on reusable components. Waltemath et al.15 
and Goldberg et al.6 argue for building models so that they can 
be reused, but both observe that in current practice it is rare for  
a model to be embedded as-is into another model.

At first glance, it seems surprising that models are rarely reused, 
since there are hundreds of models in each of the BioModels 
and CellML repositories that are in computer-readable stand-
ard formats. Furthermore, the use of constructs such as the  
Antimony5 model statement provides a convenient way to reuse 
model subparts. Given this, why not approach reuse as is done  
in software engineering?

To date, model reuse has largely focused on modularization–
–organizing codes as a collection of fairly coarse-grain com-
ponents called modules; modules are the unit of reuse. This 
approach is widely used in software systems and largely rests on 
the principle of information hiding. That is, a component exposes 
an interface that describes what inputs it takes and what outputs 
it produces. How the outputs are produced is hidden. Software 
components that abide by the principle of information hiding 
and have no side-effects can be combined without concerns of 
unintended interactions with other components, since the compo-
nent internals are hidden from one another.

Unfortunately, information hiding can be difficult to achieve 
when embedding biomedical models, at least if the embedded 
models describe pathways in the same biological compartment. 
Consider how to build an integrated model of the glycolysis 
and pentose phosphate pathways from two separately devel-
oped models of each pathway. The problem is that to correctly  
simulate the pathways in combination, the integrated model must 
take into account chemical species that are in common to both 
(e.g. fructose 6-phosphate).

Annotations are an important part of solving this problem by 
allowing the identification of identical chemical species in dif-
ferent models. Indeed, the use of annotations with appropriate 
software tools can greatly facilitate the detection of situations  
in which the same chemical species is present in multiple  
modules7.

We observe that annotations alone do not solve the problem of 
model reuse because reuse has integration considerations such as 
(a) defining equivalences between chemical species in different  
submodels, (b) adding side-reactions to handle interactions 
between intermediate species in submodels, and (c) handling reac-
tions that are duplicated across submodels. Fortunately, software 
engineering has developed a number of ways to structure codes 
that enable a more fine-grain integration of components than is 
possible with modularization. We further note that it is important 
to record the changes made when reusing a model and the rea-
sons for making these changes to better understand differences in 
experimental results.

Model engineering
The previous section discusses shortcomings in current practice 
for biomedical simulations in reproducibility, readability, and 
reuse. Concerns in these areas are very similar to challenges faced 
by the software industry with creating, evolving, and maintain-
ing large software systems. Indeed, the huge success of the soft-
ware industry over the last 50 years is in many ways a result of 
providing solutions for reproducibility, readability, and reusabil-
ity. In this section, we explore the extent to which the tools and 
practices of software engineering can improve the quality of 
biomedical simulations.

Software engineering can be described as “the application of a 
systematic, disciplined, quantifiable approach to the development, 
operation, and maintenance of software”16. Practitioners often 

Figure 3. Snippets of a model of the MAPK cascade that uses 
variable names that promote readability.

Figure 2. Snippets of a model of the MAPK cascade that uses 
variable names that impair readability.
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segment software projects into phases referred to as the software 
life cycle.

•	 The requirements phase defines what is to be built.

•	 The design phase specifies the components used and how 
they interact to address the requirements.

•	 The construction phase implements the design.

Even though phases are listed in sequence, phases are not strictly 
linear. Rather, software development is an iterative process, and 
there is considerable variability in the steps used from project 
to project30,31. That said, there are activities that are common 
to a diverse set of projects. As a result, a variety of tools have 
been developed to aid the engineering process.

To illustrate the application of software engineering to biomedi-
cal simulations, we use a running example: building a simu-
lation that combines the glycolysis pathway with the pentose 
phosphate pathway (PPP)7,32.

Requirements
A requirement is a description of what a system should do. In 
our running example, the requirement is to create an integrated 
model of the glycolysis and PPP pathways by combining separate 
models of each pathway.

Requirements can be further refined by describing use cases. 
In software, a use case describes how the user interacts with the 
system. For simulation models, we define a use case as the 
information provided by running the simulation model.

