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Abstract

Objective

To increase discriminatory accuracy (DA) for emergency cesarean sections (ECSs).

Study design

We prospectively collected data on and studied all 6,157 births occurring in 2014 at four pub-

lic hospitals located in three different autonomous communities of Spain. To identify risk fac-

tors (RFs) for ECS, we used likelihood ratios and logistic regression, fitted a classification

tree (CTREE), and analyzed a random forest model (RFM). We used the areas under the

receiver-operating-characteristic (ROC) curves (AUCs) to assess their DA.

Results

The magnitude of the LR+ for all putative individual RFs and ORs in the logistic regression

models was low to moderate. Except for parity, all putative RFs were positively associated

with ECS, including hospital fixed-effects and night-shift delivery. The DA of all logistic mod-

els ranged from 0.74 to 0.81. The most relevant RFs (pH, induction, and previous C-section)

in the CTREEs showed the highest ORs in the logistic models. The DA of the RFM and its

most relevant interaction terms was even higher (AUC = 0.94; 95% CI: 0.93–0.95).

Conclusion

Putative fetal, maternal, and contextual RFs alone fail to achieve reasonable DA for ECS. It

is the combination of these RFs and the interactions between them at each hospital that

make it possible to improve the DA for the type of delivery and tailor interventions through

prediction to improve the appropriateness of ECS indications.
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Introduction

A worrisome issue in obstetrics is the longstanding increase in cesarean section rates, as well as

the unjustified variations in these rates in clinical practice across public and private hospitals

worldwide[1–3]. This is particularly important in the case of emergency (i.e., unscheduled)

cesarean section (ECS) rates, assuming that the appropriateness of indications for scheduled

C-sections is reasonably acceptable and much higher than that for ECSs [4–11]. Heterogeneity

in clinical decision-making should always be investigated when unjustified variations are sus-

pected. Knowing the fetal, maternal, and contextual factors that drive the decision to perform

an ECS at each hospital is paramount to designing and implementing hospital-tailored inter-

ventions specifically aimed at improving the appropriateness of indications for ECSs in order

to avoid unnecessary ECSs and the associated complications and costs [12–22].

Few current clinical guidelines and interventions target these objectives [23–29]. Those that

do are neither based on a comprehensive set of proven fetal and maternal risk factors (RFs)

with high discriminant accuracy (DA) nor designed to take into account contextual factors

that have been shown to be associated with both an increased rate of unnecessary ECSs and

unjustified variations in clinical practice. Furthermore, most RFs for ECSs should be consid-

ered putative, since they have mainly been selected by means of logistic regression models that

usually lack information regarding both their goodness-of-fit and their DA [30–38]. Tradi-

tional measures of association alone are inappropriate to discriminate between who will suffer

a given outcome and who will not. Therefore, interventions based on average risk estimates for

people both exposed and unexposed to spurious RFs could be ineffective, inefficient, and even

potentially harmful [12–22].

To our knowledge, very few studies have sought to improve the ability to predict which

women are at higher risk of ECS. Those that do are limited to nulliparas, include only a few of

the putative RFs, and report no measures of either calibration or DA of the statistical models

developed [30–38]. Our objective is not to build an explanatory model of the decisions to per-

form an ECS, but to increase the predictive accuracy regarding this type of delivery in order to

provide more validated information with the ultimate view to improving the appropriateness

of indications for ECS and thus preventing unnecessary C-sections.

Material and methods

The present study is part of a large multifaceted intervention intended to improve the appro-

priateness of the indications for ECSs in 22 public hospitals of the Spanish National Health

Service launched by the Spanish Ministry of Health. Of those 22 participating hospitals, four

(A, B, C, and D) were included in this study because their databases were the most reliable in

terms of consistency and coverage to ensure that robust predictive models of ECSs could be

built. In size and complexity, the obstetric services of these four hospitals belong to level II (out

of III) of the Spanish National Hospital Catalogue. They can be considered representative of

about 42% of all obstetrics services of the Spanish National Health Service that belong to this

level, since they all have a very similar case mix, and attend pregnant women with similar

obstetric risk.

