
Family-Joining: A Fast Distance-Based Method for Constructing
Generally Labeled Trees

Prabhav Kalaghatgi,*,1,2 Nico Pfeifer,1 and Thomas Lengauer1

1Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
2Graduate School of Computer Science, Saarland University, Saarbrücken, Germany

*Corresponding author: E-mail: prabhavk@mpi-inf.mpg.de.

Associate Editor: Jeffery Thorne

Abstract

The widely used model for evolutionary relationships is a bifurcating tree with all taxa/observations placed at the leaves.
This is not appropriate if the taxa have been densely sampled across evolutionary time and may be in a direct ancestral
relationship, or if there is not enough information to fully resolve all the branching points in the evolutionary tree. In this
article, we present a fast distance-based agglomeration method called family-joining (FJ) for constructing so-called
generally labeled trees in which taxa may be placed at internal vertices and the tree may contain polytomies. FJ con-
structs such trees on the basis of pairwise distances and a distance threshold. We tested three methods for threshold
selection, FJ-AIC, FJ-BIC, and FJ-CV, which minimize Akaike information criterion, Bayesian information criterion, and
cross-validation error, respectively. When compared with related methods on simulated data, FJ-BIC was among the best
at reconstructing the correct tree across a wide range of simulation scenarios. FJ-BIC was applied to HIV sequences
sampled from individuals involved in a known transmission chain. The FJ-BIC tree was found to be compatible with
almost all transmission events. On average, internal branches in the FJ-BIC tree have higher bootstrap support than
branches in the leaf-labeled bifurcating tree constructed using RAxML. 36% and 25% of the internal branches in the FJ-
BIC tree and RAxML tree, respectively, have bootstrap support greater than 70%. To the best of our knowledge the
method presented here is the first attempt at modeling evolutionary relationships using generally labeled trees.

Key words: generally labeled trees, densely sampled taxa, distance-based phylogenies, latent tree graphical models.

Introduction
Phylogenetic trees are models of evolutionary relationships.
The general approach in phylogenetics is to represent evolu-
tionary relationships using bifurcating trees with sampled
taxa (represented by so-called labeled vertices) placed at
the leaves. Neighbor-joining (NJ) is a popular method for
constructing such trees and uses distances between each
pair of taxa. Such trees have the maximum number of
unsampled ancestors (represented by so-called latent verti-
ces), each ancestor corresponding to a vertex comprising a
branching point in the tree. This approach does not allow the
labeled vertices to share an ancestor–descendant relation-
ship, and thus may not be appropriate for data sets that
have been densely sampled with respect to evolutionary
time, for example, genomic sequences of pathogens that
have been sampled from individuals who are part of the
same transmission chain.

To account for ancestor–descendant relationships
(Jombart et al. 2011) model evolutionary relationships us-
ing a directed acyclic graph in which each edge is directed
from a parent to its child. This graph does not contain any la-
tent vertices and is not necessarily connected. In case
the graph is disconnected, it is an incomplete representation
of the evolutionary relationships among all the labeled
vertices.

In related work Gavryushkina et al. (2014) provide a
method for constructing so-called sampled ancestor (SA)
trees in which labeled vertices come to be placed at internal
vertices by contracting terminal branches. The authors do
this in a Bayesian inference framework where trees are gen-
erated under a model that does not allow labeled vertices to
have degree greater than two and, in addition, does not allow
latent vertices to have degree greater than three.

Two distance-based algorithms, recursive grouping (RG)
and Chow–Liu recursive grouping (CLRG), have been devel-
oped by Choi et al. (2011) for constructing trees which may
contain latent vertices with degree greater than two and la-
beled vertices with degree greater than 0 (so-called generally
labeled trees). The authors additionally developed NJc, a
method for constructing generally labeled trees by initially
constructing a tree using NJ and subsequently contracting
all branches that are incident to a latent vertex and are
smaller than a preselected threshold. The performance of
RG, CLRG, and NJc was compared on simulated data where
only the tree topology was varied. In that study, no method
clearly outperformed the others.

We developed a distance-based agglomeration method
called family-joining (FJ). FJ iteratively identifies, on the basis
of a distance threshold, vertices that are in a parent–child or
sibling relationship, and introduces latent vertices if required.

A
rticle

� The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is
properly cited. Open Access
2720 Mol. Biol. Evol. 33(10):2720–2734 doi:10.1093/molbev/msw123 Advance Access publication July 19, 2016

Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -

After inferring all the edges, the branch lengths are estimated
using ordinary least-squares (OLS) regression.

RG, CLRG, and FJ require the setting of a threshold that
determines the model complexity (number of branches) of
the output tree. We tested three approaches to threshold
selection which minimized Bayesian information criterion
(BIC), Akaike information criterion (AIC), and cross-
validation (CV) error, respectively.

We compared the performance of FJ-BIC, FJ-AIC, FJ-CV
with NJc-BIC, RG-BIC, CLRG-BIC, and SA across diverse sim-
ulation scenarios. We applied FJ-BIC to an HIV-1 transmission
chain data set (Vrancken et al. 2014) and checked if the
known transmission events were compatible with the FJ-
BIC tree. Additionally in the analysis of HIV-1 sequences, we
compared the bootstrap support of branches in the FJ-BIC
tree and the maximum likelihood tree constructed using
RAxML (Stamatakis 2006).

New Approaches

An Overview of FJ
The FJ method consists of a distance-based agglomeration al-
gorithm for constructing generally labeled trees, and an effi-
cient algorithm for computing OLS branch lengths. Trees are
inferred using the following agglomeration procedure. We ini-
tialize a vertex set with all labeled vertices. At each iteration we
select from the vertex set, the vertex pair that optimizes the NJ
objective, as defined by Saitou and Nei (1987), see eq. (1) in
Materials and Methods. We classify the selected vertex pair as
being either parent–child or siblings on the basis of a threshold
�, see eq. (2) in Materials and Methods. If they are found to be
siblings we check if there is another vertex that is the parent of
both the siblings. If no such vertex is found, a latent vertex is
introduced as the parent of both the siblings. The distance
matrix is augmented by adding distances from the newly in-
troduced latent vertex to each of the other vertices, obtained
using the formula described in Studier and Keppler (1988), see
eq. (5) in Materials and Methods. Rows and columns of the
distance matrix corresponding to the children are removed,
and the procedure is iterated until a connected graph is ob-
tained. Subsequently, we estimate branch lengths using OLS
regression. For efficient calculation of OLS branch lengths we
extended the algorithm by Bryant (1997), which was designed
for leaf-labeled trees, to generally labeled trees. OLS branch
lengths may be negative, which has no biological interpreta-
tion. To account for this, after estimating the branch lengths, all
branches that are shorter than � and are incident to a latent
vertex are contracted. Overall, the procedure is similar to con-
struct the NJ tree followed by contracting short branches.

We demonstrate FJ by applying it to a tree-additive distance
matrix. A distance matrix is tree-additive if there exists a tree, in
which the distance between each pair of labeled vertices is
equal to the corresponding sum of lengths of the branches
that lie along the unique path between the two vertices.

An Example Using Tree-Additive Distances
We simulated a generally labeled tree and computed corre-
sponding tree-additive distances. We applied FJ to the

resulting tree-additive distance matrix and describe the major
steps below. See figure 1 for an illustration. The first iteration
identified O1 and O2 as neighbors that share a sibling rela-
tionship. No parent was found for these siblings and a latent
vertex L1 was introduced. Distances between L1 and vertices
O3 through O9 were calculated and the rows and columns
corresponding to O1 and O2 were removed from the distance
matrix. Edges were added between L1 and O1, and between L1

and O2. The second iteration found O4 and O5 as neighbors
that share a parent–child relationship with O4 being the par-
ent. An edge was added between O4 and O5, and O5 was
removed from the distance matrix. The following two itera-
tions identified neighbors that are siblings with no parent
thus introducing two latent vertices L2 and L3. The sibling
pairs found in the third and fourth iteration are ðL1;O3Þ and
ðL2;O4Þ respectively. The fifth iteration identified L3 and O6 as
siblings, both of which are the children of O9. Similarly, the
next iteration found O9 to be the parent of both O7 and O8.
The final step involved estimating branch lengths using OLS.
The estimated branch lengths are identical to the corre-
sponding branch lengths in the simulated tree.

Results and Discussion

Simulated Data
Simulated data sets were constructed by varying either the
tree type, proportion of labeled internal vertices, type of con-
tracted edge, number of labeled vertices, sequence length or
branch length. Each of these parameters is described in detail
below. An overview of the parameter settings is provided in
table 1.