Some elements of a model use case are:

•	 Biological process: the chemical pathways that are 
addressed by the model (e.g. glycolysis, MAPK  
cascade)

•	 Coverage: the parts of the biological scope that are 
included in the model, such as the chemical species,  
reactions, and regulators

•	 Location: the biological compartment in which the  
reaction takes place. 

Here, we explore a limited part of software design––code struc-
ture––and the application of code structuring techniques to improv-
ing biomedical models.

Explicit articulation of use cases can address some of the cri-
tiques of current practice for biomedical simulations. Use cases 
provide a clear statement of the purpose of the model. This 
enhances readability in the same way that it is easier to read a book 
with a familiar plot. Further, use cases increase model reuse by 
allowing modelers to identify existing models that are similar 
to what is required for a new modeling project.

We see a number of research directions related to the require-
ments phase of model engineering. First, there is considerable 

benefit in developing a formal vocabulary for expressing use 
cases for biomedical simulations. A good foundation exists 
already––the BioModels12 advanced search capability that allows 
for a search by categories within the gene ontology. More work 
is needed, however, to flesh out the elements of a model use 
case and to provide a controlled vocabulary for considerations 
such as coverage. A second research direction is to develop 
algorithms for searching model repositories based on elements of 
use cases and effectively present results for complex searches.

Design
A design specifies the components used and how they inter-
act to address the requirements. We use the term component to 
mean something more general than a module. For example, a 
component of a biomedical model might be as fine grain as a 
reaction or even the kinetics of a reaction. Here, we explore a 
limited part of software design––code structure––and the appli-
cation of code structuring techniques to improving biomedical 
models.

As noted earlier, a common way to structure software is modu-
larization, in which code is organized into relatively independent 
pieces called modules. Each module performs a limited set of 
functions, and modules do not expose the internals of how their 
functions are accomplished.

We consider a modular design for the integrated glycolysis and 
PPP pathways. A first step is to find existing models for each 
pathway. To this end, we search BioModels using the control-
led vocabularies that are part of the MIRIAM standard. Using 
the glycolysis process annotation from the gene ontology,  
GO:0006096, we find 35 models. Similarly, we search for  
models labeled with the pentose phosphate shunt, GO:0006098.  
We obtain 11 results.

We create a glycolysis module using Nielsen et al.33 and a 
PPP module using Chassagnole et al.34. Figure 4 contains a 
snippet of the glycolysis module using Antimony syntax, and 
Figure 5 does the same for PPP.

We see that both modules reference the names ADP, ATP, G6P, 
and F6P. Although it may be obvious to the reader that the 
intent is to refer to the same chemical species, the semantics 
of the model statement are that the names in Figure 4 refer to 
different chemical species from the same names in Figure 5. 
One way to resolve this problem is to make explicit equiva-
lences between chemical species7. Figure 6 demonstrates how to  
accomplish this in Antimony.

Figure 4. Snippet of the glycolysis model in 33.

model Gly():
GLU + ATP→ F6P +ADP
F6P + ATP → FBP+ ADP
...
PEP + ADP → PYR + ATP

end
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Making specific equivalences is burdensome if there are many 
models with chemical species in common. Similar problems 
arise in software as well. The software solution is to use name 
scoping35. A scope is the codes for which a name refers to the 
same entity. For the running example, the appropriate scope is a 
biological compartment––in this case, the cytoplasm. Using 
names with a compartment scope eliminates the need for mak-
ing explicit equivalences as in Figure 6. Furthermore, with name 
scoping and consistent use of names, name equivalences are 
made automatically when a new model is added.

A key shortcoming of modularization is that a module must 
be either used in its entirety or not used at all. Often, we need 
greater selectivity as to which model elements are reused. One 
way to provide this is with object oriented programming36. Object-
oriented approaches structure shared codes into one or more 
“parent classes” that are “inherited” to create specialized modules. 
This turns out to be useful in the running example. Chassagnole 
et al. model parts of the glycolytic pathway as well as PPP. 
Using object hierarchies, we can reorganize the models so that 
the glycolysis parts of Chassagnole et al. are in a parent class 
from which both the reorganized Chassagnole model and a refac-
tored version of the Gly inherit. Object hierarchies are used in 
areas of systems biology such as the Functional Model of 
Anatomy37. However, we are unaware of the use of object 
hierarchies in community standards for reusable models.