The study population consisted of all 6,157 singleton births, with no exclusions, occurring

in 2014 at four public hospitals located in three different autonomous communities of Spain.

According to the Spanish National Institute of Statistics, these 6,157 births account for 1,5% of

all yearly births in Spain (around 420,000/year). Hospitals A and B account for 26,5% of all

births occurring yearly in the Autonomous Community of the Balearic Islands, Hospital C for

12,6% of those occurring in Galicia, and Hospital D for 2,0% of those occurring in Valencia

(https://www.datosmacro.com/demografia/natalidad/espana-comunidades-autonomas).
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Data were collected prospectively over 2014 and registered in a specifically designed data-

base that included the fetal, maternal, and contextual independent variables (Table 1 and S1

Tables). All presentations were included in the analysis. All variables put forth in the medical

literature as predictive variables (putative PFs) of the type of delivery were in principle consid-

ered in the study with few exceptions. Since birth weight is a post-delivery variable, it cannot

be predictive of the type of delivery. The estimated preterm fetal weight could be considered a

potential predictive variable. However, it is barely used given that its measurement is very

imprecise (± 400 g) [1, 4, 6–10].

Unlike other predictive models published, we additionally included hospital fixed-effects

and night-shift delivery as potentially predictive contextual independent variables. They are

unobserved effects of hospital (contextual) characteristics that are not captured by any of the

independent variables included in the models. They may be predictive of the type of delivery,

account for a certain fraction of the medical variations (total variance) of ECSs often found in

small area analysis, and modify the strength of the associations of the independent RFs and the

Table 1. Fetal, maternal, and contextual covariate definition and categorization.

Covariates Covariate categorization

Age < 35 or � 35 years

Mother´s weight > 90 kg

Mother´s height � 1,5 μ
Mother´s Body Mass Index

(BMI)

� 35 oρ> 35

Gestational age � 36 weeks

Previous pregnancies No (0) or Yes (� 1)

Smoker Yes or No

Previous C-section 0 or� 1

Comorbidity1 Yes (� 1) o No

Obstetric risk2 Yes or No

Labor induction3 Used or Not used

Intrapartum (scalp) pH < 7.20 or� 7.20

Night-shift delivery Yes (C-section initiated between 9 p.m. and 4 a.m.) or No (initiated between 4 a.m.

and 9 p.m.)

Fetus gender Male (0) female (1)

1Defined as having one or more of the following comorbidities during pregnancy: anaemia, asthma, heart disease,

coagulopathy, type I and II diabetes in pregnancy, treated autoimmune disease, treated epilepsy, treated mental

disease, treated neurological disease, treated renal disease, hemiplegia, treated liver disease, treated hyper and

hypotiroidism, HIV infection, chronic hypertension, idiopathic thrombocytopenic purpura, malignant tumor,

hepatitis C and B virus, amniocentesis, corial biopsy, cordocentesis, cannabis, cocaine, heroin, other drugs,

disseminated intravascular coagulation, colesthasys, corioamnionitis, pathological Doppler result, chronologically

prolonged pregnancy, fetal death, stained amniotic fluid, pathological non-stress test, oligoamnios, small for

gestational age, pre-eclampsia, premature rupture of membranes, prolonged pregnancy.
2Defined as the presence during pregnancy of one or more of the following factors that increase the chance of an

adverse pregnancy outcome: cholestasis, chorioamnionitis, diabetes insulin and non-insulin dependent,

chronologically prolonged pregnancy, multiple pregnancy, hellp syndrome, hypertension, isoimmunization in

pregnancy, stained amniotic fluid, fetal malformation, uterine malformation, fetal malposition, myomectomy,

oligoamnios, previous preterm labor, placenta praevia, plyhydramnios, preeclampsia, premature rupture of

membranes, siphylis, toxoplasmosis, previous c-section, repeated abortions, previous miscarriages, anteparturm

alteration of fetal wellbeing.
3All labors started by administering oxytocin or prostaglandins when indicated.

https://doi.org/10.1371/journal.pone.0191248.t001
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type of delivery. They are not explanatory of the type of delivery, but their association with it

may be indicative of different entrenched, difficult to measure clinical practices across hospi-

tals that are likely to influence the decision regarding the type of delivery and therefore they

warrant further investigation. Night-shift delivery was also included as an additional poten-

tially predictive contextual independent variable, since it has been shown to be both a good

predictor of the delivery mode, and an appropriate instrumental variable to infer causal associ-

ations between the average treatment effect of non-medically indicated cesarean sections

(compared with vaginal delivery) on newborn´s health outcomes [39].

