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Exposure–lag response of smoking 
prevalence on lung cancer 
incidence using a distributed lag 
non‑linear model
Daniel Robert Smith 1*, Alireza Behzadnia2, Rabbiaatul Addawiyah Imawana1, 
Muzammil Nahaboo Solim3 & Michaela Louise Goodson1

The prevalence of smokers is a major driver of lung cancer incidence in a population, though the 
“exposure–lag” effects are ill‑defined. Here we present a multi‑country ecological modelling study 
using a 30‑year smoking prevalence history to quantify the exposure–lag response. To model the 
temporal dependency between smoking prevalence and lung cancer incidence, we used a distributed 
lag non‑linear model (DLNM), controlling for gender, age group, country, outcome year, and 
population at risk, and presented the effects as the incidence rate ratio (IRR) and cumulative incidence 
rate ratio  (IRRcum). The exposure–response varied by lag period, whilst the lag–response varied 
according to the magnitude and direction of changes in smoking prevalence in the population. For 
the cumulative lag–response, increments above and below the reference level was associated with an 
increased and decreased  IRRcum respectively, with the magnitude of the effect varying across the lag 
period. Though caution should be exercised in interpretation of the IRR and  IRRcum estimates reported 
herein, we hope our work constitutes a preliminary step towards providing policy makers with 
meaningful indicators to inform national screening programme developments. To that end, we have 
implemented our statistical model a shiny app and provide an example of its use.

Globally, lung cancer accounts for 11.6% and 18.4% of all cancer cases and deaths  respectively1. In 2018, lung 
cancer accounted for 1.79 million deaths globally, with 2.09 million new cases diagnosed. Tobacco use is the 
primary cause of most lung  cancers2,3, and although other methods of tobacco consumption have emerged, 
smoking remains by far the most  common4.

The World Health Organization (WHO) estimates tobacco related mortality will increase from 100 mil-
lion in the twentieth century to one billion in twenty-first century if current trends in smoking  continue3. To 
circumvent this epidemic, the WHO Framework Convention on Tobacco Control (FCTC), the first ever global 
health treaty, was initiated in 2003, with the overarching goal of implementing effective policies to reduce tobacco 
 consumption5. In 2013, WHO set the target of a 30% smoking prevalence reduction by 2025 in all 178 countries 
that signed the FCTC. Projections based on limited publicly available data have shown that less than half of these 
countries are likely to meet this  target2,6. Between 2009 and 2017, smoking prevalence declined by 7.7% (male) 
and 15.2% (female)  globally7. This decline has been the trend for the majority of high-income  countries8, though 
some nations (e.g. Males in Albania; Females in Portugal) have seen substantial increases during this  period7. 
Nevertheless, the impact and burden of lung cancer attributed to smoking prevalence on global healthcare sys-
tems is likely to persist for  decades8.

The causal link between smoking behaviour and risk of lung cancer is well  established9–12. However, ecologi-
cal models that have incorporated smoking data have focused on mortality (rather than incidence), and being 
projection models, are optimised for predictive accuracy as opposed to estimation of the exposure–lag  response13. 
The latter calls for explanatory modelling; this will be invaluable to policy makers for estimating the effect of 
changing the proportion of smokers in a population, thus facilitating strategic and robust  planning14.

Here we present an ecological modelling study with the overarching aim of estimating the expo-
sure–lag response of smoking prevalence on lung cancer incidence, while controlling for confounding variation 
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attributable to country, age group, gender and population at risk. We chose smoking prevalence as our index of 
“exposure”, since this is the predominant diver of lung cancer incidence in a  population15 Recent lung cancer 
incidence and population at risk estimates are matched by country, age group and gender to a complete 30-year 
exposure history of smoking prevalence data. We stipulated the following research questions:

1. How does the exposure–response of smoking prevalence on lung cancer incidence vary by lag period?
2. How does the lag–response of smoking prevalence on lung cancer incidence vary by smoking prevalence?
3. How does the cumulative lag response of smoking prevalence on lung cancer incidence vary by smoking 

prevalence?

