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Abstract

We investigate the effectiveness of using the Rosenbrock method for numerical solution of

1D nonlinear Schrödinger equation (or the set of equations) with artificial boundary condi-

tions (ABCs). We compare the computer simulation results obtained during long time inter-

val at using the finite-difference scheme based on the Rosenbrock method and at using the

conservative finite-difference scheme. We show, that the finite-difference scheme based on

the Rosenbrock method is conditionally conservative one. To combine the advantages of

both numerical methods, we propose new implicit and conditionally conservative combined

method based on using both the conservative finite-difference scheme and conditionally

conservative Rosenbrock method and investigate its effectiveness. The combined method

allows decreasing the computer simulation time in comparison with the corresponding com-

puter simulation time at using the Rosenbrock method. In practice, the combined method is

effective at computation during short time interval, which does not require an asymptotic sta-

bility property for the finite-difference scheme. We generalize also the combined method

with ABCs for 2D case.

Introduction

As is well-known, wide physical phenomena (starting from laser radiation propagation in a

nonlinear medium up to quantum mechanics problems and Bose-Einstein condensate (BEC))

are described by the nonlinear Schrödinger equation (or set of the equations). As a rule, its

solution can be obtained based on the computer simulation using the finite-difference

schemes. They can be conditionally divided on the three types. First, we should emphasize the

conservative finite-difference schemes (CFDS) for the nonlinear Schrödinger equation. They

were first proposed in [1], and then investigated, in detail, in papers [2–5] and other papers of

these authors. These finite-difference schemes are nonlinear ones and, therefore, require an

iterative process for their implementation, which leads to additional computation time costs.

However, they possess the following evident advantages: the difference analogues of the
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problem invariants (conservation laws) are preserved. We keep in mind not only the energy

conservation law (integral of motion) but also other invariants, in particular the Hamiltonian,

which depends on the laser radiation phase. It is fundamental feature for the laser physics

problem solution.

The second way of the finite-difference scheme construction for the problems under con-

sideration is based on using the split-step method [6–12] (and many other papers), which arti-

ficially represent a nonlinear medium by alternating intervals with linear optical properties

and with the nonlinear ones. This way does not allow us to construct the completely CFDS,

which preserves all of the problem invariants. Usually, one can achieve only a preservation of

the energy invariant difference analogue. However, using the iterative process on the stage of

solving a nonlinear part of the Schrödinger equation [13–15], one can realize the conservation

of the problem Hamiltonian with the first (or second) approximation order with respect to the

spatial coordinate along which an optical pulse propagates. Another important disadvantage

of this method is the asymptotic stability property absence. This property leads to the necessity

of decreasing the spatial coordinate step significantly. The main evident advantage of the split-

step method is the absence of an iterative process and the computation is carried out by

explicit finite-difference schemes.

The third numerical method for the nonlinear Schrödinger equation solution can be con-

ditionally related to the Rosenbrock method [16], which is widely used for the various physi-

cal and chemical problems solution [17–31]. As it well-known, it is explicit method, which

is obtained by linearizing an implicit finite-difference scheme with a weight 0.5 (Crank-

Nikolson scheme). As a result, the computation method becomes two-stages with real or

complex parameters. For the nonlinear Schrödinger equation solution, the finite-difference

scheme, based on the Rosenbrock method with real coefficient, is the most effective because

the solution accuracy in this case is higher, in comparison with the Rosenbrock method, at

using the complex coefficient. In particular, this result follows from the computer simula-

tion provided both for the single nonlinear Schrödinger equation or for a set of these equa-

tions. The effectiveness of using the Rosenbrock method for the Schrödinger equation set

solution is analyzed in this paper also because this case wasn’t widely discussed in the

literature.

The main evident advantage of using the Rosenbrock method consists in its explicitness.

However, this method is non-conservative one, to be more precise, it is conditionally conser-

vative one with respect to some invariants (for example, to the problem Hamiltonian). This

method does not also realize the asymptotic stability property of the finite-difference scheme.

Previously, a comparison of using the split-step method and the CFDS for the nonlinear

Schrödinger equation solution or the set of these equations was performed in the literature in

detail. This investigation is presented in particular in [14, 15] and it was demonstrated the

advantages of the CFDS. In [9] it is shown the significant changing (about unity) of the third

invariant (the Hamiltonian) of the problem at computation on the base of the split-step

method. However, these papers do not contain the detailed comparison between the finite-dif-

ference scheme based on the Rosenbrock method and the CFDS, developed for the nonlinear

Schrödinger equation. This gap is partially filled up below.

In the past decade, development of the artificial boundary conditions (ABCs) is the direc-

tion for increasing the computer simulation effectiveness. With respect to the Schrödinger

equation the ABCs were proposed, for example, in [3–5] [32–39]. As a rule, these boundary

conditions (BCs) were realized for the finite-difference schemes based on the split-step method

in contrast to the CFDS used by us. Thus, the realization of the finite-difference schemes based

on the Rosenbrock method in combination with the ABCs is of interest. The effectiveness of

this method is investigated detailed below.

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation
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One more important topic of this paper is the combined method, developed on the base of

both CFDS and Rosenbrock method (see also [40]), with the aim of adding the advantages of

the methods under consideration. We propose this method for the most actual problem,

namely: the nonlinear Schrödinger equation solution with the ABCs. It should be stressed, this

problem didn’t consider in literature before.

This paper has the following structure. In paragraph 2 the nonlinear laser pulse propagation

problem (or BEC evolution [41–51]) is stated for 1D case with zero-value BCs and the problem

invariants (integrals of motions) are stated. We develop the finite-difference scheme based on

the Rosenbrock method together with the Thomas algorithm for its solution. We show, that

the finite-difference scheme, based on the Rosenbrock method with real coefficient equal 0.5,

corresponds to using the half-sum of mesh solutions from the upper and low time layers at an

approximation of the equation right part.

The main part of paragraph 2 is devoted to the computer simulation results. We analyze

changing of the problem invariants in time as well as the convergence of the difference solu-

tion at decreasing grid steps. We compare also computer simulation time for using both finite-

difference schemes.

The structure of the paragraph 3 coincides with the paragraph 2 structure. However, in this

paragraph we consider the set of two nonlinear Schrödinger equations.

In the paragraph 4 we investigate the effectiveness of using the Rosenbrock method for a

solution of the nonlinear Schrödinger equation with ABCs. As it is well-known, the statement

of these BCs allows us to increase significantly the computer simulation effectiveness. For eval-

uating of the Rosenbrock method effectiveness for the problem solution with ABCs we com-

pare the computer simulation results of this problem with the solution, obtained using the

CFDS for the problem with zero-value BCs stated in big domain.

In paragraph 5 we propose the combined method, based on both methods: CFDS and

Rosenbrock method. The effectiveness evaluation is made for the three cases of the optical

pulse propagation: linear propagation and nonlinear propagation with positive and negative

nonlinear coefficient.

In paragraph 6 we compare the effectiveness of using the CFDS, the Rosenbrock method

and the combined method for a solution of the 2D nonlinear Schrödinger equation with

ABCs. We demonstrate that the Rosenbrock method does not possess enough high effective-

ness for the solution of multidimensional problem despite this method is explicit one. How-

ever, the combined method used together with original iterative process may be preferable in

comparison with using the CFDS.

In a conclusion (paragraph 7) we formulate briefly the paper results.

1D Schrödinger equation

Problem statement and problem invariants

As it is well known, the laser pulse propagation in a matter with cubic nonlinear response or

its interaction with BEC in 1D case is described by the following dimensionless Schrödinger

equation

@A
@t
þ ıDz

@
2A
@z2
þ ıgVAþ ıcjAj2A ¼ 0; t > 0; 0 < z < Lz ð1Þ

with initial condition

Ajt¼0
¼ e� ðz� Lzc Þ

2þıwðz� Lzc Þ; ð2Þ

corresponding to the pulse propagation in a positive direction of z-axis if the following

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation
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inequality Dz χ> 0 is valid, and with the following BCs

Ajz¼0;Lz
¼ 0; ð3Þ

for the finite function. In (1) A(t, z) is a complex amplitude; t is a time; z denotes a spatial

coordinate; Lz is its maximal value; Lzc is a coordinate of the laser beam center at initial time

moment; V = V(z) is a potential, which is V ¼ e� ðz� LvÞmv , 0� z� Lz; mv = 2; 6. . . for the BEC

problem and is equal to 0 near the domain boundaries, Lv is a coordinate of the potential

center. Let us note, that in case of the laser pulse propagation analysis, the function V(z)
describe changing a dielectric permittivity along the medium. Parameters Dz, γ, ψ, χ is the real

coefficients.

With respect to the initial distribution of a complex amplitude we should emphasize two

remarks. The first of them relates to using of a Gaussian beam and pulse in physical experi-

ments dealing with laser physics because a laser generates as rule, such beams and phases. The

second one is caused by existence of the linear Schrödinger equation solution for initial Gauss-

ian distribution. Using this solution, we can compare numerical and analytical solutions of the

equation and estimate an accuracy of various finite-difference schemes.

Let us note that often instead of the BCs (3) one requires that the complex amplitude and its

derivatives in z-coordinate tends to zero at z! ±1:

Ajz!�1 ! 0;
@
nA
@zn
jz!�1 ! 0; n � 1; n 2 N: ð4Þ

As we believe, for laser physics problem, the BCs (3) is preferable because the initial distri-

bution of an electromagnetic field is always finite one and its propagation is analyzed during

bounded interval of time. Therefore, below we will use the BCs (3). However, the problem

invariants can be easy to generalize for unbounded domain in z-coordinate if the conditions

(4) are valid.

The problem (1)–(3) possesses well-known invariants (the conservation laws):

I1ðtÞ ¼
ZLz

0

jAj2dz ¼ const ð5Þ

- the first invariant—energy invariant;

I2ðtÞ ¼ Im
ZLz

0

A�
@A
@z

dz ¼ const ð6Þ

- the second invariant—impulse invariant (if V(z) = 0 and additional conditions @A
@z jz¼0;Lz

¼ 0

are valid);

I3ðtÞ ¼
ZLz

0

ð� Dzj
@A
@z
j
2
þ gVjAj2 þ

c

2
jAj4Þdz ¼ const ð7Þ

- the third invariant—Hamiltonian. They are essential characteristics for controlling of the dif-

ference problem solution accuracy.

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation
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Finite-difference scheme construction based on the Rosenbrock method

To develop a finite-difference scheme on the base of the Rosenbrock method [16] for the prob-

lem (1) we represent the complex amplitude by using the real and imaginary parts (note, that

the modern computer can calculate in a complex arithmetic and this representation is not nec-

essary for a method implementation)

Aðz; tÞ ¼ uðz; tÞ þ ıvðz; tÞ: ð8Þ

In the domain 0� z� Lz we introduce a uniform grid:

oz ¼ fzj ¼ jh; j ¼ 0:::Nz; h ¼
Lz
Nz
g: ð9Þ

Let us define the grid functions in the grid nodes ωz

Aj ¼ Ahðt; zjÞ ¼ uj þ ıvj; uj ¼ uhðt; zjÞ; vj ¼ vhðt; zjÞ;Vj ¼ VðzjÞ; 0 � j � Nz; ð10Þ

and write the difference Laplace operator in the internal grid nodes

LzzAj ¼
Ajþ1 � 2Aj þ Aj� 1

h2
; 1 � j � Nz � 1: ð11Þ

Since the Rosenbrock method was initially using for the ODE solution ([16, 18–29]) there-

fore, the problem (1) is reduced to the following form

dUðtÞ
dt
¼ GðUÞ; j ¼ 1;Nz � 1; ð12Þ

where U ¼ ðu0; u1; :::; uNz
; v0; v1; :::; vNzÞ, and a vector GðUÞ is defined as

GðUÞ ¼
GðUÞR
GðUÞIm

 !

¼
DzLzzvj þ gVjvj þ cðu2

j þ v2
j Þvj

� DzLzzuj � gVjuj � cðu2
j þ v2

j Þuj

 !

; j ¼ 1;Nz � 1: ð13Þ

For zero-value BCs (3), the grid functions under consideration are equal to zero in the

boundary grid nodes: u0 ¼ uNz
¼ v0 ¼ vNz ¼ 0. Therefore, the following equations

dUðtÞ
dt
¼ 0; j ¼ 0;Nz

ð14Þ

can be stated.

The next step in the finite-difference scheme constructing is a definition of the mesh func-

tion in time domain. For this purpose we introduce a uniform grid along the time coordinate

in the domain 0� t� Lt:

ot ¼ ftm ¼ mt;m ¼ 0:::Nt; t ¼
Lt
Nt
g; ð15Þ

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation
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and define on this mesh the following grid functions

Am;j ¼ Ahðtm; zjÞ ¼ um;j þ ıvm;j; um;j ¼ uhðtm; zjÞ;

vm;j ¼ vhðtm; zjÞ; 0 � j � Nz; 0 � m � Nt;
ð16Þ

and the vectors

Û ¼ ðumþ1;0; umþ1;1; . . . ; umþ1;Nz
; vmþ1;0; vmþ1;1; . . . ; vmþ1;Nz

Þ;

U ¼ ðum;0; um;1; . . . ; um;Nz ; vm;0; vm;1; . . . ; vm;NzÞ:
ð17Þ

Below for brevity, we omit the index h in a notation of the mesh functions.