Descriptive statistics were calculated for all fetal, maternal, and contextual variables. Sched-

uled, emergency, and overall (both scheduled and emergency) C-sections were estimated for

the whole population and for each hospital with their corresponding 95% CI.

The first step in our analytical approach to identify RFs for ECS was to calculate the preva-

lence of each putative RF in the overall population and in mothers delivering both by vaginal

birth and by ECS, as well as their 95% CI. We then estimated the prevalence ratios of each RF

(by dividing the prevalence of the RF by the prevalence of ECS). Finally, we estimated the posi-

tive likelihood ratios (LR+) of each RF and their 95% CIs. (A LR+>10 is considered high

enough to rule in the outcome, 5–10 is considered moderate, and 2–5 is considered low [40–47].

The second step was to build a logistic regression model for each of the four hospitals

included in the study (A, B, C, and D), as well as a logistic model for the overall sample to find

out which fetal, maternal, and contextual RFs (independent variables) were associated with the

outcome (delivery type: vaginal or ECS), as well as the strength of the associations found.

Model specification was performed based on stepwise top-bottom variable selection, and tak-

ing into consideration the clinical relevance of each variable. Crude and adjusted ORs were

obtained, as well as their 95% CIs. The models’ goodness-of-fit was compared by means of the

-2log-likelihood ratios and the Akaike information criterion (AIC). Their DA was assessed

through their areas under the receiver-operating-characteristic (ROC) curves (AUCs) along

with their 95% CI.

We then fitted a classification tree (CTREE or conditionally unbiased inference classifica-

tion tree), a relatively new and useful predictive technique for studying RFs and outcomes

based on the unbiased recursive splitting of the study population sample into subgroups

according to the independent variables [48]. The underlying mathematical algorithm chooses

which independent to split, their discriminatory value, and the order in which the splitting

occurs. Outcome discrimination can thus be maximized at each step, making it possible to

account for complex relationships between variables and their interactions and preventing

both over-fitting and biased variable selection. The process develops a hierarchical tree struc-

ture that enables such simultaneous analyses and presents them in a clinically useful format

[48–50].

Unlike CART models, CTREE can handle datasets with both categorical and numerical

variables without producing biased splits, and the interpretation of both odds ratios and likeli-

hood ratios is straightforward. Therefore, we used dichotomous variables to enable compari-

sons with other published studies despite a small potential loss of information. All births were

included in the analysis, and anonymity was preserved. A database was constructed by two

computer engineers, who also managed the transfer of data. Database quality was periodically

audited and was considered reliable in terms of consistency, coverage, and agreement. The

database is available upon request. The Spanish Ministry of Health approved this study under

the Strategy for Assistance at Normal Childbirth in the National Health System (PI/01445).

We also developed a random forest model (RFM) that fits n classification trees by randomly

selecting predictors for each tree. CTREE was used as the base learner, and 500 different trees

were created by bootstrapping, rendering more accurate predictions than a single tree analysis.
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This algorithm allows to estimate the relative importance of each independent variable in the

model (i.e. the contribution of each independent variable to the predictive power of the ran-

dom forest). The methodology to compute relative importance of each variable (known as

conditional permutation importance), and more information regarding CART, CTREE, and

RFM can be found elsewhere [48–50]. We also compared the models’ discriminatory perfor-

mance by means of their corresponding ROC curves. Goodness-of-fit analysis across the

abovementioned models was performed using in-sample (n = 6,157) data with ROC curves.

The statistical analyses were performed using R Statistical Software (Foundation for Statistical

Computing, Vienna, Austria) [49, 50].