Material and methods
Annual age group (40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79 years) and gender (M/F) specific 
lung cancer incidence and corresponding populations at risk were obtained from the Cancer Incidence in Five 
Continents plus (CI5 plus) database for the period 2010 through 2012 inclusive from 105 cancer registries across 
43  countries16 (Fig. 1). We excluded data for 19 cancer registries which were ethnicity grouped subsets of larger 
registries (for example, we retained USA-SEER, but discarded USA-SEER-White and USA-SEER-Black).

We obtained smoking prevalence estimates from the Institute for Health Metric and Evaluation (IHME) for 
the period 1980 through 2012 inclusive, matched by country, gender and age  group17,18. The latter was matched 
retrospectively to properly characterise the smoking prevalence exposure history. For example, lung cancer 
incidence in the 75–79 age group in 2012 was matched with smoking prevalence for the 75–79 age group in 
2012, the 70–74 age group in 2008 etc.

In order to model the temporal dependency between changes in smoking prevalence in a population and lung 
cancer incidence, we employed a distributed lag non-linear model (DLNM)19,20. Such models allow non-linearity 
in the bi-dimensional exposure–lag response surface and therefore offer a significant advantage to traditional 
 approaches21,22. We define the statistical unit of analysis on demographic strata, i, (group of individuals, from 
country, C, in a given age group, A, of a given gender, G) at time t (outcome year = 2010, 2011, 2012).

Our statistical model took the form:

where  Yit is the observed lung cancer incidence, µit the expected (mean) lung cancer incidence, α the model 
intercept, and Pit the population at risk. Sit,l is a cross-basis matrix for smoking prevalence, with l representing 
the lag (= 0,1,2…30 years) and β a vector of coefficients. Cit ,Ait and  Oitare fixed effect categorical variables for 
country, age group, and outcome year respectively, with γ , δ and � each representing the respective vectors of 
coefficients. AitGit represents an interaction term between age group and gender with ν its vector of coefficients. 

(1)
Yit ∼ Negative binomial(µit),

log(µit) = α + log(Pit)+ βSit,l + γCit + δAit + ηGit + �Oit + νAitGit

Figure 1.  Countries included in our analysis (shaded grey). The full list of countries include: Australia, Austria, 
Bahrain-Bahraini, Belarus, Brazil, Bulgaria, Canada, Chile, China, Colombia, Costa Rica, Croatia, Cyprus, 
Czech Republic, Denmark, Ecuador, Estonia, France, Germany, Iceland, India, Ireland, Israel, Italy, Japan, 
Korea, Kuwait, Lithuania, Malta, Netherlands, New Zealand, Norway, Philippines, Poland, Slovakia, Slovenia, 
Spain, Switzerland, Thailand, Turkey, Uganda, UK and the United States of America. Generated using R package 
“maptools” version ‘1.0.1’ (R version 4.0.2).
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Git is a binary variable representing gender, set to 1 for male and 0 otherwise, with η its corresponding coef-
ficient. The cross-basis matrix Sit,l was constructed using restricted cubic splines (i.e. natural splines) with 4 
pre-specified degrees of freedom for both the lag and exposure bases. Spline functions were used as opposed 
to simple polynomial terms since the latter will not fit many functional  forms23. Restricted cubic splines were 
chosen over cubic splines for two reasons: (1) the function is constrained to be linear in the tails (before the first 
knot and after the last knot) improving performance; and (2) only k − 1 parameters must be estimated (besides 
the intercept) as opposed to k + 3 parameters with the unrestricted cubic  spline23.

The most recent year of outcome data (i.e. lung cancer incidence) in CI5 plus is 2012. The decision to include 
earlier outcome years must be weighed against the reduction in maximal lag period (this must remain constant 
when modelling several outcome years). We opted for a 30-year lag  period15,24 which enabled us to include data 
from three lung cancer outcome years, namely 2010, 2011 and 2012. Accordingly, lung cancer outcomes in 2010, 
2011 and 2012 utilised lagged smoking prevalence histories of 1980–2010, 1981–2011 and 1982–2012 respec-
tively. We applied a constraint in the model described in Eq. (1) by excluding the intercept in the lag dimension 
of the cross-basis term. This had the effect of fixing the Incidence Rate Ratio (IRR, see below) to 1 at lag = 0 years, 
implying that changing the proportion of smokers in a population has no immediate effect on lung cancer 
incidence within the same year. The natural logarithm of Pit constitutes the model offset to account for varying 
populations at risk. Estimates of parameters was performed using full maximum likelihood. We pre-specified 
three additional competing models which were reduced forms of Eq. (1), those being: (1) omission of the interac-
tion term between gender and age; (2) reduction from 4 to 3 degrees of freedom for each of the restricted cubic 
splines in the cross-basis term; and (3) both of the above. However, the full model (i.e. Eq. 1) outperformed these 
competing models as verified by Akaike’s Information Criterion (AIC). To check the assumptions of our selected 
model, we computed scaled (quantile) residuals using a simulation-based  approach25.