According to the Rosenbrock method, the difference solution on the next time layer in the

internal grid nodes belonging to ωz mesh is computed as

Û ¼ U þ tRe k; m ¼ 0;Nt � 1 ð18Þ

where Rek is a real part of the vector k, which is a solution of the linear equations

ðE � btGUÞk ¼ GðUÞ; j ¼ 1;Nz � 1;

k0 ¼ 0; kNz ¼ 0; m ¼ 0;Nt � 1:
ð19Þ

The difference function U at zero node of the mesh in time domain is defined by the initial

distribution of the complex amplitude.

Above a matrix E is the unity matrix, GU is the Jacobian for the equations set (12), G(U) is

the vector (13) with respect to the mesh function U (17). The parameter β is a complex one

equal b ¼ 1

2
ð1þ ıÞ or the real one equal b ¼ 1

2
. These values of the parameter β are examinated

in [17–29]. The vector k has the following components

k ¼ ðku;0 þ ı~ku;0; ku;1 þ ı~ku;1; . . . ; ku;Nz þ ı~ku;Nz ;

kv;0 þ ı~kv;0; kv;1 þ ı~kv;1; . . . ; kv;Nz þ ı~kv;NzÞ:
ð20Þ

It should be stressed, that in our opinion the one-stage Rosenbrock scheme with parameter

b ¼ 1

2
corresponds to the Eq (12) right part approximation by the half-sum of the mesh func-

tions from the upper and current time layers (so called, the Crank-Nikolson scheme). This

type of the approximation is preferable for the nonlinear Schrödinger equation with a cubic

nonlinear response because it allows us to achieve the conservative property with respect to

the Hamiltonian (the third invariant (7)). Therefore, we discuss this case in detail with the aim

to represent the solution on the upper time layer (let’s denote this solution as Ŷ ) in the follow-

ing form

Ŷ ¼ Y þ
t

2
f ðŶ Þ þ f ðYÞ
� �

; ð21Þ

where Y denotes the solution on the previous time layer. Then, let’s represent the function

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation
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f ðŶ Þ as the Taylor expansion

f ðŶ Þ ¼ f ðYÞ þ fYðYÞðŶ � YÞ ð22Þ

and substitute the Eqs (22) in (21). As a result, we obtain the following equation

Ŷ ¼ Y þ
t

2
2f ðYÞ þ fYðYÞðŶ � YÞ
� �

ð23Þ

and rewrite this equation in following form:

Ŷ 1 �
t

2
fYðYÞ

� �
¼ Y 1 �

t

2
fYðYÞ

� �
þ tf ðYÞ; ð24Þ

that means, that we obtain the Rosenbrock scheme with the parameter b ¼ 1

2
:

E �
t

2
fYðYÞ

h i ðŶ � YÞ
t

¼ f ðYÞ ð25Þ

(compare with the Eqs (18) and (19)). This construction of the Rosenbrock scheme and the

representation (24) explains the conditional conservatism of the finite-difference scheme,

based on the Rosenbrock method, for the nonlinear Schrödinger equation.

To solve the Eq (19), let’s represent the vector k and the coefficient β in the following way

k ¼
ku
kv

 !

þ ı
~ku
~kv

 !

; b ¼ bR þ ıbI: ð26Þ

Then, the Eq (19) can be rewritten as

E � bRtGUð Þ
ku

kv

 !

þ bItGU

~ku

~kv

0

@

1

A ¼
GR Uð Þ

GI Uð Þ

 !

;

� bItGU

ku

kv

 !

þ E � bRtGUð Þ

~ku

~kv

0

@

1

A ¼
0

0

 !

; m ¼ 0;Nt � 1:

ð27Þ

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation
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Below, for clearness we write the Eq (27) in the component-wise form

1 � 2bRtcujvj
� �

kuj �
bRtDz

h2
kvj� 1
þ kvjþ1

� �
þ tbR

2Dz

h2
� gVj � cu

2

j � 3cv2

j

� �

kvjþ

þ2bItcujvj~kuj þ
bItDz

h2

~kvj� 1
þ ~kvjþ1

� �
þ tbI �

2Dz

h2
þ gVj þ cu

2

j þ 3cv2

j

� �

~kvj ¼

¼ DzLzzvþ gvjVj þ c u2
j þ v2

j

� �
vj;

bRtDz

h2
kuj� 1
þ kujþ1

� �
þ tbR �

2Dz

h2
þ gVj þ cv

2

j þ 3cu2

j

� �

kuj þ 1þ 2bRtcujvj
� �

kvj �

�
bItDz

h2

~kuj� 1
þ ~kujþ1

� �
þ tbI

2Dz

h2
� gVj � cv

2

j � 3cu2

j

� �

~kuj � 2bItcujvj~kvj ¼

¼ � DzLzzuj � gujVj � c u2
j þ v2

j

� �
uj;

� 2bItcujvjkuj �
bItDz

h2
kvj� 1
þ kvjþ1

� �
þ tbI

2Dz

h2
� gVj � cu

2

j � 3cv2

j

� �

kvj þ ð1�

� 2bRtcujvjÞ~kuj �
bRtDz

h2

~kvj� 1
þ ~kvjþ1

� �
þ tbR

2Dz

h2
� gVj � cu

2

j � 3cv2

j

� �

~kvj ¼ 0;

bItDz

h2
kuj� 1
þ kujþ1

� �
þ tbI gVj �

2Dz

h2
þ cv2

j þ 3cu2

j

� �

kuj þ 2bItcujvjkvjþ

þ
bRtDz

h2
~kuj� 1
þ ~kujþ1

� �
þ tbR �

2Dz

h2
þ gVj þ cv

2

j þ 3cu2

j

� �

~kujþ

þ 1þ 2bRtcujvj
� �

~kvj ¼ 0; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1:

ð28Þ

which can be also rewrite in the matrix form

� QŶ j� 1 þ CjŶ j � BŶ jþ1 ¼ Fj Uj

� �
; Ŷ j ¼ kuj ; kvj ;

~kuj ;
~kvj

� �T
; 1 � j � Nz � 1: ð29Þ

In (29) the matrices Q, B, Cj are defined as

Cj ¼

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation
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c1 ¼ c11 ¼ 1 � 2bRtcujvj; c5 ¼ c15 ¼ tbR �
2Dz

h2
þ gVj þ cv

2

j þ 3cu2

j

� �

;

c2 ¼ c12 ¼ tbR
2Dz

h2
� gVj � cu

2

j � 3cv2

j

� �

; c6 ¼ c16 ¼ 1þ 2bRtcujvj;

c3 ¼ � c8 ¼ � c9 ¼ c13 ¼ 2bItcujvj; c7 ¼ tbI
2Dz

h2
� gVj � cv

2

j � 3cu2

j

� �

;

c4 ¼ � c10 ¼ c14 ¼ tbI gVj �
2Dz

h2
þ cu2

j þ 3cv2

j

� �

; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1;

Q ¼ B ¼

0
bRtDz

h2
0 �

bItDz

h2

�
bRtDz

h2
0

bItDz

h2
0

0
bItDz

h2
0

bRtDz

h2

�
bItDz

h2
0 �

bRtDz

h2
0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

The right parts of Eq (29) are written in the following form

Fj Uj

� �
¼ G Uð ÞRj;G Uð ÞI j; 0; 0
� �T

; G Uð ÞRj ¼ DzLzzvj þ gVjvj þ c u2
j þ v2

j

� �
vj;

G Uð ÞI j ¼ � DzLzzuj � gVjuj � c u2
j þ v2

j

� �
uj; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1:

ð30Þ

An effective method for solving the Eq (29) is the Thomas algorithm. According to this

method, the solution can be found in following way

Ŷ j ¼ ajþ1Ŷ jþ1 þ Bjþ1; j ¼ Nz � 1; :::; 1; Ŷ 0 ¼ 0; Ŷ Nz
¼ 0; ð31Þ

where αj is a matrix of dimension (4x4); Bj is a vector of dimension 4, which are computed as

follows

ajþ1 ¼ Cj � Qaj
� �� 1

B; j ¼ 1; :::;Nz � 1; a1 ¼ C1

� 1B;

Bjþ1 ¼ Cj � Qaj
� �� 1

Fj þ QBj
� �

; j ¼ 1; :::;Nz � 1; B1 ¼ C1

� 1F1:

ð32Þ

The finite-difference scheme based on the Rosenbrock method possesses the second order

of approximation on the spatial coordinate and the first order of approximation on the time

coordinate. This scheme possesses also a property of the conditional conservatism, as it will be

shown below.
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Conservative finite-difference scheme

Let us use the same grids, which are written above, and define the mesh functions:

A ¼ Aj ¼ Am;j ¼ A tm; zj
� �

; Â ¼ Âj ¼ Âmþ1;j ¼ A tm þ t; zj
� �

;

A
0:5

¼ 0:5 Â þ A
� �

; j A
0:5

j
2
¼ 0:5 jÂj2 þ jAj2

� �
:

ð33Þ

Then, let’s write following two-layers scheme for the Eq (1):

Â � A
t
þ ıDzLzz A

0:5

þ ıV A
0:5

þ ıcj A
0:5

j
2 A

0:5

¼ 0; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1 ð34Þ

with initial condition

A0 j ¼ A0 zj
� �

; j ¼ 0;Nz ð35Þ

and BCs:

Â0 ¼ ÂNz
¼ 0: ð36Þ

The finite-difference scheme (34–36) is nonlinear one, that is why for its solution we use an

iteration process in following way:

Â
sþ1

� A
�
þ {Dz��zz A

0:5
sþ1

þ{V A
0:5
sþ1

þ{ j A
0:5
s

j
2 A
0:5
s

¼ 0; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1: ð37Þ

The BCs for the equations are:

Â0

sþ1

¼ ÂNz

sþ1

¼ 0: ð38Þ

The mesh function on the upper time layer at zero iteration (s = 0) is chosen as

Â
s¼0

¼ A: ð39Þ

The iteration process is stopped if the following condition, for example, is valid

max
zj
j Â
sþ1

� Â
s

j � ~�1maxzj
j Â
s

j þ ~�2; ð40Þ

where ~y1;
~y2 > 0 are the real constants.

Let us rewrite the Eq (37) in the matrix form:

� �QÂjþ1

sþ1

þ �CÂj

sþ1

� �BÂj� 1

sþ1

¼ �FjðAj;Aj� 1;Ajþ1; Âj

s

Þ;

Aj ¼

uj

vj

0

@

1

A; Âj

sþ1

¼

ûj
sþ1

v̂j
sþ1

0

B
B
@

1

C
C
A;Q ¼ B ¼

0 tDz=2h2

� tDz=2h2 0

0

@

1

A;

C ¼
1 � 0:5Vtþ tDz=h2ð Þ

0:5Vtþ tDz=h2 1

0

@

1

A;

ð41Þ
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Fj is a vector of dimension 2, which has the form:

Fj ¼ FjðAj;Aj� 1;Ajþ1; Âj

s

Þ ¼ � QtAjþ1 þ CtAj � BtAj� 1 þ F̂ðÂ
s

Þ;

F̂ðÂ
s

Þ ¼

ctðjÂj

s

j
2
þ jAjj

2
Þðv̂j

s
þ vjÞ

4

�

ctðjÂj

s

j
2
þ jAjj

2
Þðûj

s
þ ujÞ

4

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

:

ð42Þ

To solve this equations set we use the Thomas algorithm also. According to this method,

the Eq (41) solution can be written in following way

Âj

sþ1

¼ sjþ1Âjþ1

sþ1

þ φjþ1
; j ¼ Nz � 1; 0; ð43Þ

where σ and φ are computed in following way:

sjþ1 ¼ C � Qsj
� �� 1

B; j ¼ 1; :::;Nz � 1; s1 ¼ C1

� 1B;

φjþ1
¼ C � Qsj

� �� 1

Fj þ Qφj
� �

; j ¼ 1; :::;Nz � 1; φ
1
¼ C1

� 1F1:

ð44Þ

The computer simulation results

Conservatism investigation of the finite-difference scheme based on the Rosenbrock

method. For brevity, we define following notations: index Ros1 denotes a finite-difference

scheme based on the Rosenbrock method with parameter β = 0.5 + 0.5ı; index Ros2 denotes

the finite-difference scheme based on the Rosenbrock method with parameter β = 0.5. Index C
denotes the CFDS. Correspondingly, the results obtained using considered finite-difference

schemes we define as ARos1
tm; zj
� �

;ARos2
tm; zj
� �

;AC tm; zj
� �

. We compare these results with

the aim to demonstrate the efficiency of using the Rosenbrock method. In particular, we ana-

lyze the difference between the grid functions:

dA12 ¼ dARos1Ros2
¼ max

1�j�Nz
jjARos1

ðtm; zjÞj
2
� jARos2

ðtm; zjÞj
2
j;

dAC1 ¼ dACRos1
¼ max

1�j�Nz
jjARos1

ðtm; zjÞj
2
� jACtm; zjÞj

2
j;

dAC2 ¼ dACRos2
¼ max

1�j�Nz
jjARos2

ðtm; zjÞj
2
� jACðtm; zjÞj

2
j:

ð45Þ

For the effectiveness estimation of the finite-difference schemes we analyze changing the

invariants between their values at time moment t = Lt and at initial time moment:

dI1 ¼ jI1 Ltð Þ � I1 0ð Þj; dI3 ¼ jI3 Ltð Þ � I3 0ð Þj: ð46Þ

Let us define also the maximal intensity on the time layer m in the following way:

jAj2max ¼ max
1�j�Nz

jAjj
2
: ð47Þ
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The parameters Dz, χ at the computer simulation is equal to Dz = 1.0, χ = 0 (the pulse does

not move). As a rule, the evolution of the solution is analyzed during 10 dimensionless units

(Lt = 10.0) if it’s not emphasized and maximal value of the spatial coordinate is equal to 40

dimensionless units (Lz = 40.0). The initial distributions center placed in section Lzc ¼ 20:0 It

allows us to analyze also the asymptotic stability property of finite-difference scheme because

this time interval is big enough for the problem under consideration with chosen parameters.