Three types of binary trees were generated: balanced, un-
balanced, and random. Unbalanced or ladder-like trees have
the largest diameter among all the trees with the same num-
ber of vertices. The diameter of a tree is the number of edges
that lie on the path in the tree with the maximum number of
edges. We chose this tree type because it has been shown that
the accuracy of the neighbor identification step (1), which
forms a part of FJ, is inversely related to tree diameter (St. John
et al. 2003). A balanced tree is complementary to an unbal-
anced tree and has the smallest diameter possible.

The fraction of latent vertices ranges from zero to
ðn� 2Þ=ð2n� 2Þ where n is the number of labeled vertices.
We simulated trees by varying the fraction of latent vertices
over this range in four equal steps.

Trees with the desired proportion of labeled vertices were
constructed by contracting edges of a binary tree. Depending
on the type of simulation experiment, the following edges
were contracted: leaf/latent, labeled/latent, latent/latent, and
any/latent.

For each setting of tree type, fraction of latent vertices, and
edge type, we randomly generated corresponding types of
binary trees and contracted randomly selected edges of the
appropriate type, until the desired fraction of latent vertices
was reached. Once the topology was generated, branches
were assigned lengths by uniformly sampling numbers be-
tween 1 and 100, and scaling them such that the expected
branch length was equal to a preselected branch length

Constructing Generally Labeled Trees Using Family-Joining . doi:10.1093/molbev/msw123 MBE

2721

Deleted Text: o
Deleted Text: family
Deleted Text: -j
Deleted Text: J
Deleted Text: oining
Deleted Text: family-joining (
Deleted Text:)
Deleted Text: ordinary <?A3B2 thyc=10?>least-squares<?thyc?> (
Deleted Text:)
Deleted Text: neighbor-joining
Deleted Text: -
Deleted Text: ordinary <?A3B2 thyc=10?>least-squares<?thyc?> (
Deleted Text:)
Deleted Text: ing
Deleted Text: neighbor-joining
Deleted Text: e
Deleted Text: u
Deleted Text: a
Deleted Text: d
Deleted Text: F
Deleted Text: -
Deleted Text: ordinary least-squares
Deleted Text: d
Deleted Text: T

average. Branch length averages took values of 0.001, 0.004,
0.016, 0.064, and 0.256 subs/site. A vertex was randomly se-
lected as the root and sequences were evolved along the
branches according to a GTRþC model of substitution
(Lanave et al. 1984). The parameters of the GTR model
were set using estimates from a real data set (Waddell and
Steel 1997). The parameters shape and scale of the C model
were set to 1 which resulted in a moderate variation of

substitution rate across sites. Seq-Gen was used for simulating
sequence evolution (Rambaut and Grassly 1997). Sequence
lengths took values of 250, 500, 1,000, 2,000, and 4,000 nt. The
number of labeled vertices (taxa) took values of 20, 40, 80, 160,
and 320.

Simulation scenarios were defined by varying each param-
eter over its range while keeping the remaining parameters
fixed at their default setting. The default settings for each

O1

O9

O8 O7

O6

O5

O4

O3O2

Unresolved tree topology

O9

O2
O3
O4
O5
O6
O7
O8

O1 O2 O3 O4 O5 O6 O7 O8

3
8
8
9
10
8
12
7

9
9
10
11
9
13
8

6
7
8
6
10
5

1
6
4
8
3

7
5
9
4

4
8
3

6
1 5

O1 0
0

0
0

0
0

0
0

O9

0

Tree-additve distances

O2

O1

O3
O4

O5

O6

O7
O8

O9

L1

O1, O2
Siblings with latent parent

O9

O3
O4
O5
O6
O7
O8

O3 O4 O5 O6 O7 O8

6
7
8
6
10
5

1
6
4
8
3

7
5
9
4

4
8
3

6
1 5

0
0

0
0

0
0

O9

0
L1

L1
7 7 8 9 7 11 6 0

O1

O2

O3
O6

O7

O4

O5
O8

O9

L1

O4, O5
Parent-child

O9

O3
O4
O6
O7
O8

O3 O4 O6 O7 O8

6
8
6
10
5

6
4
8
3

4
8
3

6
1 5

0
0

0
0

0

O9

0
L1

L1
7 7 9 7 11 6 0

O1

O2

O3

O6 O7

O4

O5

O8

O9

L1 L2

L1, O3
Siblings with latent parent

O9

O4
O6
O7
O8

O4 O6 O7 O8

6
4
8
3

4
8
3

6
1 5

0
0

0
0

O9

0
L2

L2
3 5 3 7 2 0

O9

O6
O7
O8

O6 O7 O8

4
8
3

6
1 5

0
0

0

O9

0
L3

L3
4 2 6 1 0

O1

O2

O3

O6 O7

O8

O9

L1 L2

O4

O5

L3

L2, O4
Siblings with latent parent

O9

O7
O8

O7 O8

6
1 5

0
0

O9
0

O1

O2

O3

L1 L2

O4

L3

O5

O9

O6
O8

O7

Siblings with observed parent

O1

O2

O3

L1 L2

O4

L3

O5

O6O9

O7
O8

O7, O8 (O9)
Siblings with observed parent

O1

O2

O3

L1 L2

O4

L3

O5

O6O9

O7
O8

1

2 4

3
1

2

1

3
51

1

OLS branch length estimates

A

B

C

D

E

F

G

H

FIG. 1. (A) The tree-additive distances used in this example. Labeled vertices are represented by solid circles and latent vertices by white circles with
black border. (B–G) The agglomeration steps of FJ which identifies the correct tree topology. The edges that are inferred in each agglomeration step
are shown as solid lines. The dotted lines connect the labeled and latent vertices that will be used in the next iteration. (H) The correct branch
lengths estimated using OLS.

Kalaghatgi et al. . doi:10.1093/molbev/msw123 MBE

2722

parameter are described below. Note that this procedure
would result in 22 different parameter combinations. We
simulated the corresponding 22 scenarios.

For the categorical parameters tree type and contracted
edge type, the respective default settings were random and
any/latent. These settings were selected as the defaults as they
do not restrict the generation of generally labeled trees.

For the continuous parameter, fraction of vertices that are
latent, which has a bounded range the midpoint was consid-
ered as the default value.

For the following continuous parameters with no upper
bound: number of labeled vertices, sequence length, and av-
erage branch length, we selected the appropriate range and
default settings such that the trend in performance over each
parameter range would be apparent.

The default setting for the number of labeled vertices was
160, for the sequence length it was 1,000 nt, for the average
branch length was 0.016 subs/site.

For each setting of parameter values, 100 trees and corre-
sponding sequences were simulated. For distance-based
methods we computed pairwise distances using ML distance
estimates under a GTRþC model, computed using
RAxMLv8.2.8 (Stamatakis 2014). For SA which constructs
rooted trees we provided sampling times for each labeled
vertex. This was done by randomly selected a vertex as the
root and defining the sampling time for each labeled vertex as
the path length from the root. Note that this method of
defining sampling times is equivalent to assuming a strict
molecular clock with a clock rate of 1.0. When substitution

rates (subs./site/time) follow a strict molecular clock, the dis-
tance from the root to each labeled vertex is proportional to
the time elapsed since divergence from the root. SA recovers
the correct clock rate of 1.0 under the strict molecular clock
model in all scenarios except two where the average branch
length is very small (0.001 and 0.004; see supplementary fig. 3,
Supplementary Material online).

Performance Metrics
Precision and recall were used to quantify the accuracy of the
various methods at reconstructing the simulated trees. These
metrics are defined below.

PrecisionðT; T̂Þ ¼ jS \ Ŝj
jŜj

; and

RecallðT; T̂Þ ¼ jS \ Ŝj
jSj ;

where S and Ŝ are the set of splits corresponding to the
simulated tree T and the reconstructed tree T̂, respectively.
Please note that S contains the split of every branch in T,
including the terminal branches. Precision and recall range
from zero to one. Precision is equal to one only if all the splits
in the reconstructed tree are present in the simulated tree.
Similarly, recall is equal to one only if all the splits in the
simulated tree are present in the reconstructed tree. Please
note that we do not report Robinson–Foulds distance, which

Table 1. Simulated Data Sets Were Constructed by Varying Either the Tree Type, Proportion of Labeled Internal Vertices, Type of Contracted Edge,
Number of Labeled Vertices, and Sequence Length or Branch Length.