Results

ECS rates varied from 8 to 15% across hospitals, whereas overall C-section rates were higher

(12–21%) (Table 2). Descriptive population statistics are shown in Table 3. Mothers delivering

by ECS were slightly older, had higher BMIs and weight, were more likely to have had a previ-

ous C-section, had more comorbidity, presented greater obstetric risk, more often underwent

labor induction and delivered during the night shift, and had a slightly lower gestational age,

and intrapartum (scalp) pH than those who had eutocic deliveries. No differences were found

regarding smoking during pregnancy (Table 4).

The prevalence of the putative RFs for ECS in the overall population, as well as in eutocic

and ECS deliveries, is shown in Table 5. In the overall population, the RFs with the highest

prevalence (over 40%) were previous pregnancies, night delivery, BMI� 25, and obstetric risk.

The prevalence of all RFs except smoking and parity was higher in women delivering by ECS

Table 2. Emergency and overall (scheduled and emergency) cesarean rates by hospital.

Number Emergency rate (%) 95% CI Overall rate (%) 95% CI

Hosp. A 1,923 8 7–9 14 13–15

Hosp. B 893 9 8–10 12 11–13

Hosp. C 2,458 15 14–16 21 20–22

Hosp. D 883 11 10–12 15 14–16

Total 6,157 11 11 17 17

https://doi.org/10.1371/journal.pone.0191248.t002

Table 3. Descriptive population statistics.

Numeric Variables Mean Std. Dev

Mother´s age (years) 31.89 5.41

Mother´s weight (kg) 66 13,7

Mother´s height (m) 1.62 0.06

Previous pregnancies (No.) 1.23 1.25

Gestational age (weeks) 39.2 1.78

Categorical Variables Percentage Number

Smoker (Yes, No) 12.2 6,157

Previous C-section (Yes, No) 11.3 6,157

Comorbidity (Yes, No) 17.4 6,157

Obstetric risk (Yes, No) 40.6 6,157

Labor induction (Yes, No) 22.7 6,157

Scalp pH < 7.20 9.3 6,157

Night-shift delivery (Yes, No) 45.3 6,157

Fetus gender (male) 52.1 6,157

https://doi.org/10.1371/journal.pone.0191248.t003
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than in those with eutocic deliveries according to their 95% CI. All prevalence ratios were 6%

or lower, and the LR+ of all individual RFs were low (4.14 or lower).

The gender of the fetus was neither associated with the type of delivery nor improved either

the calibration (-2 log likelihood ratios, AIC) or the discriminant accuracy (C statistic) of

the final models. Therefore, it was excluded from the final logistic models. BMI was finally

Table 4. Distribution of fetal, maternal, and contextual variables by delivery type.

Mean

Independent variables Vaginal birth Emergency C-sections p-value

Age (years) 31.46 32.83 <0.001

Weight (kg) 65.7 67.9 <0.001

Height (m) 1.63 1.61 <0.001

BMI 23.96 26.66 <0.001

Gestational age (weeks) 39.3 38.8 <0.001

Fetus gender (%) 51.5 55.3 0.065

Previous pregnancies (mean) 1.125 1.257 <0.001

Smoker (%) 11.9 13.4 0.256

Previous C-sections (%) 10.1 22.4 <0.001

Comorbidity (%) 17 25 0.014

Obstetric risk (%) 35 58 <0.001

Labor induction (%) 20 43 <0.001

Intrapartum pH 7.296 7.245 <0.001

Night-shift delivery (%) 44 55 <0.001

https://doi.org/10.1371/journal.pone.0191248.t004

Table 5. Prevalence ratios and positive likelihood ratios of the putative risk factors for emergency C-sections.