In the numerical simulation we use also the following values of the iteration parameters ~y1 ¼

10� 3; ~y2 ¼ 10� 5 and we choose the parameters of the potential as Lv = 20.0, mv = 2.

In Fig 1 the invariant deviation in depending on the nonlinear coefficient is shown. We see

that with increasing of the nonlinearity coefficient, the inaccuracy for the first and third invari-

ants computation increases. The greatest invariants deviation is observed for the positive value

of the parameter ψ, that corresponds to the optical pulse self-focusing.

Fig 2 demonstrates the invariant deviation depending on the mesh step h in time moment

t = 10. We emphasize, that the similar results obtained using the finite-difference schemes

under consideration for the various parameter values. We see that the Hamiltonian is con-

served by the Rosenbrock method with the complex coefficient β for h� 0.05 at computer sim-

ulation of the laser pulse propagation in a medium with self-focusing nonlinear response and

potential equal unity. However, with increasing the nonlinear coefficient and duration of a

considered time interval, the invariant deviation for the solution, obtained using Rosenbrock

method, increases faster in comparison with the corresponding values, obtained using the

CFDS (Fig 3).

The invariants changing also occurs for the computation results obtained on the base of the

CFDS for time step τ = 0.01. It is due to chosen iteration parameters. The Hamiltonian chang-

ing depicted in Fig 2b, in our opinion, can be explained by the finite-difference scheme spec-

tral properties: with increasing the mesh step on z-coordinate a number of the difference

solution spectral components decreases.

For practice, it is of interest the first invariant and Hamiltonian evolution in time, which is

presented in Figs 3 and 4, because they define the problem solution and also the maximal solu-

tion intensity. Note, that in Fig 3 the invariants changing increases with the time. However,

the finite-difference scheme Ros2 has the lower deviation in comparison with the finite-differ-

ence scheme Ros1. Non-conservation of the invariants affects to the laser pulse maximal inten-

sity evolution, which is shown in Fig 4. As it is well-seen, it has the oscillating character for the

Fig 1. The dependence of δI1(a) and δI3(b) from the nonlinear coefficient ψ for the parameters γ = 0 and 1, and the mesh steps τ = h = 0.01.

https://doi.org/10.1371/journal.pone.0206235.g001
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process (γ = 1). The Schrödinger equation solution, obtained using the CFDS, saves the oscilla-

tion period in contrast to the solution, obtained using the finite-difference scheme based on

the Rosenbrock method. In the last case, the increasing oscillation period at growing the com-

putation time takes place. Moreover, it should be stressed, that for the solution, obtained using

the CFDS, the maximal intensity deviation is substantially less and it corresponds to the itera-

tive process accuracy. Therefore, the Rosenbrock method accumulates the computation errors

in time.

Let us consider the influence of the external potential on the problem invariant violations at

other fixed parameters: Lt = 10.0, h = τ = 0.01. This dependencies are shown in Figs 5 and 6

and in Table 1 for various values of the nonlinear coefficient (ψ). We see in Fig 5 that the first

and third invariants errors grow with increasing of the parameter |γ| and the maximal devia-

tion occurs for the negative parameter γ. At the weak nonlinearity (ψ = 1) and positive parame-

ter γ, the invariants deviations at using the finite-difference schemes based on Rosenbrock

method is less than the corresponding values at using the CFDS. This strange feature causes by

chosen iteration process parameters.

Fig 2. The dependence of δI1(a) and δI3(b) from the mesh step h for the parameter ψ = 5.0 and the mesh step τ = 0.01 at the time moment t = 10.

https://doi.org/10.1371/journal.pone.0206235.g002

Fig 3. The evolution of the first δI1 (a) and the third δI3 (b) invariant deviation in time, computed using various methods for the parameters ψ =

10.0 (solid line), 15.0 (dotted line), γ = 1.0, h = τ = 0.01.

https://doi.org/10.1371/journal.pone.0206235.g003
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With increasing the nonlinear coefficient up to ψ = 5.0 (Table 1) or ψ = 10.0 (Fig 6) the

Rosenbrock schemes preserve the invariants essentially worse. So, Table 1 demonstrates that at

ψ = 5.0 and the external potential absence, the third invariant I3 preserves 6 times worse at

using the finite-difference scheme Ros1 and 3 times worse at using the finite-difference scheme

Ros2 in comparison with computation on the base of the CFDS. If the external potential is pre-

set then the Hamiltonian changes even more: the error of invariant computation increases to

10 or 5 times if a computer simulation is provided on the base of the schemes Ros1 and Ros2,

correspondingly. The first invariant changing for the Rosenbrock schemes also becomes unac-

ceptable. Further increasing of the parameter ψ (see Fig 6) results in tens times enhancement

of the invariant errors at using the finite-difference schemes Ros1 and Ros2. However, the cor-

responding invariant deviation is insignificant at using the CFDS. This fact is a consequence of

the Rosenbrock method conditional conservatism if the optical pulse propagation in a nonlin-

ear medium is analyzed. Therefore, with decreasing the time step, the invariant deviations for

Fig 4. The evolution of the maximal intensity jAj2max in time, computed using various methods for the parameters ψ = 10.0(a), 15.0(b), γ = 1.0, h =

τ = 0.01.

https://doi.org/10.1371/journal.pone.0206235.g004

Fig 5. The invariant deviation δI1(a) and δI3(b) in dependence of the parameter γ at time moment t = 10 and parameter ψ = 1.0 and for the mesh

steps h = τ = 0.01.

https://doi.org/10.1371/journal.pone.0206235.g005
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numerical solutions, obtained using the Rosenbrock methods, tend to the corresponding val-

ues, obtained using the CFDS. We demonstrate this feature in Table 2: for the time step τ =

0.001 the first invariant and Hamiltonian deviations occurring at using the Rosenbrock meth-

ods and the CFDS have the similar order of magnitude and numerical solutions for all meth-

ods coincide each other. However, we stress that the numerical solution of the problem

possesses enough high accuracy if a computation is provided on the base of the CFDS with

time step τ = 0.01.

Thus, at the fixed mesh step h and fixed time interval we can chose the time step τ for the

Rosenbrock method in such a way, that the invariants preserve with sufficient high accuracy

and the numerical solution obtained using this method tends to the corresponding solution,

obtained using the CFDS. This statement is confirmed, in particular, in Fig 7 and Table 3.

Essentially, that the solutions, obtained using the CFDS for the time steps τ = 0.01 and τ =

0.001, are practically identical each other. So, for this scheme can obtain the accurate result

of a computation at using the mesh step on time coordinate equal τ = 0.01, which allows to

Fig 6. The invariant deviation δI1(a) and δI3(b) in dependence of the parameter γ for the fixed parameters ψ = 10.0, Lt = 10.0, Lz = 40.0 and the

mesh steps h = τ = 0.01.

https://doi.org/10.1371/journal.pone.0206235.g006

Table 1. The first I1 and third I3 invariant deviation, computed for the mesh steps τ = 0.05 and h = 0.01 at the time

moment t = 10 for the parameter ψ = 5.0.

Ros1 Ros2 C

δI1 γ = 0 0.0683993 0.0303243 0.0109565

γ = 1 0.1785331 0.0875587 0.0150573

δI3 γ = 0 0.1313467 0.0707009 0.0263863

γ = 1 0.5269990 0.2849560 0.0527133

https://doi.org/10.1371/journal.pone.0206235.t001

Table 2. The invariant deviation for parameters ψ = 20.0, γ = −1.0 and mesh step h = 0.01 depending on the time

step.

Scheme δI1(τ = 0.01) δI3(τ = 0.01) δI1(τ = 0.001) δI3(τ = 0.001)

Ros1 0.152964 4.592049 0.00039 0.012824

Ros2 0.1067 2.523858 0.000147 0.002358

C 0.000933 0.010421 0.000831 0.0028492

https://doi.org/10.1371/journal.pone.0206235.t002
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decrease significantly the computation time. Therefore, the computation efficiency is more

high for the CFDS.

Computation time. One of the most important feature of the finite-difference scheme is

the time spent for the problem solution. In Table 4 the computation time at using the CFDS and

the scheme Ros1 is shown depending on the grid steps for the unchangeable problem parame-

ters. Let us note that the computation time doesn’t exceed 1 second at the time step τ = 0.1 and

any mesh steps h under consideration. However, these results possess poor accuracy. Increasing

Fig 7. The intensity profile |A|2, depicted for the coordinate interval 17.0� z� 23.0 at the time moment t = 1.0 and computed for the parameters

ψ = 20.0, γ = −1.0 and the time steps τ = 0.01(a), 0.001(b).

https://doi.org/10.1371/journal.pone.0206235.g007

Table 3. The maximal solution difference, obtained using the finite-difference scheme based on the Rosenbrock

method and the CFDS.

τ δA12 δAC1 δAC2

0.01 2.268552552 2.610536552 0.341984

0.001 0.011948 0.011374 0.022975

https://doi.org/10.1371/journal.pone.0206235.t003

Table 4. The computation time in dependence on the grid steps τ, h at using the finite-difference scheme based on

the Rosenbrock method and the CFDS for the parameters Lz = 40.0, t = 10.0, ψ = 10.0, γ = 1.0.

τ h Rosenbrock method Ros1 (sec) Conservative f-d scheme (sec)

0.05 0.1 0.28 0.10

0.05 0.55 0.089

0.01 2.85 1.53

0.001 28.89 15.57

0.01 0.1 1.50 0.42

0.05 2.84 2.57 (4 iterations)

0.01 14.35 12.31 (4 iterations)

0.001 145.39 123.05 (4 iterations)

0.001 0.1 13.75 4.15

0.05 27.35 9.28 (2 iterations)

0.01 132.50 25.93

0.001 1454.13 338.52

https://doi.org/10.1371/journal.pone.0206235.t004
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a grid node number leads to essentially increasing the computation time for the Rosenbrock

method in comparison with computation time spent by the CFDS. The required accuracy of the

numerical solution achieved at the grid steps h = τ = 0.01 for the CFDS while the Rosenbrock

method provides the similar accuracy only at the grid steps equal h = τ = 0.001 (or less than this

value), which leads to increasing the computation time by 2 order of magnitude.

It should be stressed, that the comparable computation time in Table 4 for both

schemes at using the time step τ = 0.01 occurs because of the iteration process presence

(~y1 ¼ 0:001; ~y2 ¼ 0:00001) for the CFDS and this requires certain iteration number, which is

shown in the brackets of last column.

The set of 1D Schrödinger equation

Problem statement and invariants

The Rosenbrock method application for a solution of the Schrödinger equation set is consid-

ered for the classic problem of nonlinear optics—the second harmonic generation (SHG).