Tree Type Balanced Random* Unbalanced

Fraction of latent vertices 0.5 0.37 0.25* 0.12 0
Contracted edge leaf/latent labeled/latent any/latent* latent/latent
Average branch length 0.001 0.004 0.016* 0.064 0.256
Number of labeled vertices 20 40 80 160* 320
Sequence length 250 500 1,000* 2,000 4,000

NOTE.—All settings that were considered for each parameter are shown below. The default setting for each parameter is indicated with *.

Table 2. Methods with the Significantly High Precision and Recall Are Shown Below.

Precision, Recall

Tree type Balanced Random* Unbalanced
F, N, S F, F, N, C, S C, C, S

Contracted edge leaf/latent labeled/latent any/latent* latent/latent
F, N, F, N, C F, N F, F, N, C, S R, S

Fraction of latent vertices 0.5 0.37 0.25* 0.12 0
N, S N, C, S F, F, N, C, S F, N, C, S C, C

Average branch length 0.001 0.004 0.016* 0.064 0.256
C, S F, S F, F, N, C, S F, C, N, S C, N, S

Number of labeled vertices 20 40 80 160* 320
F, N, C F, N, C F, N, C, S F, F, N, C, S F, N, C, S

Sequence length 250 500 1,000* 2,000 4,000
F, C, S F, S F, F, N, C, S F, N, C, F, N, C, S F, N, C, F, N, S

NOTE.—All methods that are not significantly worse than the best method are also shown. F, N, R, C, and S stand for FJ-BIC, NJc-BIC, RG-BIC, CLRG-BIC, and SA, respectively.
Black and red indicate methods with the highest precision and recall, respectively. The default setting for each simulation parameter is indicated with *.

Constructing Generally Labeled Trees Using Family-Joining . doi:10.1093/molbev/msw123 MBE

2723

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
Deleted Text: m
Deleted Text: -

is popularly used for quantifying reconstruction accuracy,
since it would be biased against methods that do not allow
polytomies. Each of the reconstruction methods that we
tested can achieve the highest and the lowest possible value
of recall. Among the reconstruction methods that were com-
pared, only SA cannot achieve a precision of one if the sim-
ulated tree contains polytomies. We feel that both precision
and recall are important measures of reconstruction accuracy.

Results of Comparative Study on Simulated Data
We present the results of applying FJ-BIC, NJc-BIC, RG-BIC,
CLRG-BIC, and SA to all simulated data sets. For methods
which have the suffix BIC, we performed threshold selection
by minimizing BIC. For FJ, we also tested FJ-AIC and FJ-CV

which optimized AIC, and CV error, respectively. As FJ-AIC
and FJ-CV never performed higher than FJ-BIC in any simu-
lation scenario we do not show the results in the main paper.
These results are shown in supplementary figure 4,
Supplementary Material online. A change in precision or re-
call is considered to be statistically significant if the corre-
sponding Welch’s t-test has a P value that is smaller than 0.
01. A method is said to have significantly high precision or
recall if no other method has significantly higher precision or
recall, respectively.

Tree Type
Both FJ-BIC and NJc-BIC have significantly higher precision
and recall on balanced trees than on unbalanced trees. This

Type of tree

P
re

ci
si

on
/R

ec
al

l

0.
2

0.
4

0.
6

0.
8

1.
0

● ●

●

● ●

●

balanced random(d) unbalanced

A

● FJ−BIC
NJc−BIC
RG−BIC
CLRG−BIC
SA

● Precision =
|S∩ Ŝ|

|Ŝ|
● Recall =

|S∩ Ŝ|

|S|

Type of contracted edge

● ●
●

●● ● ● ●

leaf/latent labeled/latent any/latent(d) latent/latent

B

Fraction of latent vertices

P
re

ci
si

on
/R

ec
al

l

0.
2

0.
4

0.
6

0.
8

1.
0

●

● ●
●

●

●
● ● ●

●

0.5 0.37 0.25(d) 0.12 0

C

Average branch length (subs./site)

●

● ●

●

●

●

●

●
● ●

0.001 0.004 0.016(d) 0.064 0.256

D

Number of labeled vertices (taxa)

P
re

ci
si

on
/R

ec
al

l

0.
2

0.
4

0.
6

0.
8

1.
0

● ●
● ● ●

●
● ● ● ●

20 40 80 160(d) 320

E

Sequence length (nt)

●

●
● ● ●

●

●

●

●
●

250 500 1000(d) 2000 4000

F

FIG. 2. A comparison of the reconstruction accuracy of all methods in six simulation categories. One parameter (x-axis) was varied in each category.
The default parameter settings are denoted as parameterValue (d) on each x-axis. For each parameter setting, 100 data sets were created. Precision
is shown in blue and recall is shown in pink.

Kalaghatgi et al. . doi:10.1093/molbev/msw123 MBE

2724

Deleted Text:
Deleted Text: c
Deleted Text: s
Deleted Text: s
Deleted Text: d
Deleted Text: Bayesian information criterion (
Deleted Text:)
Deleted Text: Akaike information criterion (
Deleted Text:)
Deleted Text: cross-validation error (
Deleted Text:)
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
Deleted Text: Welch's
Deleted Text: -
Deleted Text: t

behavior is expected, since the accuracy of the step of FJ, in
which neighbors are identified, is inversely related to tree
diameter (St. John et al. 2003). Even on unbalanced trees,
which have large diameters, FJ-BIC and NJc-BIC have moder-
ately large (median) precision/recall values of 0.79/0.81 and
0.76/0.87 respectively (see fig. 2A). Similarly RG-BIC performs
low on unbalanced trees than on balanced trees, which is in
agreement with previous work (Choi et al. 2011). RG itera-
tively partitions the entire vertex set into families. Balanced
trees and unbalanced trees have nleaves=2 families, and two
families, of size two, respectively. This suggests that RG has a
higher error rate for unbalanced trees than for balanced trees.
In contrast, CLRG-BIC performs significantly higher on unbal-
anced trees than on balanced trees with median precision/
recall values of 0.89/0.93 and 0.89/0.91, respectively. CLRG
constructs the MST and then iteratively applies RG to the
neighborhood of each internal vertex. The higher perfor-
mance of CLRG-BIC on unbalanced trees is most likely due
to the MST being topologically close to the unbalanced tree.
SA has a median precision and recall of 0.77 and 0.96, respec-
tively, across all tree types. The comparatively lower precision
of SA is due to this methods constructing trees in which a
labeled vertex can only have up to one descendant and all
other internal vertices have degree three. Subsequently this
results in trees with excess branches if the true tree contains
polytomies.

Type of Contracted Edge
FJ-BIC has a significantly higher precision than other methods
for all types of contracted edges, except latent/latent. SA has a
high median recall of 0.96 for all types of contracted edges.
However the recall values of SA are not significantly higher
than those of FJ-BIC if the contracted edge is leaf/latent. This is
due to a large variance in the performance of SA, quantified
with an inter-quantile range of 0.26 (see fig. 2B). SA has high
median precision of 0.94 if the contracted edge is leaf/latent.
Contracting leaf/latent edges results in trees in which a la-
beled vertex can have up to one descendant and all other
internal vertices have degree three. The high performance of
SA in this category is because these are the same type of trees
which SA samples when optimizing tree topology. SA has
lower performance when any other edge type is contracted.
RG-BIC and CLRG-BIC have significantly higher precision and
recall if latent/latent edges are contracted, when compared
with precision and recall for other edge types.

Fraction of Vertices that Are Latent
For leaf-labeled trees which have a maximal fraction (0.5) of
latent vertices, all methods have a median precision higher
than 0.95 (see fig. 2C). In this simulation scenario, with a
median recall of 0.97, SA has significantly higher recall than
other methods, even though FJ-BIC also has a high median
recall of 0.94. In general, precision reduces and recall rises with
a decrease in the fraction of latent vertices. FJ-BIC has a me-
dian precision and recall that is greater than 0.89 across all
settings of fraction of latent vertices. CLRG-BIC has a signifi-
cantly higher precision and recall than other methods when

all vertices are labeled. This is because the CLRG algorithm
involves the construction of a MST which should be topo-
logically similar to the completely labeled tree.

Average Branch Length (Substitution Rate)
All methods perform badly on trees with short average branch
lengths of 0.001 subs/site with median recall smaller than 0.8
each (see fig. 2D). This is because a significant portion of the
simulated sequences are identical. Thus, in FJ-BIC, NJc-BIC, RG-
BIC, and CLRG-BIC there is a preference for choosing parent–
child relationship over siblings. CLRG-BIC has significantly
higherprecisionthanothermethodsifbranchlengthsareeither
very small or very large. FJ-BIC has high precision if the average
branch length is between 0.004 and 0.064. In trees with larger
branch lengths there is a high chance that sequences undergo
multiple substitutions at the same site. This effect has been
termed genetic saturation and results in an underestimation
of the true evolutionary distance. Additionally, estimates of
large distances are associated with large variance (Hoyle and
Higgs 2003) which results in the selection of wrong neighbors in
the NJ step. CLRG-BIC has higher performance for trees with
large branch lengths because the input to CLRG-BIC is the MST
and the construction of the MST is probably robust to noise in
distance estimates. The performance of SA is not greatly af-
fected by long branches.