Overall

prevalence

95% CI Prevalence eutocic

deliveries

95% CI Prevalence emergency C-

sections

95% CI Prevalence

ratio

LR+ 95% CI

Smoker 12 12,12 12 12,12 13 12,14 1.104 1.08 1–1.16

Previous C-section 11 11,11 10 10,10 22 20–24 1.028 2.2 2–2.4

Comorbidity 17 17–17 17 16–18 25 23–27 1.585 1.47 1.38–

1.56

Obstetric risk 41 40–42 38 37–39 58 56–60 3.69 1.52 1.47–

1.57

Previous pregnancies 68 67–69 69 68–70 68 66–70 6.221 0.98 0.95–

1.01

Induction 23 22–24 20 19–21 43 41–45 2.062 2.15 2.05–

2.25

Scalp pH 9 9,9 7 7,7 29 27–31 2.636 4.14 3.85–

4.42

Night-shift delivery 45 44–46 45 44–46 55 53–57 4.114 1.22 1.17–

1.26

Mother´s weight

(> 90kg)

3 3,3 5 5,6 9 8,10 1.08 1.03 1.01–

1.06

Mother´s height (< 1.50

m)

3 3,3 3 3,3 5 4,6 1.14 1.03 1.01–

1.04

Gestational age (� 36

weeks)

6 5,6 5 4,6 15 13–17 1.22 1.1 1.06–

1.13

BMI� 25 41 40–42 37 35–39 51 49–53 3.611 1.37 1.32–

1.43

Age� 35 27 26–28 26 25–27 34 32–36 2.441 1.3 1.23–

1.38

https://doi.org/10.1371/journal.pone.0191248.t005
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included since it did not make any difference to include height and weight separately or BMI

in terms of both the calibration (AIC) and the discriminant accuracy (C statistic) of the mod-

els. We did choose the most parsimonious models as the final ones. Gestational age was also

excluded from the final logistic models due to its high collinearity with the rest of the indepen-

dent variables that remained in the model for each hospital, and because its inclusion led to

biased intercept estimates of these logistic models.

According to the final logistic regression model for the overall population (Table 6), all RFs

except for the number of previous pregnancies were positively associated with ECS. The stron-

gest associations were those found for scalp pH (OR = 5.56), Hospital C (OR = 2.69), induction

(OR = 2.32), and previous ECS (OR = 2.28). The remaining ORs were lower than 1.5, although

the lower limits of their 95% CI were greater than 1.0. The only inverse association found was

that between parity and ECS (OR = 0.87). With regard to the contextual variables, hospital

fixed-effects and night-shift delivery were also positively associated with ECS. The strongest

association was found with Hospital C, what is consistent with its substantial relative impor-

tance found in the random forest (Table 7).

The strength of the positive associations was relatively similar in the models for each of the

four hospitals and in the model for the overall population. Although pH, induction, and previ-

ous ECS appear to be the RFs with the highest ORs, and age and BMI those with the lowest,

their relative magnitude at each hospital varied slightly, except for pH, which was substantially

higher at one hospital (OR = 7.17). Parity was positively associated with ECS at only one hospi-

tal, whereas obstetric risk was positively associated with it at only two.

The logistic model for the overall population and those for each hospital fit the data well, as

indicated by both the -2log-likelihood ratio and the Akaike criterion. The goodness-of-fit of

Table 6. Logistic regression models to assess the association between the putative risk factors and type of delivery for the overall population and the four hospitals.

4 Hospitals Hosp. A Hosp. B Hosp. C Hosp. D

Hospital A 1.05 (0.74–1.36)

Hospital C 2.67��� (2.38–2.96)

Hospital D 1.44��� (1.09–1.78)

Age 1.02��� (1.01–1.04) 1.04�� (1.01–1.08) 1.05�� (1.01–1.10) 1.02 (0.99–1.04) 1.03 (0.99–1.08)

BMI 1.03��� (1.02–1.05) 1.04��� (1.01–1.087) 1.01 (0.96–1.10) 1.03��� (1.01–1.09) 1.04 (0.99–1.08)

Smoker 1.230(0.98–1.48) 1.56� (1.05–2.07) 0.92 (0.13–1.70) 1.32 (0.95–1.67) 0.97 (0.35–1.59)

Prev. ECS 2.28��� (2.04–2.51) 3.77��� (3.25–4.29) 3.06��� (2.43–3.69) 1.94��� (1.99–2.29) 2.32��� (1.70–2.95)