Under the phase matching condition of the interacting waves, this problem is described by the

set of the following dimensionless Schrödinger equations

@A1

@t
þ ıD1

@
2A1

@z2
þ ıZA2A

�

1
þ ıgV zð ÞA1 ¼ 0;

@A2

@t
þ ıD2

@
2A2

@z2
þ ıZA2

1
þ ıgV zð ÞA2 ¼ 0; 0 < z < Lz; t > 0

ð48Þ

with initial conditions

A1jt¼0
¼ A10 zð Þ ¼ e� z� Lzcð Þ

2
þıw z� Lzcð Þ; A2jt¼0

¼ 0 ð49Þ

and BCs

A1jz¼0;Lz
¼ A2jz¼0;Lz

¼ 0; ð50Þ

for the finite distributions of the complex amplitudes. As we stressed above, often instead of

BCs (50) one states that the complex amplitude and its derivatives in z-coordinate tends to

zero at z!1:

Ajjz!�1 ¼ 0; j ¼ 1; 2: ð51Þ

In addition to the definitions introduced above, let us note, that in (48) A1 = A1(t, z), A2 =

A2(t, z) are the complex amplitudes of the interacting laser pulses and the parameters D1, D2, η
are the real coefficients.

The problem (48)–(50) has the well-known invariants (the conservation laws):

I1 ¼
ZLz

0

jA1j
2
þ jA2j

2
� �

dz ¼ const ð52Þ

is the first invariant(energy invariant);

I3 ¼
ZLz

0

Z A2

1
A�

2
þ A�

1

� �2A2

� �
� 2D1j

@A1

@z
j
2
� D2j

@A2

@z
j
2
þ gV zð Þ 2jA1j

2
þ jA2j

2
� �

dz ¼ const ð53Þ

�

is the third invariant(Hamiltonian).
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The finite-difference scheme construction based on the Rosenbrock

method for the Schrödinger equation set

As in previous consideration let’s represent the complex amplitudes by using real and imagi-

nary parts

Ap ¼ up þ ıvp; p ¼ 1; 2; ð54Þ

in nodes of the grid ωz we define the following mesh functions

Ap;j ¼ Aphðt; zjÞ ¼ up;j þ ıvp;j; up;j ¼ uphðt; zjÞ;

vp;j ¼ vphðt; zjÞ; 0 � j � Nz; p ¼ 1; 2:
ð55Þ

For the equation set (48) solution let’s write the following ODE set

dUðtÞ
dt
¼ G U

� �
; j ¼ 1;Nz � 1; ð56Þ

where the function U has the following form

U ¼ ðu1;0; u1;1; :::; u1;Nz
; v1;0; v1;1; :::; v1;Nz

; u2;0; u2;1; :::; u2;Nz
; v2;0; v2;1; :::; v2;Nz

Þ;

and the vector G U
� �

computed as follows

G U
� �
¼

D1Lzzv1j þ gVjv1j þ Z u1jv2j � u2jv1j

� �

� D1Lzzu1j � gVju1j � Z u1ju2j þ v1jv2j

� �

D2Lzzv2j þ gVjv2j þ 2Zu1jv1j

� D2Lzzu2j � gVju2j � Z u2
1j þ v2

1j

� �

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

; j ¼ 1;Nz � 1: ð57Þ

In (56) and (57) we do not consider boundary nodes because of using the zero-value BCs:

u1;0 ¼ u1;Nz
¼ v1;0 ¼ v1;Nz

¼ u2;0 ¼ u2;Nz
¼ v2;0 ¼ v2;Nz

¼ 0.

Let us define the initial distribution of the complex amplitude at using the definitions intro-

duced above

A1;jjt¼0 ¼ e� ðzj � Lzc Þ
2þıwðzj � Lzc Þ; A2;jjt¼0 ¼ 0: ð58Þ

Now we introduce on the grid ωt the following mesh functions

Ak;m;j ¼ Aphðtm; zjÞ ¼ up;m;j þ ıvp;m;j; uk;m;j ¼ uphðtm; zjÞ;

vk;m;j ¼ vphðtm; zjÞ; 0 � j � Nz; 0 � m � Nt; p ¼ 1; 2
ð59Þ

and vectors

Û ¼ ðu1;mþ1;0; :::; u1;mþ1;Nz
; v1;mþ1;0; :::; v1;mþ1;Nz

;

u2;mþ1;0; :::; u2;mþ1;Nz
; v2;mþ1;0; :::; v2;mþ1;Nz

Þ;

U ¼ ðu1;m;0; :::; u1;m;Nz
; v1;m;0; :::; v1;m;Nz

; u2;m;0; :::; u2;m;Nz
; v2;m;0; :::; v2;m;Nz

Þ:

ð60Þ

Below, for brevity, we omit the index h in notation of the mesh functions.
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The solution on the next time layer computed using (18), (19) with the function G(U)

defined in (57). Function GU is the corresponding Jacobian. The equation set is solved by

using the Thomas algorithm, similar to case of the single Schrödinger Eqs (31) and (32). Obvi-

ously, at the solution of the Schrödinger equation set, the matrix dimension as well as vector

dimension changes only.

The CFDS construction for the Schrödinger equation set

Let us use the same grids, which are written above, and introduce the following definitions:

Ap ¼ Ap;j ¼ Ap;m;j ¼ Apðtm; zjÞ; Âp ¼ Âp;j ¼ Âp;m;j ¼ Apðtm þ t; zjÞ;

Ap

0:5

¼ 0:5ðÂp þ ApÞ; A2

1

0:5

¼ 0:5ðÂ2

1
þ A1

2Þ; p ¼ 1; 2:

ð61Þ

Using these notations, we write for Eq (48) the following two-layers implicit scheme:

Â1 � A1
�
þ {D1��zz A1

0:5
þ{�A�1

0:5
A2

0:5
þ{�VA1

0:5
¼ 0;

Â2 � A2
�
þ {D2��zz A2

0:5
þ{�A2

1

0:5
þ {�VA2

0:5
¼ 0; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1

ð62Þ

with initial conditions

Ap;0 j
¼ Ap;0ðzjÞ; p ¼ 1; 2 ð63Þ

and BCs

Âp;0 ¼ Âp;Nz
¼ 0; p ¼ 1; 2: ð64Þ

Because the finite-difference scheme (62–64) is nonlinear one, we use for its solution the

following iteration process:

Â1

sþ1
� A1
�
þ {D1��zz A1

0:5
sþ1

þ{�A1

0:5 �
s

A2

0:5
s

þ{�VA1

0:5
sþ1

¼ 0;

Â2

sþ1
� A2
�
þ {D2��zz A2

0:5
sþ1

þ{�A1

0:5 2
s

þ{�VA2

0:5
sþ1

¼ 0; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1:

ð65Þ

The BCs on iteration is written in the form

Âp;0

sþ1

¼ Âp;Nz

sþ1

¼ 0; p ¼ 1; 2: ð66Þ

The iteration process is stopped if the following inequality

max
zj
j Â
sþ1

� Â
s

j � ~y1maxzj
j Â
s

j þ ~y2 ð67Þ

is valid, where ~y1;
~y2 > 0 are real constant.

The solution method of the difference Eq (65) is the similar to solution of the Eqs (41)–(44)

considered above.
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Computer simulation results

The method efficiency we evaluate with using the norms:

dA12 ¼ max
q

max
1�j�Nz

jjAqRos1
ðtm; zjÞj

2
� jjAqRos2

ðtm; zjÞj
2
j;

dAC1 ¼ max
q

max
1�j�Nz

jjAqRos1
ðtm; zjÞj

2
� jAqC

ðtm; zjÞj
2
j;

dAC2 ¼ max
q

max
1�j�Nz

jjAqRos2
ðtm; zjÞj

2
� jAqC

ðtm; zjÞj
2
j; q ¼ 1; 2;

ð68Þ

which characterize the corresponding solution deviations from each other.

The illustration of Rosenbrock scheme conditional conservatism for the set of 1D

Schrödinger equations. The conditional conservatism of the finite-difference scheme based

on the Rosenbrock method, is demonstrated for the parameters Lz ¼ 40:0; Lzc ¼ 20:0;D1 ¼

D2 ¼ 1:0; w ¼ 0 and the following parameters of the potential Lv = 20.0, mv = 2 at time

moment t = 1.0 and for the mesh steps hz = τ = 0.01. At initial time moment the complex

amplitude distribution is defined by (50). The obtained results show that changing of the first

invariant I1 for the CFDS is at least an order of magnitude less in comparison with the corre-

sponding value for the Rosenbrock method. But in contrast to the Rosenbrock method, it does

not depend on the parameters γ and η and causes by the iteration process presence. It should

be stressed, that the Rosenbrock method accuracy at its using with the complex parameter β =

0.5 + 0.5ı is worse for γ = −1 and for the parameter η, which is less or equal to 10. With further

increasing the parameter η, the Hamiltonian deviation from the initial value increases signifi-

cantly and this violation reaches about 10%−24% depending on the parameters η, γ values and

on the parameter β (it is a complex one or a real one) value in the Rosenbrock method. To

achieve the invariant conservation with acceptable accuracy and the similar solution accuracy

as takes place for the CFDS it is necessary to decrease the grid steps at least tenfold at using the

finite-difference scheme based on the Rosenbrock method. Moreover, with increasing the

time interval, during which the computation is provided, the mesh steps have to decrease also.

As an example, in Fig 8 the intensity profiles, computed using three finite-difference

schemes under consideration, are depicted. This Figure illustrates also the essential influence

of the parameter γ on the solution accuracy. Let us note, that the maximal difference in the

wave intensity profiles achieves for γ = −1. Exactly, the significant deviation of the Hamilto-

nian for the Rosenbrock method is observed. It should be stressed that with decreasing the

time step until τ = 10−3 the solution obtained using the Rosenbrock method coincides with the

solution obtained using the CFDS. Essentially, that the solutions, obtained using the CFDS for

the time steps τ = 10−2 and τ = 10−3, differ each other within the approximation order.

Computation time in dependence of grid steps. The computation time dependence on

the grid steps for the two wave interaction with the parameters Lzc ¼ 20:0;D1 ¼ D2 ¼

1:0; Z ¼ 20; g ¼ 1; w ¼ 0 and the following parameters of the potential Lv = 20.0, mv = 2 for

the time and spatial intervals Lt = 10 and Lz = 40 correspondingly is shown in Table 5. Com-

puter simulation is provided for the initial Gaussian distribution of complex amplitude for the

first wave. The second wave has zero-value of its amplitude in initial time moment. Let us

note, that at h = 0.1 and any time steps τ under consideration, the computation time for the

both finite-difference schemes doesn’t exceed 1 second. With increasing the grid nodes num-

ber, the computation time increases significantly at using the finite-difference scheme based

on Rosenbrock method in contrast to the corresponding value for using the CFDS. It should

be kept in mind, that the sufficient numerical solution accuracy for the CFDS achieves already
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for the grid steps h = τ = 0.01. At the same time, the similar accuracy at using the Rosenbrock

method takes place if the grid steps are decreased at least tenfold.

The finite-difference scheme based on the Rosenbrock method

with ABCs

Problem statement for 1D nonlinear Schrödinger equation

Let us consider the 1D nonlinear Schrödinger equation

@A
@t
þ ıDz

@
2A
@z2
þ ı�Aþ ıcjAj2A ¼ 0; t > 0; 0 < z < Lz; ð69Þ

which describe the light pulse propagation in 1D Photonic crystal (PC). In this case, the

parameters Dz, ϕ defined as: Dz ¼
1

4pw
; � ¼ pw and relate to the initial complex amplitude

Fig 8. Intensity profile for waves with basic (a,c,e) and the doubled (b,d,f) frequency at the time moment t = 1.0

and computed using various finite-difference schemes for the parameters γ = 0(a, b);1(c, d);−1(e, f) and η = 20.

https://doi.org/10.1371/journal.pone.0206235.g008
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distribution [3]

Ajt¼0
¼ e� ðz� Lzc Þ

2þı2pwðz� Lzc Þ; ð70Þ

corresponding to the wave propagation along the z-axis and BCs for the Eq (69) are written in

the following way

ð
@A
@t
� 2DzOz

@A
@z
þ 2ı�Aþ ıcjAj2AÞjz¼L0

¼ 0;

ð
@A
@t
þ 2DzOz

@A
@z
þ 2ı�Aþ ıcjAj2AÞjz¼Lz ¼ 0;

ð71Þ

It should be stressed that in (71) the parameterOz is defined by the parameter χ of the initial

distribution (70) as Oz = 2πχ. We see that this equation differs from the problem (1) by term

related to the potential V and a presence of the relation between parameters Dz and ϕ.

Note, that the BCs (71) were proposed in [3] for computer simulation of the femtosecond

pulse propagation in a nonlinear PC during the time interval about several thousand dimen-

sionless units, which is very long time interval in comparison with the initial pulse duration

being equal to a few dimensionless units. The PC occupies a small part of z-axis spatial

domain.

Finite-difference scheme construction for Rosenbrock method

In contrast to the zero-value BCs, the equations for nodes j = 0, Nz of the grid ωz (see (9)) in

the case under consideration are written in following form

dUðtÞ
dt
¼ GðUÞ; j ¼ f0;Nzg; ð72Þ

Table 5. The computation time dependence on the grid steps τ, h at using the finite-difference scheme based on

the Rosenbrock method (Ros1) and the CFDS.