The estimated coefficients and variance–covariance matrix of Sit,l were used to predict the exposure–lag 
response. We used the sandwich estimator to correct the variance–covariance matrix of Sit,l using registry as a 
cluster  variable26–28. Accordingly, standard errors were robust to autocorrelation and heteroskedasticity. Effects are 
presented as the incidence rate ratio (IRR) (± 95% confidence intervals) to quantify the direction and magnitude 
of the exposure–lag–response. The IRR represents the ratio of lung cancer incidence rate in the “exposed” group 
(i.e. specified increment in smoking prevalence compared to some reference level) to the lung cancer incidence 
rate in the ‘non-exposed” group (i.e. smoking prevalence at the reference level). Accordingly, the IRR represents 
the effect that changing the proportion of smokers in a population has on lung cancer incidence. Because we 
accounted for other covariates, the predicted changes in lung cancer incidence are “standardized” and represent 
the average effect, pooled over age groups, gender, country and outcome year. For analysis and interpretation, we 
set the reference level to 50% smoking prevalence, though corresponding figures with the reference level set at 
the maximum smoking prevalence value from the exposure history are provided in the supplementary material. 
We also computed cumulative incidence rate ratios  (IRRcum) at each lag, by summing the logarithm of IRR’s from 
previous lags. These represent the incremental effects of IRR’s for a given smoking prevalence history. Since our 
study design incorporated multiple exposure events (i.e. smoking prevalence histories) IRR and  IRRcum for the 
exposure–lag response are estimated from the “backward-perspective”19,20.

All statistical analyses was performed in R version 4.0.229 relying heavily on the packages dlnm, MASS and 
 DHARMa19,25,30. Fully reproducible R code is included in the supplementary material.

Results
The number of lung cancer cases and corresponding populations at risk, aggregated across registries and coun-
tries, is shown in Table 1. Model checking plots of the simulated residuals indicated a good fit to the observed 
data with residuals close to the 1:1 line of observed vs. expected (supplementary information Fig 1).

Across the bidimensional surface of all smoking prevalence and lag values, minimum IRR was 0.77 [95% CI 
0.74, 0.83] occurring at smoking prevalence = 81% and lag = 16 years, whilst maximum IRR was 1.25 [95% CI 
1.17, 1.34] occurring at smoking prevalence = 81% and lag = 6 years (Fig. 2). There was a clear interaction effect 
between increments in smoking prevalence and lag on the IRR, whereby the response to changes in smoking 
prevalence were dependant on the lag and vice versa.

The lag response was wave-like, with the direction and magnitude varying according to the direction and 
magnitude of the increment in smoking prevalence compared to the reference level (i.e. 50% smoking prevalence) 
(Fig. 3). Positive increments in smoking prevalence produced a lag–response exhibiting an inverted U-shape 
between approximately 0 and 11 years lag, U-shaped between approximately 11 and 23 years lag, and largely flat 
between approximately 23 and 30 years lag. Lag–response curves for negative increments in smoking prevalence 
were approximate inversions of the lag response for positive increments in smoking prevalence. Accordingly, the 
lag response was U-shaped at recent lags, followed by an inverted U-shape at later lags.

The exposure–response curves varied according to the lag period (Fig. 4). For example, at lag = 5 years, the 
curve form showed an approximately exponential increase, at lag = 10 years approximately linear increase, and 
lag = 15 years approximately parabolic. At recent lags e.g. 5 and 10 years, positive and negative increments in 
smoking prevalence compared to the reference level clearly show an increased (IRR > 1) and decreased (IRR < 1) 
incidence of lung cancer respectively. Interestingly, the model predicts IRR < 1 for positive increments in smoking 
exposure at lags of 15 and 20 years.