Comorbidity 1.21� (1.00–1.42) 1.41 (0.79–2.04) 2.43�� (1.70–3.16) 1.05 (0.79–1.31) 1.34 (0.77–1.91)

Obstetric risk 1.57��� (1.38,1.766) 0.95 (0.54–1.37) 2.32��� (1.72–2.9) 2.07��� (1.81–2.33) 0.90 (0.34–1.47)

No. pregnancies 0.87��� (0.79–0.94) 0.75��� (0.57–0.93) 0.95 (0.73–1.16) 0.79��� (0.67–0.91) 1.27�� (1.09–1.45)

Induction 2.23��� (2.14–2.50) 3.18��� (2.78–3.59) 1.72�� (1.19–2.25) 2.14��� (1.87–2.40) 2.26��� (1.79–2.73)

Scalp pH 5.56��� (5.35–5.78) 5.24��� (4.81–5.66) 4.54��� (3.98–5.9) 5.69��� (5.31–6.07) 7.17��� (6.69–7.65)

Night-shift delivery 1.49��� (1.32–1.66) 1.40� (1.03–1.77) 1.11 (0.60–1.61) 1.78��� (1.54–2.02) 0.93 (0.47–1.39)

Observations 6,157 1,923 893 2,458 883

Log Likelihood -1,843.93 -425.61 -219.91 -912.01 -255.236

AIC 3,715.86 873.21 461.82 1,846.04 532.47

AUC 0.7781 0.81 0.7942 0.7477 0.79

CI. AUC 95% (0.76–0.7962) (0.7784–0.8513) (0.7393–0.849) (0.7211–0.7743) (0.7382–0.8418)

Note:

� p < 0.1,

�� p < 0.05,

��� p < 0.01, 95% CI in parenthesis, AIC = Akaike Information Criterion, AUC = Area Under the Curve.

https://doi.org/10.1371/journal.pone.0191248.t006
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the population model increased notably when hospital fixed-effects were included. The DA of

all five models was notably high, with AUCs ranging from 0.74 to 0.81 (Table 6).

Of the two recursive partitioning models (CTREE and Random Forest), CTREE was used

as the base learner for the Random Forest algorithm (n = 500). Fig 1 depicts the tree structure

of the trained CTREE. The first split (p< 0.001) is scalp pH, followed by labor induction and

previous ECS, for pH� 7.20 and pH< 7.20 respectively, meaning that if the pH� 7.20, the

Fig 1.

https://doi.org/10.1371/journal.pone.0191248.g001

Table 7. Relative importance of each putative risk factor for type of delivery according to the random forest.

Variable

Relative importance

Scalp pH 100

Previous C-section 76.712

Induction 31.755

Hosp. C 29.895

BMI 27.854

Hosp. A 20.03

Obs. risk 11.635

Age 9.002

Pregnancies 4.901

Hosp. D 3.709

Smoker 3.194

https://doi.org/10.1371/journal.pone.0191248.t007
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next split is birth induction (p< 0.001), whereas if the pH< 7.20, the next split is previous

ECS (p = 0.003). The interpretation extends to the conditional nodes (splits) and leaves. By

way of example of the meaning and utility of hospital effects, on the extreme right side of Fig 1

it can be seen that mothers whose fetuses had a scalp pH > 7.20 and had not had a previous

ECS, in hospital D had a probability of almost 48% of having an ECS, whereas in the other hos-

pitals (A, B, and C) this probability went down to 27%. The AUC mean value of the CTREE

was 0.88 (95% CI: 0.84–0.92).

The RFM consisted of a set of n = 500 CTREEs with an optimal number of randomly

selected variables = 2. Although random forest algorithms tend to be more of a black box in

terms of their interpretation, their predictive power (AUC = 0.94; 95% CI: 0.93–0.95) provides

reliable predictions even at an individual level. The relative variable importance of all variables

included in the RFM is shown in Table 7. The three most relevant RFs (pH, induction, and

previous ECS) also showed the strongest associations in the logistic models. Since the LR+ of

all the interaction terms found in the RFM were lower than 10, as was the case for the individ-

ual RFs (Table 5), they failed to rule in the type of delivery.