τ h Rosenbrock method Ros1 (sec) Conservative f-d scheme (sec)

0.1 0.05 1 1

0.01 1 1

0.001 8 10

0.05 0.05 1 1

0.01 2 1

0.001 16 5

0.01 0.05 2 1

0.01 9 3

0.001 87 20

0.001 0.05 18 3

0.01 89 12

0.001 902 133

https://doi.org/10.1371/journal.pone.0206235.t005
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where U ¼ ðu0; v0; uNz
; vNzÞ, and the vector GðUÞ is computed as follows

GðUÞ ¼

2DzOz
u1 � u0

h
þ 2�v0 þ cðu0

2 þ v0
2Þv0

2DzOz
v1 � v0

h
� 2�u0 � cðu0

2 þ v0
2Þu0

� 2DzOz

uNz � uNz � 1

h
þ 2�vNz þ cðuNz

2 þ vNz
2ÞvNz

� 2DzOz

vNz � vNz � 1

h
� 2�uNz � cðuNz

2 þ vNz
2ÞuNz

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

: ð73Þ

After introducing the mesh along time coordinate we need to add the difference equation

for the node j = Nz in the equation set (29):

� QNz
Ŷ Nz � 1 þ CNz

Ŷ Nz
¼ FNzðUNz

Þ; Ŷ Nz
¼ ðkuNz ; kvNz ;

~kuNz ;
~kvNz Þ

T
; ð74Þ

instead of zero-value of the vector Ŷ defined in (31) for this mesh node. Here, QNz
;CNz

are

matrices with the following components

CNz
¼

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

c1 ¼ c11 ¼ 1þ 2DzOz
bRt

h
� 2tbRcuNzvNz ; c5 ¼ c15 ¼ bRtð2�þ cv

2

Nz
þ 3cu2

Nz
Þ;

c2 ¼ c12 ¼ � bRtð2�þ cu2
Nz
þ 3cv2

Nz
Þ; c6 ¼ c16 ¼ 1þ 2DzOz

bRt

h
þ 2bRtcuNzvNz ;

c3 ¼ � c9 ¼ � 2DzOz
bIt

h
þ 2tcuNzvNz ; c7 ¼ � cð13Þ ¼ � tbIð2�þ cv

2

Nz
� 3cu2

Nz
Þ;

c4 ¼ � c10 ¼ bItð2�þ cu2
Nz
þ 3cv2

Nz
Þ; c8 ¼ � cð14Þ ¼ � 2DzOz

bIt

h
� 2tbIcuNzvNz ;

QNz
¼

2DzOz
bRt

h
0 � 2DzOz

bIt

h
0

0 2DzOz
bRt

h
0 � 2DzOz

bIt

h

2DzOz
bIt

h
0 2DzOz

bRt

h
0

0 2DzOz
bIt

h
0 2DzOz

bRt

h

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;
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FNz ¼

� 2DzOz

uNz � uNz � 1

h
þ 2�vNz þ c uNz

2 þ vNz
2

� �
vNz

� 2DzOz

vNz � vNz � 1

h
� 2�uNz � c uNz

2 þ vNz
2

� �
uNz

0

0

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

:

As a result, the vector Ŷ in the grid node j = Nz is written in the following way

Ŷ Nz
¼ bNzþ1 ¼ ðCNz

� QNz
aNzÞ

� 1
ðFNz þ QNz

bNzÞ: ð75Þ

The BC in the grid node j = 0 is written similarly to (74):

� B0Ŷ 1 þ C0Ŷ 0 ¼ F0ðU0Þ; Ŷ 0 ¼ ðku0
; kv0

; ~ku0
; ~kv0
Þ
T
; ð76Þ

which is also added to the equation set (29) for the mesh node j = 0. Obviously, in (76) the

matrices B0, C0 have the following components

C0 ¼

c1 c2 c3 c4

c5 c6 c7 c8

c9 c10 c11 c12

c13 c14 c15 c16

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

;

c1 ¼ c11 ¼ 1þ 2DzOz
bRt

h
� 2tbRcu0vNz ; c2 ¼ c12 ¼ � bRtð2�þ cu

2

0
þ 3cv2

0
Þ;

c3 ¼ � c9 ¼ � 2DzOz
bIt

h
þ 2tcu0v0; c4 ¼ � c10 ¼ bItð2�þ cu

2

0
þ 3cv2

0
Þ;

c5 ¼ c15 ¼ bRtð2�þ cv2
0
þ 3cu2

0
Þ; c6 ¼ c16 ¼ 1þ 2DzOz

bRt

h
þ 2bRtcu0v0;

c7 ¼ � cð13Þ ¼ � tbIð2�þ cv2
0
� 3cu2

0
Þ; c8 ¼ � cð14Þ ¼ � 2DzOz

bIt

h
� 2tbIcu0v0;

B0 ¼

2DzOz
bRt

h
0 � 2DzOz

bIt

h
0

0 2DzOz
bRt

h
0 � 2DzOz

bIt

h

2DzOz
bIt

h
0 2DzOz

bRt

h
0

0 2DzOz
bIt

h
0 2DzOz

bRt

h

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;
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F0 ¼

2DzOz
u1 � u0

h
þ 2�v0 þ c u0

2 þ v0
2ð Þv0

2DzOz
v1 � v0

h
� 2�u0 � c u0

2 þ v0
2ð Þu0

0

0

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

:

Consequently, we write the mesh function in the zero node as

Ŷ 0 ¼ a1Ŷ 1 þ b1; a1 ¼ C0

� 1B0; b1 ¼ C0

� 1F0ðU0Þ; ð77Þ

instead of zero-value of the vector Ŷ defined in (31) for this mesh node. The matrix α1 and the

vector β1 defined in (77) are used for the Thomas algorithm (32).

Approximation of the ABCs for the CFDS

To do a comparison of both finite-difference schemes we write below an approximation of the

ABCs (71) for the CFDS (34)

Û0 � U0

�
� 2Dz�z

U
0:5

1 � U
0:5

0

h
þ 2ı�U

0:5

0 þ ıcjU
0:5

0j
2U
0:5

0 ¼ 0;

ÛNz
� UNz

t
þ 2DzOz

U
0:5

Nz
� U

0:5

Nz� 1

h
þ 2ı�U

0:5

Nz
þ ıcjU

0:5

Nz
j
2U
0:5

Nz
¼ 0;m ¼ 0;Nt � 1:

ð78Þ

Since the difference Eq (78) are nonlinear ones, for its solution we use the iteration process

Û
sþ1

0 � U0

t
� 2DzOz

U1

0:5
sþ1

� U0

0:5
sþ1

h
þ 2ı�U0

0:5
sþ1

þ ıcjU0

0:5
s

j
2U0

0:5
s

¼ 0;

Û
sþ1

Nz
� UNz

t
þ 2DzOz

UNz

0:5
sþ1

� UNz� 1

0:5
sþ1

h
þ 2ı�UNz

0:5
sþ1

þ ıcjUNz

0:5
s

j
2UNz

0:5
s

¼ 0;m ¼ 0;Nt � 1:

ð79Þ

Other formulae are written in the similar way to the difference Eq (34): see (37), (38).

Computer simulation results

Let us consider the problem with zero-value BC at the left boundary of the domain on z-coor-

dinate and ABC at the right boundary. It is stated in the medium section Lz = 20 (except the

Fig 9, where ABCs is stated in the section Lz = 80). The computer simulation is performed for

the parameters Dz = 0.0796, ϕ = 3.14, χ = 1.0.

The computer simulation results are compared, in particular, with the analytical solution of

the linear problem (69) (ψ = 0). Let us define the analytical solution as AEx

AEx ¼
1

f 0:5
e�
ðz� Lzc � wtÞ

2

f2
� ı
ðz� Lzc � wtÞ

2

4Dzf
df
dt ; f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð4DztÞ
2

q

: ð80Þ

In Table 6 the maximal intensity differences between the numerical solution of the Eq (69),

obtained using the finite-difference scheme based on the Rosenbrock method with various

parameter β, and the numerical solution, obtained using the CFDS, and the analytical solution
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(80) are demonstrated. As it follows from the Table 6, the numerical solutions of the linear

problem with the BCs under consideration differ insignificantly from each other. For example,

the solutions coincide with the accuracy of magnitude order 10−5 at the steps h = τ = 0.01.

In Fig 9 the dependence of the reflected wave intensity, appeared at the boundary with

ABC, on the initial complex amplitude distribution center position is shown at computation

using the finite-difference scheme based on the Rosenbrock method with the complex parame-

ter b ¼ 1

2
ð1þ ıÞ. The center of complex amplitude initial distribution is located in the section

Lzc ¼ 70; 75, correspondingly. Thus, with decreasing the distance between initial distribution

center and the section of the boundary with ABC, the reflected wave intensity decreases. This

is showed in Fig 9. With increasing the distance between the pulse center and the section, in

Fig 9. The intensity profile |A|2, computed for the parameters ϕ = 2.5, χ = 0.8, Dz = 0.1, ψ = 0 and mesh steps h = τ
= 0.01 at the time moment, when the wave reflected from the artificial boundary, stated in section Lz = 80,

achieves the section z = 30. Two initial positions of the pulse are equal to Lzc ¼ 70:0 (solid line), 75.0 (dotted line).

https://doi.org/10.1371/journal.pone.0206235.g009

Table 6. The maximal intensity difference between the numerical solution, obtained using the finite-difference schemes based on the Rosenbrock methods (corre-

spondingly, one denotes as δA1Ex and δA2Ex) or based on the CFDS (δACEx), and the analytical solution at various time moments.

τ h t δA1Ex δA2Ex δACEx

0.1 0.01 5 0.013016 0.013615 0.013652

7.5 0.007288 0.005552 0.005557

10 0.001212 0.000885 0.000886

0.01 0.1 5 0.175465 0.175663 0.175658

7.5 0.02431 0.024387 0.02386

10 0.009347 0.009351 0.009351

0.01 5 0.012448 0.012436 0.012497

7.5 0.003905 0.003954 0.003961

10 0.000598 0.000606 0.000612

0.001 5 0.005065 0.005094 0.005937

7.5 0.003035 0.003024 0.003211

10 0.000555 0.000563 0.000557

0.001 0.01 5 0.01244 0.01244 0.0124572

7.5 0.003938 0.0039378 0.00393942

10 0.0006034 0.00060347 0.0006035

https://doi.org/10.1371/journal.pone.0206235.t006
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which the ABCs are stated, is a beam distraction influence increases. We see clearly that the

reflected wave intensities do not exceed the theoretical assessments.

In Fig 10 the intensity profile of the laser pulse, propagating in a medium with negative

nonlinear lens ψ = −5.0 (defocusing medium), is depicted for a time moment when the laser

pulse mainly transmitted through the artificial boundary. The essential result is that all numer-

ical solutions, obtained using three finite-difference schemes under consideration, coincide

(the maximal difference between solutions is about 3 � 10−4) and the reflected wave intensity is

equal to about 0.01 in the time moment t = 10 and it is less than 0.005 in the time moment

t = 20. We believe that the intensity oscillation is caused by constancy of the parameter Oz

while this parameter can significantly deviate from the local wave number of the optical radia-

tion near the artificial boundary (this is confirmed in Fig 9). It should be stressed, that we use

the numerical solution, obtained on the basis of the CFDS with zero-value BCs in enough big

domain, as the standard solution. We denote this solution with index Ex.

In Fig 11 the intensity profile for the pulse propagating in the self-focusing medium (ψ =

5.0) is shown. In Fig 11a and 11b the numerical solution deviation, obtained using the Rosen-

brock methods for the time step τ = 0.01, from the exact solution becomes equal to about

unity. With decreasing the time step to τ = 0.001 (see Fig 11c and 11d), the intensity profiles,

obtained using considered finite-difference schemes, become much closer each other. It is

important to stress that after main part of the light energy transmitted through the artificial

boundary, the reflected intensity becomes less than 0.002, which is comparable with the

approximation order of the finite-difference scheme.

Thus, we can conclude if we analyze the optical radiation propagation in defocusing

medium, then the numerical solution, obtained using the finite-difference scheme based on

the Rosenbrock method, approximates an exact solution with the same accuracy order as the

CFDS. In the case of the self-focusing medium it is necessary to decrease the mesh step in time

coordinate more than ten times at computation using the finite-difference scheme based on

the Rosenbrock method to achieve the solution accuracy comparable with the accuracy of the

solution obtained using the CFDS.

A similar investigation was made for the ABCs located at left boundary of the domain.