Another powerful technique for structuring software is  
aspect-oriented programming (AOP)38, in which code is inserted 
for every occurrence of a pattern. For example, in software AOP can 
be used to count function calls (e.g. as part of a profiler); the pat-
tern is a function definition, and the inserted code is a call to an 
instrumentation function. AOP has the potential to simplify bio-
medical models and increase reuse. Consider the specification of 
reaction kinetics. AOP (in combination with consistent naming of 
enzymes) makes it easy to specify Michaelis-Menten kinetics 
for every enzyme-catalyzed reaction and specify mass balance 

kinetics if the reaction is not enzyme catalyzed. In this case, the 
pattern is the presence or absence of an enzyme, and the inserted 
element is the kinetics law.

Construction
Construction is about implementing a design. This involves 
implementing new components (coding), revising components, 
and detecting errors in components. These tasks have direct 
analogs in the construction of biomedical models.

Coding a biomedical model can be done in a general purpose 
programming language such as Python, Java, and FORTRAN. 
However, there is considerable benefit to using domain-specific 
languages (DSLs) that are tailored to biomedical modeling. 
Examples of DSLs include Antimony5 and Jarnac39 as well as  
interchange formats, such as SBML10 and CellML11.

As we have emphasized throughout, a key reason for the 
success of the software industry is the focus on reuse. When 
an application incorporates software from many sources, the 
embedded software is referred to as dependencies. The embed-
ding application wants to incorporate future changes to embed-
ded software that fixes errors and adds features. However, there 
may be changes in dependencies that “break” the applica-
tion because embedded codes work differently. Detecting and 
resolving breaking changes is central to dependency manage-
ment. In software systems, this is typically handled by a package 
manager16 that can list, add, update, and remove dependen-
cies. Often, dependencies must be analyzed transitively, since a 
dependency may itself have dependencies that need to be 
managed (e.g. the operating system version on which the web 
browser depends).

If biomedical models are going to be reused, then dependency 
management must be addressed. For example, changes in the 
intermediate species used in an embedded model can affect the 
efficiency and correctness of the embedding model. In the running 
example, we build a model for the glycolysis and PPP pathways 
by combining separate models of each pathway. Dependency 
management is required to take advantage of future bug fixes 
and enhancements in these embedded models. However, we do 
not want to incorporate changes that violate the assumptions of 
our combined model (e.g. related to the metabolites present).

Software is testable if it is structured so that components can 
be tested independently and in combination. The former are 
referred to as unit tests and the latter as system tests. A test has 
two parts: (1) the invocation of the code being tested and (2) a  
comparison of the outputs returned to their expected values  
Waltemath et al.15 note the importance of systematic testing in 
building whole-cell models.

Significant effort is required to write good tests. Indeed, writ-
ing tests can be as demanding as writing the code being tested. 
Even so, the experience from the software engineering is that 
time devoted to writing tests is well worth the investment because 
of the dramatic improvement in software quality. The SciUnit 

Figure 6. Some of the equivalences required between Gly and 
PPP.

Figure 5. Snippet of the pentose phosphate pathway model in 34.

model PPP():
G6P+ NADP+→ 6PG+NAPDH
F6P + NADP+→ Ribu5P + NADPH
...
PEP + ADP → PYR + ATP

end

Gly.ADP:= PPP.ADP
Gly.ATP:= PPP.ATP
Gly.F6P:= PPP.F6P
GLY.PYR:= PPP.PYR
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project40 provides a way to write tests for any simulation output. 
A test specifies simulation outputs and a Boolean valued function 
that is evaluated on those outputs.

Contrary to its name, SciUnit provides system tests, not unit 
tests, because a full model is being tested; unit tests are more fine 
grain. For example, a unit might be an individual reaction, and a 
unit test might evaluate if the reaction kinetics provide bounded 
reaction rates. We see the development of unit tests for models 
as an exciting research direction.