Number of Labeled Vertices (Taxa)
The performance of all the methods is expected to worsen
with increasing number of labeled vertices. RG shows signif-
icant change in precision/recall with corresponding median
values changing from 0.88/0.75 (5 labeled vertices) to 0.83/
0.61 (80 labeled vertices) (see fig. 2E). The change in precision
and recall shown by SA is not significant. FJ-BIC and CLRG-BIC
show a significant drop in precision but not in recall. Even for
trees with 320 taxa, FJ-BIC has high median precision and
recall of 0.92 and 0.9 respectively. NJc-BIC shows significant
change in both precision and recall with median precision/
recall changing from 0.93/0.93 to 0.89/0.91.

Sequence Length
The performance of all methods improves with increase in
sequence length. For all settings of sequence length, FJ-BIC is
among the methods with significantly high precision (see fig.
2F). FJ-BIC is among the methods with significantly high recall
for sequences of length 1,000 to 4,000 nt. For all settings of
sequence length, SA is among the methods with significantly
high recall.

Summary of Performance
For the simulations performed at the default parameter set-
tings, the methods listed in order of decreasing median pre-
cision are FJ-BIC (0.93), NJc-BIC (0.9), CLRG-BIC (0.89), RG-BIC
(0.82), and SA (0.77), and the methods listed in order of de-
creasing median recall are SA (0.96), NJc-BIC (0.92), CLRG-BIC
(0.92), FJ-BIC (0.91), and RG-BIC (0.63). In 15 out of the 22
simulated scenarios FJ-BIC is among the methods with signif-
icantly high precision (see Table 2). In 17/22 simulated

Constructing Generally Labeled Trees Using Family-Joining . doi:10.1093/molbev/msw123 MBE

2725

Deleted Text: Fig
Deleted Text: c
Deleted Text: e
Deleted Text: Fig
Deleted Text: three
Deleted Text: to
Deleted Text: v
Deleted Text: t
Deleted Text: T
Deleted Text: a
Deleted Text: l
Deleted Text: Fig
Deleted Text: b
Deleted Text: l
Deleted Text: s
Deleted Text: r
Deleted Text: Fig
Deleted Text: -
Deleted Text: neighbor-joining
Deleted Text: l
Deleted Text: v
Deleted Text: t
Deleted Text: Fig
Deleted Text: l
Deleted Text: Fig
Deleted Text: nt
Deleted Text: p

scenarios SA is among the methods with significantly high
recall. In 13/22 simulated scenarios NJc-BIC is among the
methods with significantly high recall. FJ-BIC has a median
recall that is greater than 0.9 in 16/22 simulated scenarios. The
remaining scenarios are 1) trees with 20 taxa (recall of 0.89), 2)
trees in which branches are very short (0.001 and 0.004 subs/
site; recall of 0.6 and 0.84 respectively), 3) unbalanced trees
(0.81), and 4) trees constructed using short sequences (250
and 500 nt; recall of 0.77 and 0.85 respectively).

Comparison of Time-Complexities and Run Times
Clustering methods are deterministic procedures for which
we report worst-case run times. Both FJ and NJ run in time
Oðn3Þ. RG runs in time Oðn4Þwhich makes it infeasible to run
on large datasets. CLRG runs in Oðn2lognþ nid

3
maxðMSTÞÞ

where ni is the number of internal vertices of the MST and
dmaxðMSTÞ is the largest vertex degree in the MST. Model
selection with BIC or AIC requires the repeated optimization
of the likelihood function with respect to parameters of the
substitution model. Computing the likelihood with
Felsenstein’s dynamic programming algorithm (Felsenstein
1981) takes OðnA2LÞ time where L is the sequence length
and A is the size of the alphabet. A is 4 for genetic sequences
and 20 for protein sequences. We used RAxML for computing
and optimizing likelihoods; RAxML is highly optimized for this
task. SA performs Bayesian inference by MCMC sampling, a
stochastic procedure whose runtime depends on how easily
the MCMC chain moves through the space of trees and
model parameters. The observed run times (see fig. 3) suggest
that FJ-BIC and NJc-BIC are the fastest methods for trees
containing up to 320 taxa, with both the methods having a
median run time of 5.4 and 4.8 min respectively. CLRG-BIC
took around 9.3 min to reconstruct trees containing 320 taxa
and showed the slowest growth in run time. RG showed the
largest growth in run time taking 4.8 h for reconstructing trees

with 320 taxa. SA was run with MCMC chain-length set to 108

states. SA took around 2 h to construct trees containing 20
taxa and 30 h for constructing trees containing 320 taxa.

HIV-1 Transmission Chain Data
We applied FJ-BIC to a dataset of HIV-1 subtype C env gene
sequences that were sampled from 11 hosts who are part of a
partially known transmission chain (Vrancken et al. 2014). We
selected this dataset because it contains sequences from vi-
ruses that are evolutionarily closely related. We discarded 31
sequences which had gaps and analyzed the remaining 181
sequences of length 1,376 nt. The hosts are labeled
A; B; C;D; E; F;G;H; I; K; and L. Sequences from multiple
time points are available for A; B; C;D; E; and H. The sam-
pling times for all sequences are known. All the pairs of hosts
who were involved in a transmission event are known and
have been inferred by interviewing the hosts. The direction of
transmission is known for all transmission events except for
the transmission between A and B.

Additionally we compared the bootstrap support of
branches in the FJ-BIC tree with the branches in the maxi-
mum likelihood tree constructed using RAxMLv8.2.
(Stamatakis 2006). We first identified the most appropriate
model of substitution using JModelTest2 (Darriba et al. 2012).
A BIONJ tree (Gascuel 1997) was constructed with Jukes–
Cantor distances and AIC was computed for the following
models of substitution: JC, F81, K80, HKY, TrNef, TrN, TPM1,
TPM1uf, SYM, and GTR. Variants of all substitution models
which included a parameter for invariant sites (I) and/or a
Gamma model (C) for intersite rate variation were also
tested. GTRþCþI was the best model, that is, the one
with the smallest AIC score. We constructed a tree with
RAXML using the original sequence alignment and the
GTRCATI model of substitution, which we refer to as the
RAxML tree. The CAT model approximates the Gamma
model an enables fast computation (Stamatakis 2006).

We inferred a generally labeled tree using FJ-BIC. Pairwise
distances were computed using RAxML which included the
following steps (Stamatakis et al. 2005). First a maximum
parsimony tree was constructed using stepwise addition
and the parameters of the substitution model GTRþC
were optimized. The optimized substitution model was
used to compute maximum likelihood distances for all se-
quence pairs. For computing the likelihood of FJ trees at var-
ious values of the distance threshold we used RAxML as
follows. FJ trees were converted to leaf-labeled trees by replac-
ing each interior labeled vertex with a latent vertex and add-
ing an edge of length zero between the newly added latent
vertex and the former interior labeled vertex. This conversion
was necessary since RAxML can only handle leaf-labeled trees.
We then maximized the likelihood of the converted FJ tree by
fixing the tree topology and branch lengths and optimizing
the parameters of the substitution model GTRþC. The max-
imized log-likelihood was used for computing BIC.

The FJ-BIC tree was rooted assuming a strict molecular clock
model. We define the optimal position of the root as that
position which minimizes the RSS of regressing distances
from the root to each labeled vertex against sampling times.

Number of labeled vertices (taxa)

Ti
m

e
(m

in
)

1
10

10
0

10
00

10
00

0

●
●

●

●

●

● FJ−BIC
NJc−BIC
RG−BIC
CLRG−BIC
SA

20 40 80 160(d) 320

FIG. 3. A comparison of run times of all methods in the scenario
where the number of labeled vertices was varied. Run times are shown
on a log-scale.

Kalaghatgi et al. . doi:10.1093/molbev/msw123 MBE

2726

Deleted Text: (i
Deleted Text: (ii
Deleted Text: (iii
Deleted Text: (iv
Deleted Text: c
Deleted Text: r
Deleted Text: t
Deleted Text: Felsenstein's
Deleted Text: four
Deleted Text: Fig
Deleted Text: utes
Deleted Text: utes
Deleted Text: ours
Deleted Text: two
Deleted Text: ours
Deleted Text: ours
Deleted Text: t
Deleted Text: c
Deleted Text: d
Deleted Text: -
Deleted Text: -
Deleted Text: i.e.