Fig 10. The intensity profile |A|2, computed using the finite-difference scheme based on the Rosenbrock methods (Ros1, Ros2) and the CFDS (C)

as well as the standard solution (Ex), is depicted at the time moments t = 10.0(a), 20.0(b) and for the parameters ϕ = 2.5, χ = 0.8, Dz = 0.1, ψ = −5.0

and the mesh steps h = τ = 0.01.

https://doi.org/10.1371/journal.pone.0206235.g010
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Combined method

As it is well-known, the CFDS implementation for a nonlinear problem requires to use the

iteration process. The Rosenbrock method is explicit one, but it has the conditional conserva-

tism property. Therefore, we propose the combined method based on both methods to realize

their advantages. At some propagation distance of the laser pulse, the combined method is

more preferable in comparison with other methods. Another very important feature of the

combined method consists in a type of the BCs for the problem (34): instead the ABCs (78) we

state the Dirichlet BC. The ABCs (72)–(74) are stated only for the finite-difference scheme

based on the Rosenbrock method.

The method is illustrated by the problem of the femtosecond laser pulse propagation in the

PC (the problem (69)–(71)).

Finite-difference scheme construction for the combined method

The main idea of the combined method consists in using the Rosenbrock’s method near the

boundaries of the domain. It means, that we introduce two sub-domains near left and right

boundaries of the domain under consideration. We denote a number of the grid nodes as NR

(see Fig 12). In other part of the domain in z-coordinate, the CFDS is used for a computation.

Fig 11. The intensity profile |A|2 at the time moment t = 5.0(a, c); 7.5(b, d), computed for the parameters ϕ = 2.5, χ = 0.8, Dz = 0.1, ψ = 5.0 and the

mesh steps τ = 0.01(a, b); 0.001(c, d).

https://doi.org/10.1371/journal.pone.0206235.g011
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The problem solution is provided in several stages. In the first stage, the problem solution is

computed in the sub-domains [0, NR] and [Nz − NR, Nz] at using the finite-difference scheme

based on the Rosenbrock method with ABCs. To write the finite-difference scheme let’s denote

the solution, obtained in this stage, as ÂRos and the solution at the previous time step is denoted

as ARos. Then, the finite-difference scheme, corresponding to the first stage, is written in the

following form:

ÂRos ¼ ARos þ tRRek; j ¼ 0;NR ;Nz � NR;Nz ;m ¼ 0;Nt � 1 ð81Þ

where Rek, as it was introduced above, is a real part of solution for the linear equation set, tR ¼
t

M (M is an integer number) is a time step used for computation in sub-domains

ðE � btRGUÞk ¼ GðUÞ; j ¼ 1;NR ;Nz � NR;Nz � 1;

ðE � btRGUbound
Þk ¼ GðUboundÞ; j ¼ 0;Nz;m ¼ 0;Nt � 1:

ð82Þ

Above we use the introduced definitions, GUbound
is the Jacobian of the right part vector G

(Ubound), which corresponds to the ABCs (73) and is written in the following form

G Uboundð Þ ¼

2DzOz
u1 � u0

h
þ 2�v0 þ c u0

2 þ v0
2ð Þv0

2DzOz
v1 � v0

h
� 2�u0 � c u0

2 þ v0
2ð Þu0

� 2DzOz

uNz � uNz � 1

h
þ 2�vNz þ c uNz

2 þ vNz
2

� �
vNz

� 2DzOz

vNz � vNz � 1

h
� 2�uNz � c uNz

2 þ vNz
2

� �
uNz

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

: ð83Þ

In formula (83) the functions u and v denote the real and imaginary parts of the solution

ARos. As it mentioned above, the set of equations (81)–(83) is solved by using the Thomas

algorithm.

Fig 12. The combined method scheme.

https://doi.org/10.1371/journal.pone.0206235.g012
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The second stage consists in the problem solution by using the CFDS with BCs defined by

the mesh function ÂRos. Let us denote the problem solution on this stage as ÂC and the solution

on the previous time step is denoted as AC. Thus, the difference problem on the second stage is

written as follow:

ÂC

sþ1

� AC

�
þ {Dz��zz AC

0:5
sþ1

þ{�AC

0:5
sþ1

þ{ jAC

0:5
s

j
2 AC

0:5
s

¼ 0; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1; ð84Þ

with BCs:

ÂC0

sþ1

¼ ÂRos0
; ÂCNz

sþ1

¼ ÂRosNz
ð85Þ

with corresponding condition of the iteration process stopping (40) and with choosing the dif-

ference functions on the zero-value iteration.

After this, we use the mesh function ÂC as the initial condition for a computation of the

problem solution on the next time layer in the sub-domains [0, NR] and [Nz − NR, Nz] at using

the finite-difference scheme based on the Rosenbrock method. With this aim we define the

mesh function ARos for the Rosenbrock method as

ARos ¼ ÂC; j ¼ 0;NR ;Nz � NR;Nz ;m ¼ 0;Nt � 1 ð86Þ

and using the finite-difference scheme written in (81)–(83), the computation is performed.

Then the problem (84) and (85) is solved at new time layer and the process repeats. Note, that

for finding the solution at the first time layer we use the initial complex amplitude distribution.

Thus, we obtain the implicit combined method for the nonlinear Schrödinger equation

solution (Fig 12).

Computer simulation results

Let us consider the computer simulation results obtained using the finite-difference scheme

based on the Rosenbrock method with the parameter β = 0.5(1 + ı) (denote with index Ros) or

on the CFDS (denote with index C) or on the combined method (denotes with index R&C)

(with parameter β = 0.5). We compare the obtained results between themselves and with the

exact solution (Ex) for the linear problem.

Let us define the maximal intensity of the reflected wave as

ARef ðSÞ ¼ max
tm

max
zj
jjASðtm; zjÞj

2
� jAExðtm; zjÞj

2
j; 0 � j � Nz; 0 � m � Nt;

S ¼ fR;C;R&Cg:
ð87Þ

For definiteness, the computer simulation is made for the following parameters Lz ¼
20:0; Lzc ¼ 15:0;Dz ¼ 0:0796; � ¼ 3:14; w ¼ 1 and for the mesh step on z-coordinate

h = 0.01.

The linear problem. In Fig 13 the intensity profiles, obtained using three methods men-

tioned above for computation of the laser pulse propagation in a linear medium (ψ = 0.0) are

compared. As it follows from (Fig 13a, 13b, 13c and 13d) the difference between the numerical

solution, obtained using combined method, and the corresponding solutions, obtained using

other finite-difference schemes, strongly depends on the mesh nodes number (NR) in sub-

domains and on the mesh steps τ, τR. So, for the mesh step τR = τ = 0.01 and with decreasing the

nodes number NR from 100 to 10 the reflected wave significantly increases (see Fig 13c and 13d).
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However, with decreasing the time step to the value τR = τ = 0.001 at fixed number of nodes in

the sub-domains NR = 10, the reflected wave intensity decreases noticeably (see Fig 13e and 13f)

and this intensity becomes practically the same one as the intensity computed using other finite-

difference schemes.

Fig 13. The intensity profile |A|2 computed at the time moments t = 7.5(a, c, e), 10(b, d, f) for the mesh steps τR = τ = 0.01(a, b, c, d); 0.001(e, f),

and a number of nodes for the sub-domains: NR = 100(a, b); 10(c, d, e, f).

https://doi.org/10.1371/journal.pone.0206235.g013
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To increase the effectiveness of the combined method we use decreasing time step for the

problem solution in the sub-domains. In Fig 14 the numerical solutions, obtained using finite-

difference scheme based on the combined method with the parameter NR = 10 and the mesh

steps τR = 0.001; 0.005, τ = 0.01, are presented. As it can be seen, decreasing the time step τR
leads to weak decrease of the intensity for the wave reflected from the artificial boundary and

does not provide a significant improvement of the computer simulation results.

A comparison between the maximal intensity of the reflected wave, obtained using the

finite-difference scheme based on the combined method, and the corresponding intensities,

obtained using other finite-difference schemes (see Fig 15), demonstrates, that use of the com-

bined method leads to a bigger reflected wave amplitude even for the optimal parameters.

However, this growth is not critical and doesn’t exceed the approximation error order.

It is important to compare the results, obtained using the finite-difference scheme based on

the combined method and CFDS. In Fig 16 the dependence of mesh step on time, at which the

results coincidence of computations for two finite-difference scheme is achieved, from the

nodes number in the sub-domain NR is depicted. Note that with decreasing the nodes number

NR, it is necessary to decrease the time step to achieve the corresponding accuracy.

To estimate the effectiveness of proposed method, the comparison of the first invariant val-

ues deviation for three finite-difference schemes under consideration is demonstrated in

Table 7. The results presented here are for the finite-difference scheme based on the Rosen-

brock method and for the CFDS, computed with using the ABCs. As one can see, this devia-

tion for the combined method is two times bigger then the corresponding value obtained for

other finite-difference schemes. However, this values don’t exceed the theoretical estimations.

Case of laser pulse self-focusing. In Fig 17 the intensity profiles, computed using all

finite-difference schemes for the nonlinear problem with ψ = 1.0, is shown. It should be

stressed that in this case as an exact solution we use the numerical solution computed on the

base of the CFDS with zero-value BCs in enough big domain with respect to the coordinate z.
As it can be seen in Fig 17a, the difference between the solution, obtained using the finite-

difference scheme based on the combined method, and the exact solution has the value of about

0.1 in considered time moment. However, this difference does not preserve in time. On the

other hand, the wave reflected from the artificial boundary is absent. Therefore, the difference

in amplitude is due to the difference in velocity of wave transmitting through the boundary.

Fig 14. The intensity profile |A|2, computed at the time moments t = 7.5(a), 10(b) for the parameter NR = 10 and the mesh steps τR = 0.001; 0.005,

τ = 0.01.

https://doi.org/10.1371/journal.pone.0206235.g014
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At the next considered time moments (see Fig 17b and 17c), the difference become signifi-

cantly less and equals to 10−3 and 10−4, correspondingly. The maximal intensity of reflected

wave doesn’t exceed the 10−4.

Case of laser pulse defocusing. For the optical pulse propagation in defocusing medium

the similar computation was made based on the Rosenbrock method, the CFDS and the finite-

difference scheme for the combined method. In Fig 18 the intensity profiles, obtained using

Fig 15. The evolution of reflected wave maximal amplitude in the time interval 0� t� 10, computed using the

finite-difference schemes Ros, C and R&C with NR = 100 for the mesh step τ = 0.01 and R&C with NR = 100 for the

mesh step τ = 0.001.

https://doi.org/10.1371/journal.pone.0206235.g015

Fig 16. The time step dependence on a number of grid nodes in the sub-domain NR to achieve by using the

combined method the solution accuracy computed on the base of CFDS at the time moment t = 10.0.

https://doi.org/10.1371/journal.pone.0206235.g016

Table 7. The first invariant deviation computed using the finite-difference schemes under consideration for the

parameters Lz = 20.0, t = 10.0 and the mesh steps h = τ = τR = 0.01.

Method First invariant difference Hamiltonian difference

Ros 0.000548643 0.0021649

C 0.000556224 0.0035698

R&C 0.001128941 0.0093432

https://doi.org/10.1371/journal.pone.0206235.t007
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various finite-difference schemes, is shown for the parameters ψ = −1.0, NR = 10, τ = τR =

0.001. Thus, the numerical solution obtained using the combined method coincides with the

corresponding solution obtained using the CFDS. It should be stressed, that the maximal

amplitude of the reflected wave shown in Fig 18 has the order 10−2 and it is worse than the cor-

responding result obtained for case of the pulse self-focusing case. This fact takes place because

of the constant parameter Oz. Moreover, the nonlinear distortion of the laser pulse at its front

influences strongest on the phase wave front than at the laser pulse propagation in a self-focus-

ing medium. Therefore, the optical radiation local wave number doesn’t coincide with the

using Oz value for the ABCs.

In the conclusion of this section, we should note, that it is possible to arrange the computa-

tion of the combined method in a different way. We construct also the explicit finite-difference

scheme on the basis of the predictor-corrector scheme instead of CFDS. Corresponding to this

scheme, at the first stage we compute the solution on the upper time layer at using the Rosen-

brock method in full domain under consideration. Then, at the second stage we compute the

problem solution at using the predictor-corrector scheme: the nonlinear term in (34) is com-

puted by using the solution obtained at previous stage with a help of the Rosenbrock method.

The computer simulation results obtained using this explicit method are not shown in this

paper, because of the solution accuracy, obtained using this scheme, is two or three times worse

Fig 17. The intensity profile |A|2 computed at the time moments t = 5(a), 7.5(b), 10(c) for the parameter ψ = 1.0.

https://doi.org/10.1371/journal.pone.0206235.g017

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation

PLOS ONE | https://doi.org/10.1371/journal.pone.0206235 October 31, 2018 34 / 48

https://doi.org/10.1371/journal.pone.0206235.g017
https://doi.org/10.1371/journal.pone.0206235


than the corresponding accuracy, achieved using the CFDS, Rosenbrock method and combined

method for all cases, which considered above (linear, self-focusing and defocusing problem).