Minimum  IRRcum was 0.07 [95% CI 0.05, 0.09] at smoking prevalence = 1% and lag = 17 years, whilst maxi-
mum  IRRcum was 4.67 [95% CI 2.90, 7.50] at smoking prevalence = 81% and lag = 10 years. Increments above and 
below the reference level of 50% smoking prevalence was associated with an increased and decreased  IRRcum 
respectively, with the magnitude of the effect varying across the lag period (Fig. 5). Accordingly (with the 
exception of high smoking prevalence), across the entire lag period, interval estimates for  IRRcum were ≥ 1 and 
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≤ 1 for positive and negative increments in smoking prevalence respectively. The cumulative lag response was 
approximately bell-shaped for increments in smoking prevalence above the reference level, with the peak  IRRcum 
occurring at approximately lag = 10 years. The magnitude of the effect increased with greater increases in smoking 
prevalence relative to the reference level.

Table 1.  Number of lung cancer cases and corresponding populations at risk by year, gender and age group. 
Cases and population at risk counts are aggregated across registries and countries.

Years Gender Age group (years) Number of cases Population at risk

2010 Female 40–44 1844 22,856,931

2010 Female 45–49 5245 23,960,807

2010 Female 50–54 10,221 23,072,194

2010 Female 55–59 14,246 20,691,616

2010 Female 60–64 20,680 18,415,911

2010 Female 65–69 24,933 14,027,181

2010 Female 70–74 25,709 11,412,962

2010 Female 75–79 25,272 9,774,883

2010 Male 40–44 1874 22,599,303

2010 Male 45–49 5879 23,513,387

2010 Male 50–54 13,273 22,401,557

2010 Male 55–59 21,862 19,638,456

2010 Male 60–64 31,335 17,208,726

2010 Male 65–69 37,182 12,590,896

2010 Male 70–74 38,012 9,572,416

2010 Male 75–79 35,099 7,372,029

2011 Female 40–44 1779 22,515,379

2011 Female 45–49 4888 23,205,727

2011 Female 50–54 10,140 22,878,792

2011 Female 55–59 14,662 20,711,581

2011 Female 60–64 20,963 18,732,935

2011 Female 65–69 25,533 14,106,947

2011 Female 70–74 25,973 11,342,181

2011 Female 75–79 24,426 9,590,696

2011 Male 40–44 1857 22,203,201

2011 Male 45–49 5298 22,795,845

2011 Male 50–54 12,433 22,235,507

2011 Male 55–59 21,238 19,662,798

2011 Male 60–64 30,814 17,480,755

2011 Male 65–69 36,380 12,728,774

2011 Male 70–74 37,431 9,580,269

2011 Male 75–79 33,621 7,314,162

2012 Female 40–44 1705 22,288,992

2012 Female 45–49 4665 22,633,652

2012 Female 50–54 10,155 22,775,001

2012 Female 55–59 15,496 20,969,853

2012 Female 60–64 20,874 18,565,286

2012 Female 65–69 27,149 14,989,704

2012 Female 70–74 26,907 11,532,883

2012 Female 75–79 24,943 9,558,073

2012 Male 40–44 1741 21,950,722

2012 Male 45–49 4822 22,243,431

2012 Male 50–54 11,989 22,149,777

2012 Male 55–59 21,126 19,897,569

2012 Male 60–64 30,103 17,277,257

2012 Male 65–69 37,420 13,561,101

2012 Male 70–74 37,526 9,787,986

2012 Male 75–79 33,359 7,344,897
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Discussion
In this contribution, we investigated the effect that changing the proportion of smokers in a population (i.e. 
smoking prevalence) has on standardized lung cancer incidence. This was achieved using a DLNM to quantify 
non-linear exposure–response dependencies and delayed  effects20. We utilised data from 105 cancer registries 
across 43 countries and a complete smoking prevalence exposure history of 30 years. By incorporating data from 
a large number of countries over an extended time period, we were able to capture a wide range of smoking 
prevalence values, enabling us to fully capture the exposure–lag response.