We placed the root at the midpoint of each branch and com-
puted the RSS for each branch. We then picked the branch
that had the smallest RSS and searched along the branch for
the position of the root with the smallest RSS. Subsequently
this position was chosen as the root of the FJ-BIC tree.

Compatibility of the FJ-BIC Tree with Known Transmission

Events
In order to check if the known transmission events are com-
patible with a rooted tree we needed to label all latent vertices
with a host. Latent vertices were visually labeled with hosts

FIG. 4. The FJ-BIC tree of 181 HIV-1 env gene sequences sampled from hosts involved in a known transmission chain. Each vertex is represented by a
circle whose inner color is black if the vertex is labeled and white if the vertex is latent. The outer color of each circle indicates the host of the
corresponding vertex. Branches reflecting transmission events have been labeled. Nine out of ten transmission events are compatible with the FJ-
BIC tree. The red box highlights the transmission event B! I which is not compatible with the FJ tree.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Support for common branches in RAxML tree

S
up

po
rt

 fo
r

co
m

m
on

 b
ra

nc
he

s
in

 F
J

B
IC

 tr
ee

1
2
3
4
5
6
7

count

0.00

0.25

0.50

0.75

1.00

162 terminal branches
 in FJ BIC tree

44 internal branches
 only in FJ BIC tree

103 internal branches
 only in RAxML tree

B
ra

nc
h

su
pp

or
t

FIG. 5. Left: Comparing the support of common branches in the FJ-BIC tree and the RAxML tree. Right: Supports for branches that are only present
in either the FJ-BIC tree or the RAxML tree.

Constructing Generally Labeled Trees Using Family-Joining . doi:10.1093/molbev/msw123 MBE

2727

Deleted Text: t
Deleted Text: k
Deleted Text: t
Deleted Text: e

using standard maximum parsimony. The labeling that we
applied resulted in the minimum possible total cost of 10 (see
fig. 4). Given a rooted tree with all vertices labeled with a host,
we define a transmission event (X! Y) to be compatible
with the tree if there is a directed edge from a vertex labeled X
to a vertex labeled Y. Nine out of ten transmission events are
compatible with the FJ-BIC tree. The direction of transmission
between A and B is not known. The FJ-BIC tree suggests that
A was infected by B. The branch of the FJ-BIC tree that sug-
gests this transmission event has been labeled with the
known transmission event A$ B. Eight out the remaining
nine transmission events are compatible with the FJ-BIC tree
and branches indicative of these transmission events are la-
beled in fig. 4. The transmission event B! I is not compat-
ible with the FJ-BIC tree (red solid box in fig. 4) which may be
due to insufficient sampling; only three sequences were avail-
able from host I. It is possible that the polytomy present inside
the red dotted box in fig. 4 may be resolved if more sequences
from I were available, in such a way that the resulting tree
would be compatible with the transmission B! I.

Branch Support in the FJ-BIC Tree and the RAxML Tree
The bootstrap support of a branch is defined as the number
of bootstrap replicate trees that contain this branch. The
bootstrap support of branches in the FJ-BIC tree and the
RAxML tree were computed using 1,000 replicates. Since
each labeled vertex is a leaf in all bootstrap RAxML trees, all
terminal branches of the RAxML tree trivially have a support
of one. The support of a terminal branch in the FJ-BIC tree is
not necessarily one.

75 internal branches were common to both the FJ-BIC tree
and the RAxML tree. The median (IQR) supports for the
common branches were 0.73 (0.43) and 0.76 (0.38) in
the FJ-BIC and the RAxML tree respectively. Supports for
the common branches in both trees were strongly correlated
(Pearson’s q ¼ 0:84, see fig. 5). There are 44 and 103 internal
branches that are present only in the FJ-BIC tree and the
RAxML tree respectively with lower median (IQR) branch
supports of 0.22 (0.28) and 0.18 (0.33) respectively (see fig.
5). The 124 terminal branches in the FJ-BIC tree have a me-
dian (IQR) branch support of 0.95 (0.16).

On average an internal branch in the FJ-BIC tree has a
higher support than an internal branch in the RAxML tree.
36% of FJ-BIC branches and 25% of RAxML branches have
supports greater than 0.7.

Summary and Outlook
In this paper, we present a fast distance-based agglomeration
method called FJ for constructing generally labeled trees. A
key feature of the algorithm presented here is its low worst
case time complexity, Oðn3Þ, where n is the number of taxa
making it feasible for analyzing large data sets. For precom-
puted distances between 320 taxa, FJ-BIC took around 5.4 min
(60.76) to estimate a tree. At each agglomeration step FJ only
adds branches (both internal and terminal) if there is suffi-
cient data to support this move. The algorithm treats short
branches as unreliable and identifies an optimal threshold by

minimizing test error. We tested two methods, FJ-BIC and FJ-
CV error, which minimize BIC and CV error, respectively.
When compared with related methods FJ-BIC was best at
reconstructing the correct tree across a wide range of simu-
lation settings. FJ-BIC was applied to HIV sequences sampled
from individuals involved in a known transmission chain. The
FJ-BIC tree was compatible with ten out eleven transmission
events. On average, internal branches in the FJ-BIC tree were
found to have higher statistical support than internal
branches in the tree constructed using RAxML. A method
for reconstructing phylogenetic trees with high precision cir-
cumvents the need for a time-consuming bootstrap analysis.
To the best of our knowledge the method presented here is
the first attempt at modeling evolutionary relationships using
generally labeled trees.

Materials and Methods

Terminology
A phylogenetic tree is an edge weighted undirected tree con-
sisting of two types of vertices, labeled vertices (representing
observed sequences) and latent vertices (representing unob-
served sequences). Sequence information is present only at
labeled vertices. Where appropriate, we refer to edges as
branches and edge weights as branch lengths. A branch
length quantifies the amount of expected change between
the sequences corresponding to the respective incident ver-
tices. Branch lengths are usually in units of substitutions per
site. Labeled vertices and latent vertices have a minimum
degree of one and three respectively. For a tree consisting
of n labeled vertices the number of latent vertices lies
between zero and n� 2. For trees with a maximal number
of latent vertices, all labeled vertices are leaves (degree one)
and all latent vertices have degree three. Trees are leaf-
labeled if all labeled vertices are leaves, else they are generally
labeled.

A distance matrix d is tree-additive in a tree T if the dis-
tance between each pair of labeled vertices equals the corre-
sponding path length (sum of branch lengths along the
unique path between the two vertices) in T. Each branch
partitions the set of all labeled vertices into two disjoint
sets which are referred to as the split of the branch. The
two sets of labeled vertices that are present in a split are
referred to as the sides of the split. A split is compatible
with a tree if there is any branch in the tree such that remov-
ing the branch bipartitions the set of labeled vertices as de-
fined by the split. S(T) denotes the set of splits that are
defined by a branch in T.

A pair of vertices are siblings if both of them are leaves and
are adjacent to the same vertex. A vertex pair is in a parent–
child relationship if they are adjacent and one of them is a leaf.
Thus we call siblings what in the context of the NJ algorithm is
called neighbors.

A rooted tree is a tree with directed edges. In such trees
there is one latent vertex (the root) which has indegree zero
and outdegree greater than zero. All edges in a rooted tree are
directed away from the root.

Kalaghatgi et al. . doi:10.1093/molbev/msw123 MBE

2728

Deleted Text: Fig
Deleted Text: 9
Deleted Text: 10
Deleted Text: 8
Deleted Text: 9
Deleted Text: Fig
Deleted Text: Fig
Deleted Text: Only
Deleted Text: Fig
Deleted Text: s
Deleted Text: t
Deleted Text: t
Deleted Text: Pearson's
Deleted Text: Fig
Deleted Text: Fig
Deleted Text: family-joining (
Deleted Text:)
Deleted Text: utes
Deleted Text: ,
Deleted Text: -
Deleted Text: neighbor-joining

Edges incident to leaves are referred to as terminal edges
while edges incident to internal vertices are referred to as
internal edges.