2D Schrödinger equation

Problem statement and problem invariants

Let us consider the 2D nonlinear Schrödinger equation describing the femtosecond pulse

propagation in 2D PC

εðz; xÞ
@A
@t
þ ıDz

@
2A
@z2
þ ıDx

@
2A
@x2
þı�ðεðz; xÞ þ cðz; xÞjAj2ÞA ¼ 0;

t > 0; 0 < z < Lz; 0 < x < Lx

ð88Þ

with initial complex amplitude distribution

Ajt¼0 ¼ e� ðz� Lzc Þ
2=a2

z � ðx� Lxc Þ
2=a2

xþı2pwðz� Lzc Þ; ð89Þ

and ABCs are written in the following way

ð
@A
@t
� 2DzOzl

@A
@z
þ ıDzO

2

zl
Aþ ı�ð1þ cjAj2ÞAÞjz¼0 ¼ 0;

ð
@A
@t
þ 2DzOzr

@A
@z
þ ıDzO

2

zr
Aþ ı�ð1þ cjAj2ÞAÞjz¼Lz ¼ 0;

ð
@A
@t
� 2DxOxb

@A
@x
þ ıDxO

2

xb
Aþ ı�ð1þ cjAj2ÞAÞjx¼0 ¼ 0;

ð
@A
@t
þ 2DxOxu

@A
@x
þ ıDxO

2

xu
Aþ ı�ð1þ cjAj2ÞAÞjx¼Lx ¼ 0:

ð90Þ

Fig 18. The intensity profile |A|2, computed at the time moments t = 7.5(a), 10(b) for the parameters ψ = −1.0, NR = 10 and the mesh step τ =

0.001.

https://doi.org/10.1371/journal.pone.0206235.g018
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In addition to the notations, introduced above, let us note, that in (88) A(t, z, x) is a slowly

varying amplitude in time only; x denote a spatial coordinate; Lx is its maximal value; Lxc is the

coordinate of the laser beam center at initial time moment along x-coordinate; ε(z, x), ψ(z, x)

are the functions of a dielectric permittivity and nonlinearity coefficient. Parameter Dx is the

real coefficient describing the beam diffraction along x-coordinate. Variables az, ax denote the

beam radii along the corresponding coordinates. Parameters Ozl
;Ozr

;Oxb
;Oxu

are the local

wave numbers of the laser beam near the low and upper artificial boundary along x-coordi-

nate, left and right artificial boundary along z-coordinate, correspondingly. For definiteness

we denote Ozl
¼ Ozr

¼ Oz ¼ 2pw;Oxb
¼ Oxu

¼ Ox. This way of the local wave number

Oxb
;Oxu

definition is valid if the initial beam center along x-coordinate coincides with the

domain center, i.e. Lxc ¼
Lx
2
.

The problem (88)–(90) possesses two following invariants (conservation laws):

I1 tð Þ ¼
ZLz

0

ZLx
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CFDS construction for 2D case

Let us introduce an uniform grid ω

o ¼ ot � oz � ox;ot ¼ ftm ¼ mt;m ¼ 0 . . .Nt; h ¼
Lt
Nt
g;oz ¼ fzj ¼ jhz;

j ¼ 0 . . .Nz; hz ¼
Lz
Nz
g;ox ¼ fxk ¼ khx; k ¼ 0 . . .Nx; hx ¼

Lx
Nx
g:

ð93Þ

The complex amplitudes on the grid ω are defined as

A ¼ Aj;k ¼ Am;j;k ¼ A tm; zj; xk
� �

; Â ¼ Âj;k ¼ Âmþ1;j;k ¼

¼ A tm þ t; zj; xk
� �

; A
0:5
¼ 0:5 Â þ A

� �
; j A

0:5
j
2
¼ 0:5 jÂj2 þ jAj2

� �
:

ð94Þ
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where D1j;D2; j ¼ 1;Nstrx
� Nstrz

; ε1; ε2 and ψ1, ψ2 are domains, the dielectric permittivity and

nonlinearity coefficient of PC’s layers, correspondingly, εsub, ψsub is a dielectric permittivity

and nonlinearity coefficient of a substrate, which is located behind the PC; ε0, ψ0 is a dielectric

permittivity and nonlinearity coefficient of the medium before the PC; Nstrx
;Nstrz

is a number

of structure elements along x and z coordinates, correspondingly. ðL0x
; L0z
Þ is dimensionless

coordinate of the PC’s face, Lstrx ; Lstrz defines the longitudinal size of the PC along x and z coor-

dinates. Γ = Γ0,1 [ Γ0,2 [ Γ0,sub [ Γ1,2 [ Γ1,sub [ Γ2,sub are the boundaries between two domains

with different dielectric permittivity and nonlinearity coefficient. We should note that the

index sub in the boundaries definition corresponds to the substrate. For convenience, the

introduced parameters and arrangement of the PC are depicted on Fig 19.

For the problem under consideration (88)–(90), we develop the following finite-difference

scheme:

ε
Â � A
t
þ ıDzLzzA

0:5
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0:5
þ ı�ðεþ cjA

0:5
j
2
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0:5
¼ 0; j ¼ 1;Nz � 1;

k ¼ 1;Nx � 1;m ¼ 0;Nt � 1;

ð96Þ

with initial conditions

Ajt¼0
¼ e� ðjhz � Lzc Þ

2=a2
z � ðkhx � Lxc Þ

2=a2
xþı2pwðjhz � Lzc Þ ð97Þ
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and ABCs
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The 2D problem under consideration is nonlinear one, therefore for its computation we

use a two-stage iteration process [52, 53]. The first stage of the iteration process is written in

the following form:

ε
Â
sþ1

� A
t
þ ıDzLzz A

0:5
sþ1

þ ıDxLxxA
0:5
s

þ ı�ðεþ cjA
0:5
s

j
2
ÞA
0:5
s

¼ 0;

j ¼ 1;Nz � 1; k ¼ 1;Nx � 1;m ¼ 0;Nt � 1;

ð99Þ

Fig 19. Dielectric permittivity and nonlinearity coefficients of the PC.

https://doi.org/10.1371/journal.pone.0206235.g019

Implicit finite-difference schemes, based on the Rosenbrock method, for nonlinear Schrödinger equation

PLOS ONE | https://doi.org/10.1371/journal.pone.0206235 October 31, 2018 38 / 48

https://doi.org/10.1371/journal.pone.0206235.g019
https://doi.org/10.1371/journal.pone.0206235


Â0;k

sþ1

� A0;k

t
� 2DzOz

A1;k

0:5
sþ1

� A0;k

0:5
sþ1

hz
þ ıDzO

2

zA0;k

0:5
sþ1

þ ı�ð1þ cjA0;k

0:5
s

j
2
ÞA0;k

0:5
s

¼ 0;

ÂNz ;k

sþ1

� ANz ;k

t
þ 2DzOz

ANz ;k

0:5
sþ1

� ANz � 1;k

0:5
sþ1

hz
þ ıDzO

2

zANz ;k

0:5
sþ1

þ

þı�ð1þ cjANz ;k

0:5
s

j
2
ÞANz ;k

0:5
s

¼ 0; k ¼ 1;Nx ;m ¼ 0;Nt � 1

ð100Þ

and corresponds to a solution of the difference problem (96)–(98) along z-coordinate.

The second stage of the iteration process is written in the way:

ε Â
sþ2

� A
t
þ ıDzLzz A

0:5
sþ1

þ ıDxLxx A
0:5
sþ2

þ ı�ðεþ cj A
0:5
s

j
2
Þ A
0:5
s

¼ 0;

j ¼ 1;Nz � 1; k ¼ 1;Nx � 1;m ¼ 0;Nt � 1;

ð101Þ

Âj;0

sþ2

� Aj;0

t
� 2DxOx

Aj;1

0:5
sþ2

� Aj;0

0:5
sþ2

hx
þ ıDxO

2

xAj;0

0:5
sþ2

þ ı�ð1þ cjAj;0

0:5
s

j
2
ÞAj;0

0:5
s

¼ 0;

Âj;Nx

sþ2

� Aj;Nx

t
þ 2DxOx

Aj;Nx

0:5
sþ2

� Aj;Nx � 1

0:5
sþ2

hx
þ ıDxO

2

xAj;Nx

0:5
sþ2

þ

þı�ð1þ cjAj;Nx

0:5
s

j
2
ÞAj;Nx

0:5
s

¼ 0; j ¼ 1;Nz ;m ¼ 0;Nt � 1

ð102Þ

and corresponds to a solution of the difference problem (96)–(98) along x-coordinate.

The mesh function on the upper time layer at zero iteration (s = 0) is chosen as it presented

in (39). The iteration process is stopped if the following condition is valid

max
zj;xk
j Â
sþ2

� Â
s

j � ~y1maxzj ;xk
j Â
s

j þ ~y2; ð103Þ

where ~y1;
~y2 > 0 are the real constants.

Finite-difference scheme based on the Rosenbrock method for 2D case

Let us define the grid functions in the grid ω, which are defined in (93)

Am;j;k ¼ Ahðtm; zj; xkÞ ¼ um;j;k þ ıvm;j;k; um;j;k ¼ uhðtm; zj; xkÞ;

vm;j;k ¼ vhðtm; zj; xkÞ; 0 � j � Nz; 0 � k � Nx; 0 � m � Nt

ð104Þ
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and the vectors

Û ¼ ðumþ1;0;0; umþ1;0;1; . . . ; umþ1;0;Nx
; umþ1;1;0; . . . ; umþ1;1;Nx

; . . . ;

umþ1;Nz ;0
; . . . ; umþ1;Nz ;Nx

; vmþ1;0;0; . . . ; vmþ1;Nz ;Nx
Þ;

U ¼ ðum;0;0; um;0;1; . . . ; um;0;Nx ; um;1;0; . . . ; um;1;Nx ; . . . ;

um;Nz ;0; . . . ; um;Nz ;Nx ; vm;0;0; vm;0;1; . . . ; vm;Nz ;NxÞ;m ¼ 0;Nt � 1

ð105Þ

According to the Rosenbrock method, the difference solution on the next time layer is com-

puted as it is written in (18). The vector k, which is a solution of the linear equations, in this

case is written in the following form

ðE � btGUÞk ¼ GðUÞ; j ¼ 1;Nz � 1; k ¼ 1;Nx � 1;

ðE � btGUbz
Þk ¼ GðUbz

Þ; j ¼ 0;Nz; k ¼ 1;Nx � 1;

ðE � btGUbx
Þk ¼ GðUbx

Þ; j ¼ 1;Nz � 1; k ¼ 0;Nx;m ¼ 0;Nt � 1:

ð106Þ

The vectors GðUÞ;GðUbz
Þ;GðUbx

Þ are defined as

GðUÞ ¼

Dz

ε
Lzzvj;k þ

Dx

ε
Lxxvj;k þ �ð1þ

c

ε
ðu2

j;k þ v2

j;kÞÞvj;k

�
Dz

ε
Lzzuj;k �

Dx

ε
Lxxuj;k � �ð1þ

c

ε
ðu2

j;k þ v2

j;kÞÞuj;k;

0

B
B
B
B
@

1

C
C
C
C
A
;

j ¼ 1;Nz � 1; k ¼ 1;Nx � 1;m ¼ 0;Nt � 1;

ð107Þ

GðUbz
Þ ¼

2DzOz

u1;k � u0;k

hz
þ ðDzO

2

z þ �ð1þ cðu
2

0;k þ v2

0;kÞÞÞv0;k

2DzOz

v1;k � v0;k

hz
� ðDzO

2

z þ �ð1þ cðu
2

0;k þ v2

0;kÞÞÞu0;k

� 2DzOz

uNz ;k � uNz � 1;k

hz
þ ðDzO

2

z þ �ð1þ cðu
2

Nz ;k
þ v2

Nz ;k
ÞÞÞvNz ;k

� 2DzOz

vNz ;k � vNz � 1;k

hz
� ðDzO

2

z þ �ð1þ cðu
2

Nz ;k
þ v2

Nz ;k
ÞÞÞuNz ;k

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

k ¼ 1;Nx � 1;m ¼ 0;Nt � 1;

ð108Þ
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GðUbx
Þ ¼

2DxOx

uj;1 � uj;0
hx

þ ðDxO
2

x þ �ð1þ cðu
2

j;0 þ v2

j;0ÞÞÞvj;0

2DxOx

vj;1 � vj;0
hx

� ðDxO
2

x þ �ð1þ cðu
2

j;0 þ v2

j;0ÞÞÞuj;0

� 2DxOx

uj;Nx � uj;Nx � 1

hx
þ ðDxO

2

x þ �ð1þ cðu
2

j;Nx
þ v2

j;Nx
ÞÞÞvj;Nx

� 2DxOx

vj;Nx � vj;Nx � 1

hx
� ðDxO

2

x þ �ð1þ cðu
2

j;Nx
þ v2

j;Nx
ÞÞÞuj;Nx

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

j ¼ 1;Nz � 1;m ¼ 0;Nt � 1:

ð109Þ

Above GU is the Jacobian for the vector G(U) with respect to the mesh function U (105),

GUbz
;GUbx

are the corresponding Jacobians of the right part vectors GðUbz
Þ;GðUbx

Þ, which cor-

responds to the ABCs. The way of the Jacobians computation is presented above for the 1D

problem in (27) and (28).