Discussion

The strength of the associations between some putative RFs and ECS, their prevalence, their

prevalence ratios, and their LR+ in the overall population were low to moderate, indicating, as

in other studies, that single RFs alone offer only a low DA for most outcomes, such as ECS

[40–47].

With the exception of scalp pH, the magnitude of the strength of these associations was low

and similar across the four hospitals. Likewise, all were positive except for the number of preg-

nancies, which showed an inverse association. Heterogeneity did not seem to play a relevant

role in the study population solely on the basis of this initial analysis. Moreover, only the num-

ber of pregnancies seemed to increase the odds of a vaginal delivery, as would be expected.

In the final logistic model for the overall population both contextual variables (hospital

fixed-effects and night-shift delivery) were positively associated with ECS and increased good-

ness-of-fit. These variables were associated with higher ECS rates and may thus favor the indi-

cation of ECS over vaginal deliveries. Regardless of maternal and fetal characteristics, and as

indicated in a number of studies, different entrenched practices across hospitals seem to influ-

ence the decision regarding delivery type, similar to how physicians’ desire for night-time lei-

sure influences the decision to perform an ECS at the start of the night shift [4–11, 39].

No single 100% accurate predictive model of the type of delivery has been published to

date. In fact, only a few have been published all showing a low predictive and discriminant

accuracy. All these contextual (hospital) factors that may contribute both to predict and

explain variations in both the type of delivery and in the appropriateness of the c-section´s

indications (as shown by the high variability of rates of c-sections in several published atlases

of variations in medical practice) remain unobserved and unknown. The only available way to

account for them is by including hospital fixed-effects in logistic models and in random forests

as contextual variables (which are tantamount of the second level variables in multilevel analy-

ses). Moreover, their inclusion in the models reduced the biases in the estimates of the mea-

sures of strength of the associations without resulting in overfitting, and increase their

discriminant accuracy because they account for the abovementioned unobserved predictive

factors [4–11, 39].

These results illustrate the usefulness of this analytic approach because they suggest that

some hospital characteristics (i.e., method of payment and other incentives, physicians’ desire

for night-time leisure, established non-evidence-based practices such as to perform a c-section
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to mothers having had a previous c-section) may explain unjustified variations and inappro-

priateness of some indications for c-sections that warrant further investigation.

Consequently, all fetal, maternal, and contextual factors alone failed to achieve a reasonable

DA for ECS rates in different population subgroups at each hospital even after they were con-

trolled for in these models. This is consistent with the well-known fact that the decision

regarding the type of delivery hinges not only on different combinations of these RFs and the

interactions between them, but also to some extent on variations across individual hospital

practices and even individual clinicians’ practices. It can thus be the product of unjustified

non-evidence-based clinical practices, which has long been shown in studies of variations in

clinical practice with regard to CS using small area analysis [4–11].

Measures of association alone are insufficient to discriminate between those individuals

who will develop a given outcome and those who will not (a strong association is not tanta-

mount to high DA given that the false positive and false negative fractions of the population

are low) [40–43]. It is the set of independent variables included in the final logistic models that

could make it possible to achieve acceptable DA, as shown by their high AUC (0.75–0.81). To

our knowledge, no logistic regression model published to date has achieved an AUC similar to

those reported here.

The AUCs of the RFM (0.93–0.95) and the CTREE (0.84–0.92) offer a considerably

improved additional analytical approach to the same issue due to the nature of their optimi-

zation algorithm, maximum likelihood for logistic and unbiased recursive partitioning for

CTREE. Their incremental DA is notably higher than that of logistic models due to the unsu-

pervised detection of interactions in the CTREE model and 500 such CTREEs in the RFM.

The reasons for this improvement in DA are mainly twofold. First, it results from detecting

associations and interactions among the combinations of RFs used in clinical decision-mak-

ing regarding the type of delivery at each hospital that are not captured by logistic models.

Second, the model also captures heterogeneity (the trees’ branches), among both the hospi-

tals and the clinicians’ decision-making frameworks, that logistic models likewise cannot

capture.