FJ Algorithm
Our objective is, given a tree-additive distance matrix d, to
infer the respective tree To. To may be generally labeled and
may contain latent vertices with degree greater than three.
We assume that all branch lengths in T0 are strictly greater
than zero. We provide a method which correctly infers To

using entries in d.
Let T max be the set of all trees that satisfy the following

criteria: 1) their set of leaves includes all the labeled vertices in
To, 2) they have the maximum number of latent vertices, and
3) d is the tree-additive distance matrix in every tree in T max.
All splits in SðToÞ are compatible with every tree in T max. If
this were not true for some tree Tmax in T max then there
would be two branches, bo in To and bmax in Tmax, such that
labeled vertices {i, j} and {k, l} lie on different sides of b0 and {i,
k} and {j, l} lie on different sides of bmax. Applying Buneman’s
4-point condition (Buneman 1971) would result in the fol-
lowing contradictory inequalities:

dij þ dkl < dik þ djl for b0

dij þ dkl � dik þ djl for bmax

The inequality is strict for b0 as all branch lengths in T0 are
greater than zero.

Thus any tree in T max can be constructed as follows. If
there is a labeled vertex in T0 with degree greater than one
replace this vertex with a latent vertex and add a branch
of length zero between the labeled vertex and the newly
added latent vertex. If there is a latent vertex with degree
greater than three (vpoly) disconnect two randomly se-
lected vertices adjacent to vpoly and connect them to a
new latent vertex with a branch of length zero. Lengths of
branches between the newly added latent vertex and each
adjacent vertex are the same as the length of the original
branch between vpoly and that vertex. Both of these aug-
mentation operations are performed until all latent ver-
tices have degree three and there are no labeled internal
vertices.

Applying the NJ algorithm using distances in d yields a tree
TNJ with the maximum number of latent vertices such that d
is tree-additive in TNJ. Thus TNJ belongs to T max and conse-
quently neighbors in TNJ are either parent–child or siblings
in To.

NJ is an agglomerative clustering method that identifies, at
each step, the pair of vertices to cluster by minimizing the
following objective value (Saitou and Nei 1987; Studier and
Keppler 1988).

ðn� 2Þdij �
X
k 6¼i

dik �
X
k 6¼j

djk (1)

where n is the number of vertices that are yet to be clustered.
Neighbors i and j can be classified as parent–child or

siblings based on the following quantity.

Dij ¼
X
k 6¼i;j

dji þ dik � djk

2ðn� 2Þ

It can be easily shown that:

if i is the parent of j then Dij ¼ 0;

if j is the parent of i then Dij ¼ dij;

if i and j are siblings then 0 < Dij < dij

These criteria are shown to be true in the following state-
ments. If i is the parent of j then the path from j to any vertex
k 6¼ i; j, will visit i. Thus djk ¼ dji þ dik, which gives Dij ¼ 0
and Dji ¼ dij. If i and j are siblings then djk ¼ dju þ duk where
u is the vertex adjacent to both i and j. Similarly
dik ¼ diu þ duk, which gives Dij ¼ diu. It follows that
0 < Dij < dij.

When distances are estimated from sequences we use a
threshold � for classifying the relationship as parent–child or
sibling. Specifically i is the parent of j if jDijj < �. The unordered
vertex pair {i, j} are said to be in a parent–child relationship if

minfjDijj; jDjijg < � (2)

The criterion for selecting the appropriate � is discussed in
detail later. When d is tree-additive any sufficiently small � can
be used for correctly classifying the vertices.

The FJ algorithm consists of two main parts:
GetTreeTopology which infers the tree topology, and
GetBranchLengths which estimates the branch lengths. We
describe these two steps in detail below.

Inferring Tree Topology
An overview of GetTreeTopology is provided in Algorithm 1.
GetTreeTopology initializes a so-called active vertex set Va

with the set of all labeled vertices. It then performs agglom-
erative clustering where the following actions are performed
at each step.

The pair {i, j} of vertices in Va that minimizes (1) is iden-
tified. i and j are then classified as parent–child or siblings
using (2). If i is the parent of j, or vice-versa, an edge is added
between them and all distances from the child are removed
from d. If i and j are found to be siblings then we search for
another vertex k in Va that minimizes the following quantity.

jdik þ dkj � dijj (3)

If jdik þ dkj � dijj < 2� then k is the parent of both i and j.
Corresponding edges are added and all distances from i and j
are removed from d. i and j are removed from Va. Note that
there are alternate criteria for checking if there is a vertex k that
is the parent of both i and j. One such criterion is to compute

minfjDkij; jDkjjg; (4)

and consider k to be the parent of both i and j if
minfjDkij; jDkjjg < 2�. In the simulation study we found
that reconstruction accuracy was higher when we used the
quantity in eqn. (3) as opposed to eqn. (4) (see supplementary
fig. 4, Supplementary Material online). This is probably because

Constructing Generally Labeled Trees Using Family-Joining . doi:10.1093/molbev/msw123 MBE

2729

Deleted Text: Family-j
Deleted Text: J
Deleted Text: oining
Deleted Text: a
Deleted Text: (i
Deleted Text: (ii
Deleted Text: (iii)
Deleted Text: Buneman's
Deleted Text: Degree
Deleted Text:
Deleted Text: 3
Deleted Text: neighbor-joining
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: family-joining
Deleted Text: t
Deleted Text: t
Deleted Text: -
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1

the quantity in eqn. (3) is more robust to noise in the estimates
of large distances. If k is not the parent of both i and j, a latent
vertex l is introduced as the parent of both i and j.
Corresponding edges are added and distances from l to any
vertex m in Va other than i and j are calculated using the
following estimate by Studier and Keppler (1988).

dlm ¼ ðdim þ djm � dijÞ=2 for m 6¼ i; j (5)

i and j are removed from Va and all distances from i and j are
removed from d. Distances from u are added to d and u is
added to Va.

FIG. 6. An illustration of the FJ algorithm. The main steps have been
labeled with their time complexity.

Kalaghatgi et al. . doi:10.1093/molbev/msw123 MBE

2730

The agglomeration step described above is repeated until
the number of vertices in Va is less than four. After each
iteration Va reduces by either one or two vertices. If Va has
reached the size three, we check using (3) if there are vertices i,
j, and k in Va such that k is the parent of both i and j. If we find
such vertices, corresponding edges are added. Otherwise a
latent vertex u is introduced and edges are added between
u and the three remaining vertices. If Va has reached size two,
an edge is added between the two remaining vertices.

GetTreeTopology returns the list of edges of the estimated
tree T̂. T̂ has the same topology as the true tree if distances
are additive in the true tree.

Upper Bound on the Time Complexity of GetTreeTopology
At first glance it appears that the neighbor identification step
requires Xðn3Þ time. This can be reduced to Oðn2Þ with the
observation that the NJ objective can be reformulated as
follows (Studier and Keppler 1988):

ðn� 2Þdij � Ri � Rj

where Ri ¼
X
k 6¼i

dik
(6)

From eq. (6) it is evident that initializing each row sum Ri

with the original distances takes O(n) time. Updating each Ri

after each agglomeration step is done by subtracting dis-
tances from children and, if applicable, adding distances to
the newly introduced latent vertices. Thus the process of
updating each Ri takes O(1) time. Additionally, storing all
the Ri in memory requires O(n) space which incurs very little
memory overhead compared with the Oðn2Þ space required
to store all the pairwise distances. If all distances and row
sums are stored in memory then identifying the neighbors
takes Oðn2Þ time. Note that Dij can also be reformulated for
faster computation as follows.

Dij ¼
X
k6¼i;j

dji þ dik � djk

2ðn� 2Þ

¼ dji

2
þ
ð
X

k 6¼i;j
dikÞ � ð

X
k 6¼i;j

djkÞ
2ðn� 2Þ

¼ dji

2
þ
ðdij þ

X
k 6¼i;j

dikÞ � ðdji þ
X

k 6¼i;j
djkÞ

2ðn� 2Þ

¼ dji

2
þ
ð
X

k 6¼i
dikÞ � ð

X
k 6¼j

djkÞ
2ðn� 2Þ

¼ dji

2
þ Ri � Rj

2ðn� 2Þ :

Thus, once the neighbors {i, j} have been identified, it takes
O(1) time to compute both Dij and Dji. It takes O(n) time to
find the vertex k which minimizes — dki þ dkj � dij —. The
overall time-complexity of GetTreeTopology is Oðn3Þ. The

time-complexities associated with the main steps of
GetTreeTopology are shown in figure 6.

Efficient Estimation of Branch Lengths
Branch lengths b of T̂ are estimated by ordinary least squares.
This is done by solving Ab ¼ d where d is a column vector
containing all those entries of d that are above or alternatively
all those entries of d that are below the diagonal. A is the
branch incidence matrix of T̂ and is constructed as follows. If
the mth entry of the d is dij, then

ame ¼
1 if the path from i to j contains e

0 otherwise

(
(7)

A has the dimension nðn� 1Þ=2� jEj where jEj is the
number of branches in the tree, n is the number of labeled
vertices, and b is the vector of branch lengths that we wish to
estimate.