The associations between lung cancer incidence and increments in smoking prevalence reflected in our effect 
plots adds to the current body of evidence that smoking prevalence is a major driver of lung cancer incidence 
in a  population31–34. Heloma et al.35 showed an approximately positive linear association between smoking 
prevalence at 20 years lag and current lung cancer incidence in a male Finnish population as compared to the 
clearly non-linear response reported herein (Fig. 4; lag = 20 years). Our results also imply that for a given change 
in smoking prevalence in a population, the lag period might be shorter than previously thought (e.g. 20  years8; 
30  years15), though we emphasize that this is dependent on the initial smoking prevalence rate as well as the 
magnitude and direction of any changes.

For positive increments in smoking prevalence, one might expect the IRR in the lag response curves to 
increase above 1 (implying a positive association) to some peak, before exponentially declining to plateau at 
IRR = 1 towards the end of the lag period. It follows that the reverse would be expected for negative increments 
in smoking prevalence. Our results in part show this response, though the IRR < 1 (for positive increments) 
and IRR > 1 (for negative increments) in the later lags is somewhat unexpected. A potential explanation for this 
paradox is offered by the harvesting hypothesis. Depletion of the pool of susceptible individuals after a period of 
exposure renders the observed population healthier than a counterfactual  population36. Such harvesting should 
not be interpreted as a true protective association at longer lags, but rather an artefact due to a change in the 
underlying  population36 The decline in IRR below 1 at lag 15 and 20 years if smoking prevalence is increased 
above the reference level of 50% might then represent the harvesting effect described above, viewed from a dif-
ferent perspective.

The exposure–response and lag–response trends are reflected in the cumulative effects plots (Fig. 5). The 
increase in magnitude of the response with larger increments in smoking prevalence is consistent with the posi-
tive relationship between smoking prevalence and lung cancer incidence. For positive increments in smoking 
prevalence, the decline in  IRRcum after the peak at approximately 10 years might be a direct consequence of the 
harvesting effect detailed above. For positive increments in smoking prevalence, the  IRRcum interval estimates 
never fall below 1 (except at very high increments in smoking prevalence) for the entire lag period implying the 
high risk (IRR > 1) at earlier lags has compensated for any apparent protective association (IRR < 1) at later lags. 
Conversely, for negative increments in smoking prevalence, the interval estimate for  IRRcum is less than 1 for 
the entire lag period, implying any apparent positive association at later lags (IRR > 1) has been compensated by 
negative associations (IRR < 1) at earlier lags.

Figure 2.  Bi-dimensional exposure–lag response surface showing joint effect of lag (years) and smoking 
prevalence (%) on predicted incidence rate ratio (IRR) of lung cancer. Effects are relative to the reference level of 
50% smoking prevalence.
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Although our model included covariates (age group, gender, country, outcome year) to control for confound-
ing variation, further analyses might consider additional known predictors of lung cancer such as  ethnicity37 or 
socioeconomic  status38. Furthermore, our model assumes that the exposure–lag response of smoking prevalence 
on lung cancer incidence is independent of our modelled covariates. This is a strong assumption; for example 
Chang et al.11 reported a significant age-by-pack-years interaction, whilst studies in Asia have reported a higher 
female to male ratio of the relative risk compared to non-Asian  studies15,39,40. One way of relaxing such assump-
tions might be to adopt a two-stage  design41. In the first stage, a series of covariate-specific DLNM’s are fitted, after 
which the cross-basis terms  Sit,l are reduced to simpler sets of one-dimensional coefficients and covariances for 
the exposure- and lag–dimensions respectively. In the second stage, these are then pooled using meta-analysis.

We chose smoking prevalence as our smoking index since this is a strong predictor of lung cancer incidence 
in a  population15. Although it is possible to include multiple cross-basis terms in DLNM’s, we decided against this 
to avoid the issue of multicollinearity, since our principle aim was to isolate the exposure–lag response of smok-
ing prevalence on lung cancer incidence. Nevertheless, future studies might consider other indices of smoking 
history such as cigarette sales. Recent work has extended the DLNM framework through the use of penalized 
splines within generalized additive models (GAM)42, which provide built‐in model selection procedures and 
the possibility of accommodating assumptions on the shape of the lag structure through specific  penalties43. It 

Figure 3.  Estimated lag response of the incidence rate ratio (IRR) and 95% confidence intervals for specified 
increments in smoking prevalence (%). IRR > 1 indicates a positive association whilst IRR < 1 indicates a negative 
association. Increments in smoking prevalence are relative to the reference level of 50% smoking prevalence. 
For example, for the panel entitled smoking prevalence 60%, this implies a percentage increase of 20% smoking 
prevalence in the population ((60–50)/50 × 100).
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has been shown that this penalized extension to DLNM’s provides greater flexibility and improved inferential 
 properties43 and so this approach might be considered in future works.