In terms of implications for clinical practice, we found some medically unjustified differ-

ences in ECS rates for hospital D compared to the other hospitals, e.g., in induced births

between 11 p.m. and 3 a.m. in which the scalp pH was above 7.20 (nodes 2, 16, and 20). More-

over, in the subgroups of deliveries with pH above 7.20 and at least one previous C-section

(nodes 25 and 26), the ECS rates climbed to 50% and almost 60%, respectively. The utility of

these results lies in that, despite they are neither explanatory not confirmatory, they suggest

potential sources of inappropriate ECSs in Hospital D (contextual factors) that should be fur-

ther investigated (i.e., changes in payment methods, lack of updated clinical guidelines, lack of

utilization management, demand side issues).

One of the main limitations of this study is that only 4 out 22 obstetrics services were

included as explained in the Introduction. These four hospitals could be considered represen-

tative of up the 42% of hospitals within the Spanish National Health Service in terms of obstet-

ric case mix, obstetric risk, and number of births and CS rates. However, it is to be expected

that studies intended to build a predictive model for the type of delivery fail to have a high

external validity with regard to the specific RFs for ECS. As already noted, it is the combination

of RFs (fetal, maternal, and contextual) at each particular hospital and the interactions between

them what makes it possible to improve the DA for the type of delivery. The more the clinical

practice varies across centers and clinicians, the more different RF-combination subgroups

can be expected to appear in the CTREES given their higher ability to capturing them; hence,

the more hospital-specific the combination of RFs and interactions between them yielding the

highest DA will be. Given that we performed a 10-fold cross-validation using randomly
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allocated 90/10% training/test sample sizes, the chances of the RFM being overfitted and the

AUCs being overestimated are very low.

Another limitation of the study is that scalp pH is a very proximate measure likely linked to

fetal distress, so it is not a surprise that it is highly predictive. We did not include cord pH

because it is a post-delivery endpoint and as such cannot be considered a predictive variable of

the type of delivery. We could agree that scalp pH is linked to fetal distress and can be highly

predictive. However, we have included it in the models as a predictive variable for several rea-

sons: i) scalp pH is an intrapartum variable, not a final endpoint. Variations in the cut-off

points actually used in clinical practice may explain both variations in the diagnosis of fetal dis-

tress, and in the fraction of appropriate and inappropriate indications for ECSs across hospitals

(as it have been shown is studies of the appropriateness of the different types of emergency

ECSs indications, in this particular case, fetal distress); ii) it has also been shown that both the

clinical management of intrapartum (scalp) pH and thus of fetal distress varies across hospi-

tals, and that it accounts for a considerable fraction of inappropriateness of ECSs for this spe-

cific indication, what could make scalp pH a predictive variable for some but not all ECSs; and

iii) tenfold cross validation performed in the CTREE model prevented from obtaining over-

fitted estimates when including this variable.

Therefore, this study’s main contribution is that the information provided by the combina-

tion of logistic regressions and CTREES can provide more accurate information than either

method alone to help clinicians and managers find the sources of heterogeneity and unjustified

variations in ECSs, design and implement hospital-tailored interventions intended to improve

the appropriateness of their indications, and reduce unnecessary ECS and their avoidable com-

plications and costs. This comprehensive and complementary statistical methodology, com-

bined with robust data collection and audit processes, makes it possible to analyze an intricate

medical decision-making problem with higher discriminant capacity than previous studies.

In conclusion, fetal, maternal, and contextual factors alone fail to achieve a reasonable dis-

criminatory accuracy for type of cesarean delivery. We have met our objective by simulta-

neously considering these factors at each particular hospital by using both logistic regressions

and the CTREES for the following reasons. First, this analytical strategy has improved the final

discriminatory accuracy of the models for the type of delivery compared with that of the pre-

dictive models published to date. Second, the discriminatory accuracy of these models has

been validated in our study by means of ten-fold cross-validation. Third, the results allow for

further investigating sources of variability and inappropriateness of ECSs. Finally, based on

this information, they also allow for tailoring hospital-specific interventions intended to dis-

criminatory accuracy improve the appropriateness of indications for ECS.
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