The ordinary least squares (OLS) estimate of branch
lengths is given by

b̂ ¼ ðAtAÞ�1Atd: (8)

For the estimation of OLS branch lengths we do not make
the assumption that distances are tree-additive. For leaf-
labeled trees there is a fast Oðn2Þ algorithm for computing
the OLS branch lengths (Bryant 1997). Any algorithm that
estimates OLS branch lengths by performing the matrix op-
erations that are defined in eqn. (8) needs to use all entries of
the distance vector, and thus must run in Xðn2Þ time (Bryant
and Waddell 1998). Thus the algorithm by Bryant (1997) is
time-optimal. We show that this algorithm extends to gen-
erally labeled trees. The main steps involved in this compu-
tation are computing first Atd and then ðAtAÞ�1Atd, each in
Oðn2Þ time. We describe both of these steps below.

Computing Atd
The ith entry of Atd; dT

i d, is the sum of all distances be-
tween labeled vertices a and b that lie on either side of edge ei.
di is the ith column of A. For efficient computation of Atd,
edges are visited in order of increasing distance from leaves,
keeping track of which edges have already been visited.

We first compute dT
i d for every terminal edge ei which is

defined as follows.

dT
i d ¼

X
j;j6¼i

dij (9)

Next we compute dT
i d for every internal edge ei which are

visited in the order of increasing distance from leaves.
Consider the internal vertex a with only one incident edge
ei such that dT

i d has not been calculated. Let the edges inci-
dent to ei be ej1 ; . . . ; ejm

Let Ci be the side of the split of the edge ei that does not
contain a. Similarly Cjk is the side of the split of ejk that does
not contain a.

Depending on whether a is labeled or not labeled, dT
i d is

computed as follows:

Constructing Generally Labeled Trees Using Family-Joining . doi:10.1093/molbev/msw123 MBE

2731

Deleted Text: b
Deleted Text: t
Deleted Text: c
Deleted Text: neighbor-joining
Deleted Text: to
Deleted Text: Fig
Deleted Text: e
Deleted Text: b
Deleted Text: l

Case 1: Vertex a is not labeled (Bryant 1997).

dT
i d ¼

X
k

X
a2Cjk

;b2Ci

dab

¼
X

k

dT
jk

d� 2
X
k< l

X
a2Cjk

;b2Cjl

dab

(10)

Case 2: Vertex a is labeled.

dT
i d ¼

X
k

X
a2Cjk

;b2Ci

dab þ
X
b2Ci

dab

¼
X

k

dT
jk

d� 2
X
k< l

X
a2Cjk

;b2Cjl

dab

�
X

k

X
b2Cjk

dab þ
X
b2Ci

dab

(11)

Computing each element of Atd involves the summation
of entries of the distance vector. Since each element of the
distance vector is summed over just once, Atd is computed in
Oðn2Þ time.

Computing ðAtAÞ�1ðAtdÞ
There is a closed-form solution for the OLS branch length

b0 of any edge e0 which is formulated in terms of the splits,
and the elements of Atd, that are defined by e0 and the edges
adjacent to e0. A description of the branch length formula is
given later.

When computing branch lengths, edges can be visited in
any order. We derive the branch length formula for an inter-
nal edge.

Consider the internal edge e0 shown in figure 7 with adja-
cent edges e1; . . . ek; ekþ1 . . . em. e0 is incident to fa; bg. The
respective sizes of the parts of the split defined by e0 are na

and nb

For each edge ei define Pi ¼
P

x2Ai;y2Bi
pxy where Ai and Bi

are the parts of the split defined by edge ei. Here pxy denotes
the length of the path from x to y when branch lengths are

determined by OLS. It turns out that Pi ¼ dT
i d.

For each edge ei let Ci be the side of the split that does not
contain a and b. ni is the cardinality of Ci. Define

Qi ¼

X
x2Ci

pax; if 1 � i � k

X
x2Ci

pbx; if kþ 1 � i � m

8>><
>>:

For the case where both a and b are not labeled it can be
shown that (Bryant 1997)

�
P ¼ ðnI� 2NÞ

�
Qþ NU

�
Qþ b0N

�
v;

where N is the m�m diagonal matrix with ðn1; n2; . . . ; nmÞ
on the diagonal, I is the identity matrix,

�
Q ¼ ðQ1;Q2; . . . ;QmÞT , U is the m�m matrix of ones,

�
v

is the vector with nb in positions 1 to k followed by na in
positions kþ 1 to m, and

�
P ¼ ðP1; P2; . . . ; PmÞT .

Similarly for the internal edge e0

P0 ¼
�
vT

�
Qþ nanbb0

Letting X ¼ ðnN�1 � 2Iþ UÞ and substituting
�
Q gives

the following branch length estimate.

b0 ¼ P0 �
�
vTX�1N�1

�
P

nanb �
�
vTX�1

�
v

(12)

For cases where only a and both a and b are labeled,
respectively, the derivation of the above mentioned equa-
tions is similar to that described in Bryant (1997) and is pro-
vided in the supplementary material, Supplementary Material
online.

The formula, eqn. (12), for branch length is valid only when
X�1 exists. Bryant (1997) showed that X is invertible as long as
there is at most one zero on the diagonal of the matrix
ðnN�1 � 2IÞ. The ith diagonal element is zero if ni=n ¼ 2

C1

C2

...

Cm

e1
e2

em

e0

Case 1

C1

C2

...

Cm

e1
e2

em

e0

Case 2

FIG. 8. The two cases for the terminal edge e0. a is not labeled in case 1
and is labeled in case 2. The triangles represent subtrees.

Cm

...

Ck+2

Ck+1

C1

C2

...

Ck

e1
e2

ek

em

ek+2

ek+1

e0

Case 1

Cm

...

Ck+2

Ck+1

C1

C2

...

Ck

e1
e2

ek

em

ek+2

ek+1

e0

Case 2

Cm

...

Ck+2

Ck+1

C1

C2

...

Ck

e1
e2

ek

em

ek+2

ek+1

e0

Case 3

FIG. 7. The three cases for the internal edge e0. Case 1: Both a and b are not labeled. Case 2: Only a is labeled. Case 3: Both a and b are labeled. The
triangles represent subtrees.

Kalaghatgi et al. . doi:10.1093/molbev/msw123 MBE

2732

Deleted Text: Fig
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1

which occurs if there is an edge where both parts of the split
have equal size. Even in generally labeled trees there can be at
most one such edge.

There are two cases to consider for external branches, one
if a is not labeled and the other if a is labeled see figure 8. In
both cases the derivation of the branch length formula is
similar to what has been described earlier and is omitted.

The branch length formulae turn out to be identical in all
cases. The reader is referred to the supplementary material,
Supplementary Material online for the proof.

For a more detailed description of the algorithm for com-
puting OLS branch lengths, the reader is referred to Bryant
(1997).

Once Atd has been computed, all branch lengths can be
calculated in O(n) time. Since there are O(n) edges the time
complexity of computing OLS branch lengths is Oðn2)

The overall time complexity of FJ is Oðn3Þ. This can be
reduced further if heuristics are used at the neighbor identi-
fication step, eqn. (1).

OLS branch lengths may be negative which has no biolog-
ical interpretation. After estimating the branch lengths
all branches that are shorter than � and are incident to a
latent vertex are contracted. If there is a branch between
two labeled vertices that has a negative length, its length
is set to 10�7. 10�7 is smaller than the smallest nonzero
distance estimate computed in any of the simulation
scenarios.

Model Selection
Values of � are inversely related to the number of latent ver-
tices and thus inversely related to model complexity.

We performed model selection using three estimates for
test error, CV error, AIC, and BIC. In all cases, model selection
is performed by identifying the value of � that minimizes the
estimate for test error. Please refer to the supplementary ma
terial, Supplementary Material online for a description on
how CV error is computed.

AIC and BIC are Taylor series approximations of the
Kullback–Leibler distance between the generative model
which one wishes to recover and the model that is obtained
by maximum likelihood estimation. These are formulated as,

AIC ¼ �2logAICþ 2m

BIC ¼ �2logBICþmlogðnÞ:

Under the likelihood framework, phylogenetic trees are
probabilistic graphical models which are completely de-
scribed by tree topology and branch lengths. n denotes sam-
ple size and is given by sequence length. The number m of
parameters equals the number of branches in the tree.