Using our model, the analyst can estimate  IRRcum for given smoking prevalence scenarios (i.e. changes in the 
proportion of smokers in a population) over desired future time periods.  IRRcum point estimates and confidence 
intervals are easily obtained from our model predictions (R code in supplementary material), by specifying a 
smoking prevalence reference level, the increment relative to the reference level, and the future time period. For 
example, reducing the percentage of smokers in a population from 50 to 40% (i.e. 20% reduction) for a period 
of 10 years hence is estimated to produce a 54% [95% CI 45%, 64%] reduction in the lung cancer incidence rate 
 (IRRcum = 0.65 [95% CI 0.61, 0.69]). This can be easily demonstrated by use of interactive plotting software. We 
have used the R Shiny  package44 to demonstrate the utility of our model for users to examine the effect that 
can be expected if the smoking prevalence is changed over a future time span of 30 years (https:// abehz adnia. 
shiny apps. io/ LungCa_ Expos ure_ lag_ respo nse- Smith_ et_ al_ 2021/). One can also accommodate more complex 
scenarios where the smoking prevalence rate changes across time. The fact that the analyst need only input 
smoking prevalence to make these predictions makes our model particularly attractive since projections are 
widely available for many  countries3.

Figure 4.  Estimated smoking exposure response of the incidence rate ratio (IRR) and 95% confidence intervals 
for specified lag periods (years). IRR is computed using the reference level of 50% smoking prevalence (i.e. the 
mean across all lags and countries). Accordingly, the IRR = 1 at smoking = 50% for all panels on the plot.

https://abehzadnia.shinyapps.io/LungCa_Exposure_lag_response-Smith_et_al_2021/
https://abehzadnia.shinyapps.io/LungCa_Exposure_lag_response-Smith_et_al_2021/
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It should be reminded that the smoking prevalence data we used herein are modelled estimates, and therefore 
subject to inherent uncertainties, discussed well  elsewhere1. Our DLNM requires complete ordered data over the 
time series, and to our knowledge, no such global dataset of observed data exists. However, the smoking dataset 
used in this analysis is from a highly credible source which has undergone a rigorous validation process and was 
hence chosen because we believed it to be the most suitable for our study.

A final word of caution is that interpretation of time-varying IRR’s is certainly non-trivial and may not con-
vey a sense of the true burden associated with changing smoking prevalence in populations. For example, if the 
baseline lung cancer incidence rate is very small, even a relatively large IRR might not lead to a big difference in 
cumulative lung cancer incidence between exposed and unexposed groups. Accordingly, computation of absolute 
risks in future work would be particularly useful for decision makers.

Conclusions
This was the first study to quantify the effect that changing smoking prevalence in a population has on lung 
cancer incidence. The exposure–response varied by lag period, whilst the lag–response varied according to the 
magnitude and direction of changes in smoking prevalence in the population. For the cumulative lag–response, 
increments above and below the reference smoking prevalence level was associated with an increased and 
decreased  IRRcum respectively, with the magnitude of the effect varying across the lag period. By isolating the 

Figure 5.  Estimated lag response of the cumulative incidence rate ratio  (IRRcum) for specified increases in 
smoking prevalence (%). Increments in smoking prevalence are relative to the reference level of 50% smoking 
prevalence. For example, for the panel entitled smoking prevalence 60%, this implies a percentage increase of 
20% smoking prevalence in the population ((60–50)/50 × 100)).
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exposure–lag response, our model can be used to perform simple “what-if ” analyses; that is, assessing changes 
in lung cancer incidence as a result of modifying the proportion of smokers in a population. We hope our work 
constitutes a preliminary step towards providing policy makers with meaningful indicators to inform national 
screening programme developments. To that end, we have implemented our model as an easy-to-use shiny app 
and provided an example of its use.

Received: 3 November 2020; Accepted: 11 May 2021
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