As mentioned above, the equation set (106) is solved by using the Thomas algorithm. Obvi-

ously, in the case under consideration, the matrices dimension as well as the vectors dimension

increases many times. For example, a dimension of the vector k for the 2D problem is equal to

2(Nx × Nz) and the matrix (E − τβGU) dimension is equal to (2(Nx × Nz))
2, correspondingly.

Therefore, a dimension of the vector Yj is equal to 4Nx and the matrices Q, Cj, B dimension is

equal to (4Nx)
2.

Combined method for 2D case

The combined method in 2D case can be realized in two different ways. The first one consists

in using the Rosenbrock method near the boundaries with ABCs (see Fig 20a). Then, CFDS is

used in full domain with the BCs, which are computed by using the Rosenbrock method (it

means that we solve the Dirichlet problem).

The second one consist in a reduction of the 2D difference problem to a sequence of the 1D

difference problem. Below we consider in detail the construction of the combined method at

using the second way because in this case the dimensions of the matrices are essentially less

than at using the Rosenbrock method for the 2D problem solution directly.

We start from the difference Eqs (99)–(102) with the ABC. However, we modify this itera-

tion process in accordance with the definition of the combined method for the 1D nonlinear

Schrödinger equation. At each of these stages we use the Dirichlet BCs instead of (100), (102)

and they are computed by using the Rosenbrock method in the domain near the artificial

boundaries. Then, we apply the CFDS for the problem solution (see Fig 20b and 20c). Obvi-

ously, at this stage of the problem solution we use the Dirichlet BCs.

Thus, let’s consider the construction of the combined method. At first, we compute the

problem solution in the grid nodes near the boundaries at using Rosenbrock method with cor-

responding ABCs (90). With this aim we introduce the sub-domains. For example, let’s start

from a direction along z-coordinate. We denote a number of the grid nodes in sub-domains

along z-coordinate as NzR
and write the finite-difference scheme, based on the Rosenbrock

method in these sub-domains:

ÂRos ¼ Aþ tRReq; j ¼ 0;NzR
;Nz � NzR

;Nz ; k ¼ 1;Nx � 1;m ¼ 0;Nt � 1: ð110Þ
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where τR is a time step used for a computation in the sub-domains of the problem solution,

Req is a real part of the solution of the linear equations:

ðE � btRGUÞq ¼ GðUÞ; j ¼ 1;NzR
;Nz � NzR

;Nz � 1;

ðE � btRGUb
Þq ¼ GðUbÞ; j ¼ 0;Nz; k ¼ 1;Nx � 1;m ¼ 0;Nt � 1:

ð111Þ

A parameter β of the Rosenbrock method, is chosen as β = 0.5. Matrix GU is the Jacobian

for the vector G(U)

GðUÞ ¼

Dz

ε
Lzzvj;k þ

Dx

ε
Lxxvj;k þ �ð1þ

c

ε
ðu2

j;k þ v2

j;kÞÞvj;k

�
Dz

ε
Lzzuj;k �

Dx

ε
Lxxuj;k � �ð1þ

c

ε
ðu2

j;k þ v2

j;kÞÞuj;k;

0

B
B
B
B
@

1

C
C
C
C
A
;

j ¼ 1;NzR
;Nz � NzR

;Nz � 1; k ¼ 1;Nx � 1;m ¼ 0;Nt � 1:

ð112Þ

and GUb
is the Jacobian of the right part vector G(Ub), which corresponds to the ABCs and is

Fig 20. Two ways for computation using the combined method in 2D case.

https://doi.org/10.1371/journal.pone.0206235.g020
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written in the following form

GðUbÞ ¼

2DzOz

u1;k � u0;k

hz
þ ðDzO

2

z þ �ð1þ cðu
2

0;k þ v2

0;kÞÞÞv0;k

2DzOz

v1;k � v0;k

hz
� ðDzO

2

z þ �ð1þ cðu
2

0;k þ v2

0;kÞÞÞu0;k

� 2DzOz

uNz ;k � uNz � 1;k

hz
þ ðDzO

2

z þ �ð1þ cðu
2

Nz ;k
þ v2

Nz ;k
ÞÞÞvNz ;k

� 2DzOz

vNz ;k � vNz � 1;k

hz
� ðDzO

2

z þ �ð1þ cðu
2

Nz ;k
þ v2

Nz ;k
ÞÞÞuNz ;k

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

k ¼ 1;Nx � 1;m ¼ 0;Nt � 1:

ð113Þ

In the formulae (112), (113) the mesh functions uj,k and vj,k denote the real and imaginary

parts of the complex amplitude Aj;k ¼ uj;k þ ıvj;k; j ¼ 0;Nz ; k ¼ 0;Nx . The set of Eqs (110)–

(113) is solved by using the Thomas algorithm.

Then, we compute the problem solution near the boundaries along the x-coordinate by

using Rosenbrock method with ABCs (90). We denote a number of the grid nodes in the sub-

domains along x-coordinate as NxR
and write the following finite-difference scheme of the

solution computation based on the Rosenbrock method:

ÂRos ¼ Aþ tRReq; k ¼ 0;NxR
;Nx � NxR

;Nx ; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1; ð114Þ

where Req, is a real part of the solution for the linear equations

ðE � btRGUÞq ¼ GðUÞ; k ¼ 1;NxR
;Nx � NxR

;Nx � 1;

ðE � btRGUb
Þq ¼ GðUbÞ; k ¼ 0;Nx; j ¼ 0;Nz ;m ¼ 0;Nt � 1:

ð115Þ

GU is the Jacobian for the vector G(U)

GðUÞ ¼

Dz

ε
Lzzvj;k þ

Dx

ε
Lxxvj;k þ �ð1þ

c

ε
ðu2

j;k þ v2

j;kÞÞvj;k

�
Dz

ε
Lzzuj;k �

Dx

ε
Lxxuj;k � �ð1þ

c

ε
ðu2

j;k þ v2

j;kÞÞuj;k;

0

B
B
B
B
@

1

C
C
C
C
A
;

k ¼ 1;NxR
;Nx � NxR

;Nx � 1; j ¼ 1;Nz � 1;m ¼ 0;Nt � 1:

ð116Þ

and GUb
is the Jacobian of the vector G(Ub), which corresponds to the ABCs and is written in
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the following form

GðUbÞ ¼

2DxOx
uj;1 � uj;0

hx
þ ðDxO

2

x þ �ð1þ cðu
2
j;0 þ v2

j;0ÞÞÞvj;0

2DxOx
vj;1 � vj;0

hx
� ðDxO

2

x þ �ð1þ cðu
2
j;0 þ v2

j;0ÞÞÞuj;0

� 2DxOx
uj;Nx � uj;Nx � 1

hx
þ ðDxO

2

x þ �ð1þ cðu
2
j;Nx
þ v2

j;Nx
ÞÞÞvj;Nx

� 2DxOx
vj;Nx � vj;Nx � 1

hx
� ðDxO

2

x þ �ð1þ cðu
2
j;Nx
þ v2

j;Nx
ÞÞÞuj;Nx

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

;

j ¼ 0;Nz ;m ¼ 0;Nt � 1:

ð117Þ

The set of Eqs (114)–(117) is also solved by using the Thomas algorithm. After that we use

two-stage iteration process for solving of the Schrödinger equation in full domain at using

CFDS with the Dirichlet BCs.

The first stage of the combined method consists in the problem solution, as it is presented

in (99), with the BCs defined by the mesh function ÂRos, which is a solution of the Eqs (110)

and (111):

ÂC

sþ1

0;k ¼ ÂRos 0;k; ÂC

sþ1

Nz ;k
¼ ÂRos Nz ;k

; k ¼ 1;Nx � 1;m ¼ 0;Nt � 1: ð118Þ

Here we denote the problem solution on this stage as Â
sþ1

C. It should be emphasized that at

the first time layer we use the initial complex amplitude distribution (97).

Thus, we obtain the solution at the first stage of the combined method Â
sþ1

¼ Â
sþ1

C.

The second stage of the combined method corresponds to the difference equation solution

along x-coordinate. This stage consists in the problem solution, as it presented in formula

(101), with BCs defined by the mesh function ÂRos, which is a solution of Eqs (114) and (115)

ÂC

sþ2

j;0 ¼ ÂRos j;0; ÂC

sþ2

j;Nx
¼ ÂRos j;Nx

; j ¼ 0;Nz ;m ¼ 0;Nt � 1: ð119Þ

Here we denote the problem (96)–(98) solution for this stage as Â
sþ2

C. The mesh function on

the upper time layer at zero iteration (s = 0) is chosen as it presented in (39) and the condition

of iteration process stopping is written in formula (103). Thus, we obtain the solution at the

upper time layer.

We should note, that FFT can not be applied instead of the two-stage iteration method

because the function values at the corresponding nodes belonging to the boundaries for x and

z coordinates do not equal to each other. Moreover, the problem solution under consideration

doesn’t possess the symmetry property along z-coordinate.

The computer simulation results

First, we should note that the 2D problem solution at using the Rosenbrock method leads to

significant increasing of the computation time and algorithm complexity because of using the

matrix inversion operation. Therefore, we should take enough large mesh steps along the spa-

tial coordinates. However, even at hz = hx = 0.1 and the domain Lz = Lx = 10 we need to
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compute the inverse matrix with dimension of 160,000 at each of time steps. Thus, we can con-

clude that the Rosenbrock method is unacceptable for the 2D problem solving.

Using of the proposed combined method for the computation of the 2D problem does not

require computation of inverse matrices with such big dimension. Thus, the computation time

at using the combined method is close to the corresponding computation time at using the

CFDS. Nevertheless, usually the computation time using the CFDS is less than the correspond-

ing time at using the combined method. It is due to additional computations using the Rosen-

brock method, which occur in combined method. The combined method is effective for a

computation in short time interval and in the case of defocusing medium or some other prob-

lems, where it is necessary to use more than two iterations for the CFDS. The CFDS gives

more advantages for the problems, where control of invariants is required.

Also, one of the advantages of using the combined method is a decrease of the computation

cost and allow to write the CFDS for the arbitrary boundary conditions.

Conclusions

In this paper we have shown the conditional conservatism property of the finite-difference

scheme based on the Rosenbrock method for the 1D nonlinear Schrödinger equation or the

set of equations. For fixed mesh steps with increasing the computation time interval the differ-

ence analogues of the nonlinear Schrödinger equation (or the set of equations) invariants do

not preserve. To achieve their conservation as well as corresponding solution accuracy it is

necessary to decrease the mesh step of time coordinate. Despite the Rosenbrock method is

explicit it requires much more computational time in comparison with corresponding time at

using of CFDS because of essential smaller mesh steps which are necessary for the Rosenbrock

method. This leads to a loss of the Rosenbrock method’s main advantage at computation dur-

ing long time interval.

We investigated the effectiveness for the Rosenbrock method for the problem with the

ABCs. The results obtained for the linear case and for defocusing medium show that using the

finite-difference scheme based on the Rosenbrock method gives the same accuracy order of

the problem approximation as the CFDS. For the self-focusing medium it is necessary to

decrease mesh step on time coordinate tenfold for the finite-difference scheme based on

Rosenbrock method to achieve the accuracy of the solution using CFDS.

To use the advantages of the explicit finite-difference scheme and CFDS we proposed the

new combined method for numerical solution of the nonlinear Schrödinger equation (or the

set of equations) with ABCs. This method can be more effective than the CFDS under certain

conditions. The computer simulation results, obtained using the combined method possess

the similar order of accuracy in comparison with the corresponding results, obtained using the

CFDS, at appropriate choosing the mesh steps. The combined method possesses also the sev-

eral advantages over the Rosenbrock method for the 1D nonlinear Schrödinger equation (or

set of equations) solution.

Using of the Rosenbrock method for multidimensional case leads to the significant increas-

ing of computation time because of the complexity of the matrix inversion operation. How-

ever, it is possible to use the combined method with multistage iterative process. In this case

we solve only the 1D difference equation using the Thomas algorithm. Thus, the combined

method in the multidimensional case can be quite effective.

Using of the Rosenbrock method is inefficient in practice for solving the 2D problem due to

computation of inverse matrices with high dimension. We proposed the combined method,

which overcomes this disadvantage. The main advantage of the combined method consists in

a possibility of changing of the BCs for the CFDS: instead of using the third type of the BCs
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one can apply the Dirichlet BCs. The ABCs are used at the stage of using the Rosenbrock

method. The advantage of using the combined method appears for the 2D problem solution

during short time interval and in the case of laser pulse propagation in defocusing medium.

The CFDS is effective for the 2D problem solution during a large time interval and in the case

of laser pulse propagation in self-focusing medium.
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