Testing detects errors by running experiments. This is referred 
to as dynamic analysis. Dynamic analysis has the benefit of 
being able to check a broad range of errors, but it is time con-
suming and often non-trivial to resolve the errors that are discov-
ered. Software engineering complements dynamic analysis with 
static analysis of codes. For example, tools called linters exam-
ine source codes for errors such as referencing a variable before 
it is assigned a value41.

Static analysis can be applied to simulation models. For exam-
ple, a well-formed reaction should preserve mass balance. That 
is, the sum of the masses of the reactants should equal the sum 
of the masses of the products. Mass balance is easy to check if 
chemical species have annotations that provide machine-readable 
chemical formulas. Unfortunately, in current practice, it is unusual 
to have such detailed specifications of the chemical species.

Fortunately, static checking for mass balance is possible even 
without annotations, although for a somewhat weaker condition 
called stoichiometric inconsistency. We illustrate this by example. 
Suppose we have the following reactions:

A + B → C

B → C

The first reaction implies that the mass of C is greater than the 
mass of B. The second reaction implies that B and C have the same 
mass. That is, these reactions have a stoichiometric inconsistency. 
Stoichiometric inconsistencies can be detected automatically using  
techniques as in 42, and this can be done without annotations.

Other potential errors that can be detected statically include 
duplicate reactions, dubious kinetics expressions (e.g. no reactant 
is present in the kinetics expression), and superfluous chemical 
species that always have a concentration of zero. A very promis-
ing research direction is to develop linters for biomedical models 
that detect a wide range of static errors and report on poor 
modeling practices such as poorly chosen names for chemical 
species.

Conclusions
Common critiques of biomedical simulations point to issues 
with reproducibility, readability, and reuse. Many have proposed 
addressing these critiques by making use of elements of soft-
ware engineering practice. Herein, we argue for a broad research 
agenda, called model engineering, that systematically adapts 
techniques from software engineering to building models of 
biomedical systems.

We organize model engineering along the lines of software 
engineering, with separate phases for model requirements, design, 
and construction. For requirements, we advocate the develop-
ment of use cases that describe the information provided by a 
model. For design, we focus on model reuse, especially two 
techniques from software engineering: name scoping and code 
structuring (e.g. modularization, object hierarchies, and aspect 
oriented programming). For construction, we emphasize (a) 
domain-specific languages (DSLs), (b) dependency manage-
ment that assists with handling embedded models, (c) testing to 
detect defects from running models, and (d) linters that do static 
error checking. The benefits of these directions are summarized 
in Table 1.

The impact of model engineering depends in part on the extent to 
which it is possible to adapt principles from software engineering 
to biomedical models. For example, the software engineering 
principle of information hiding is unlikely to be effective for 
biomedical models (at least for combining models whose scope 
is the same biological compartment). This is problematic in terms 
of using modularization as a way to construct reusable models. 
Fortunately, software engineering provides many techniques other 
than modularization to structure codes for reuse (e.g. object- 
oriented programming and AOP). It may be that these alternative 

Table 1. Benefits of model engineering. The benefits are improvements 
in reproducibility, readability, and reuse. The benefits are organized by 
lifecycle phase: requirements (R), design (D), and construction (C).

SWE Practice Reproducible Readable Reuse

R: Use Cases ✓ ✓

D: Name scope ✓ ✓

D: Code Structure ✓ ✓

C: Domain Specific Languages ✓ ✓

C: Dependency Management ✓ ✓

C: Unit tests ✓ ✓

C: Linters ✓ ✓
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techniques are more effective for structuring biomedical models for 
reuse.

A second constraint on the impact of model engineering is 
that realizing some of its benefits requires changes in current 
modeling practice. For example, one of our recommendations 
is that modelers use meaningful names to make models more 
readable. Such behavioral changes can be difficult to achieve.

Model engineering can be advanced in many ways. Consider-
able impact is possible by working directly with journals and 
funding agencies to argue for the inclusion of model engineer-
ing in paper submissions and funding proposals by requiring  
discussions of model requirements, designs, and construction.  
A second approach is to advocate for model engineering 
directly with the modeling community through publications and  
workshops. Last, some leverage may be possible by working with 
the computer science community where there is great interest in  

the problems addressed by model engineering and the use of  
software engineering to solve these problems (e.g. 43).
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