We use FJ branch lengths as approximations of the max-
imum likelihood branch lengths. Likelihood is computed us-
ing Felsenstein’s pruning algorithm which is a dynamic
programming algorithm that enables efficient calculation of
the likelihood (Felsenstein 1981).

The calculation of CV error is described on page 6 of the
supplementary material, Supplementary Material online.

Related Methods Considered in the Comparative
Validation
Sampled Ancestors
We used the SAs package (Gavryushkina et al. 2014) of
BEASTv2.3.0 (Drummond et al. 2012) for the comparative
validation of the FJ algorithm. The following models were
considered: the GTR model for substitution, the four-
category C model for rate heterogeneity across sites, the strict
molecular clock model and the fossilized birth death model
for generating trees. Uniform priors were set for all model
parameters. For all datasets, 108 states were visited using
Markov chain Monte Carlo (MCMC) and every 105th state
was sampled. The first 5% of the sampled states were dis-
carded as burn-in and the effective sample size (ESS) was
computed for all model parameters using the R package
CODA (Plummer et al. 2006). ESS were found to be greater
than 200 for all parameters across all the MCMC chains in-
dicating that the chains were sufficiently long. The trees that
are produced by BEASTv2.3.0 are rooted and contain the
maximum number of latent vertices. The sampled trees
were postprocessed by unrooting them and contracting all
terminal edges of length zero. We reported the average pre-
cision and recall of the postprocessed sampled trees from the
true tree.

Recursive Grouping and Chow–Liu Recursive Grouping
For assessing the performance of RG and CLRG we used the
Matlab implementation that was provided by the authors.
Both of these methods are distance-based. RG initially sets the
active vertex set Va to the set of all labeled vertices. At each
iteration Va is partitioned into so-called families using k-
means clustering. For each family containing more than
one vertex, a relationship test similar to the one used in FJ
is performed. If there is a vertex that is the parent of all other
vertices in the family then edges are added from the parent to
each child. If no such parent is found then a latent vertex is
introduced as the parent to all vertices of the family and
corresponding edges are added. Va is reduced by removing
all the children. This procedure is iterated until a connected
graph is obtained.

CLRG starts by constructing a minimum spanning tree
over all the labeled vertices. For each internal vertex vi, the
vertex set Vi comprising of vi and its neighbors is constructed
and RG is applied to distances between vertices in Vi, pro-
ducing the tree Ti. The subgraph in the minimum spanning
tree that is induced by Vi is replaced by Ti.

Both RG and CLRG require the setting of two thresholds, �
and s. The first threshold, � is used for performing the rela-
tionship test. RG and CLRG additionally contract branches
that are smaller than this threshold. The second threshold, s is
used to filter out large distances and only distances below this
threshold are used when performing the relationship test. We
optimized � using BIC and set s to a reasonably high value of
0.5.

We modified the implementation provided by the authors,
in order to correctly evaluate distances of value zero. Such
distance estimates were encountered, predominantly, when

Constructing Generally Labeled Trees Using Family-Joining . doi:10.1093/molbev/msw123 MBE

2733

Deleted Text: Fig
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
Deleted Text: -
Deleted Text: s
Deleted Text: cross-validation
Deleted Text: Akaike information criterion (
Deleted Text:)
Deleted Text: Bayesian information criterion (
Deleted Text:)
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
Deleted Text: cross-validation
Deleted Text: -
Deleted Text: Felsenstein's
Deleted Text: cross-validation
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
Deleted Text: m
Deleted Text: c
Deleted Text: c
Deleted Text: v
Deleted Text: a
Deleted Text: sampled ancestor
Deleted Text: -
Deleted Text: -
Deleted Text: g
Deleted Text: -
Deleted Text: r
Deleted Text: g

the average branch length was the shortest and when a large
fraction of internal vertices were labeled. The modification is
that all distances of value zero were changed to 10�7.

NJ with Edge Contraction
We implemented NJc in Python. NJc involves two steps. The
first step is the construction of a tree using NJ. Subsequently
all branches that are incident to a latent vertex and are
smaller than a preselected threshold � are contracted. We
optimized � using BIC.

Availability of Code
A program that constructs generally labeled trees using FJ-BIC
is provided at https://bioinf.mpi-inf.mpg.de/publications/prab
havk/familyJoining.

Supplementary Material
Supplementary figures S1–S4 are available at Molecular Biology
and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments
This work was partially supported by the German Center for
Infection Research, Grant No. DZIF 80008023 to P.K. This
work has been performed in the context of the EuResist
Network GEIE, and the project MASTER-HIV/HEP which is
funded by the German Health Ministry.

References
Bryant D. 1997. Building trees, hunting for trees, and comparing trees–

theory and method in phylogenetic analysis [Ph.D. thesis].
[Christchurch, New Zealand]: University of Canterbury.

Bryant D, Waddell P. 1998. Rapid evaluation of least-squares and
minimum-evolution criteria on phylogenetic trees. Mol Biol Evol.
15(10):1346–1359.

Buneman P. 1971. The recovery of trees from measures of dissimilarity.
In: Kendall DG, Tautu P, editors. Mathematics in the archaeological
and historical sciences. Edinburgh, UK: Edinburgh University Press, p.
387–395.

Choi MJ, Tan VYF, Anandkumar A, Willsky AS. 2011. Learning latent tree
graphical models. J Mach Learn Res. 12:1771–1812.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more
models, new heuristics and parallel computing. Nat Methods
9(8):772–772.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylo-
genetics with BEAUti and the BEAST 1.7. Mol Biol Evol.
29(8):1969–1973.

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol. 17:368–376.

Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm
based on a simple model of sequence data. Mol Biol Evol.
14(7):685–695.

Gavryushkina A, Welch D, Stadler T, Drummond AJ. 2014. Bayesian
inference of sampled ancestor trees for epidemiology and fossil cal-
ibration. PLoS Comput Biol. 10(12):e1003919.

Hoyle DC, Higgs PG. 2003. Factors affecting the errors in the estimation
of evolutionary distances between sequences. Mol Biol Evol.
20(1):1–9.

Jombart T, Eggo RM, Dodd PJ, Balloux F. 2011. Reconstructing disease
outbreaks from genetic data: a graph approach. Heredity
106(2):383–390.

Lanave C, Preparata G, Saccone C, Serio G. 1984. A new method for
calculating evolutionary substitution rates. J Mol Evol.
20(1):86–93.

Plummer M, Best N, Cowles K, Vines K. 2006. CODA: convergence di-
agnosis and output analysis for MCMC. R News 6(1):7–11.

Rambaut A, Grassly N. 1997. Seq-Gen: an application for the Monte
Carlo simulation of DNA sequence evolution along phylogenetic
trees. Comput Appl Biosci. 13(3):235–238.

Saitou N, Nei M. 1987. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol Biol Evol. 4(4):406–425.

St. John K, Warnow T, Moret BME, Vawter L. 2003. Performance study of
phylogenetic methods: (Unweighted) quartet methods and neigh-
bor-joining. J Algorithms 48:173–193.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylo-
genetic analyses with thousands of taxa and mixed models.
Bioinformatics 22(21):2688–2690.

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30(9):
1312–1313.

Stamatakis A, Ludwig T, Meier H. 2005. RAxML-III: a fast program for
maximum likelihood-based inference of large phylogenetic trees.
Bioinformatics 21(4):456–463.

Studier JA, Keppler KJ. 1988. A note on the neighbor-joining algorithm of
Saitou and Nei. Mol Biol Evol. 5(6):729–731.

Vrancken B, Rambaut A, Suchard MA, Drummond A, Baele G,
Derdelinckx I, Van Wijngaerden E, Vandamme AM, Van Laethem
K, Lemey P. 2014. The genealogical population dynamics of HIV-1 in
a large transmission chain: bridging within and among host evolu-
tionary rates. PLoS Comput Biol. 10(4):e1003505.

Waddell PJ, Steel MA. 1997. General time-reversible distances with un-
equal rates across sites: mixing gamma and inverse Gaussian distri-
butions with invariant sites. Mol Phylogenet Evol. 8(3):398–414.

Kalaghatgi et al. . doi:10.1093/molbev/msw123 MBE

2734

Deleted Text: c
https://bioinf.mpi-inf.mpg.de/publications/prabhavk/familyJoining
https://bioinf.mpi-inf.mpg.de/publications/prabhavk/familyJoining
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msw123/-/DC1
http://www.mbe.oxfordjournals.org/

	msw123-TF1
	msw123-TF2

