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Abstract

Epithelial to mesenchymal transition (EMT) is an essential differentiation program during tis-

sue morphogenesis and remodeling. EMT is induced by soluble transforming growth factor

β (TGF-β) family members, and restricted by vascular endothelial growth factor family mem-

bers. While many downstream molecular regulators of EMT have been identified, these

have been largely evaluated individually without considering potential crosstalk. In this

study, we created an ensemble of dynamic mathematical models describing TGF-β induced

EMT to better understand the operational hierarchy of this complex molecular program. We

used ordinary differential equations (ODEs) to describe the transcriptional and post-transla-

tional regulatory events driving EMT. Model parameters were estimated from multiple data

sets using multiobjective optimization, in combination with cross-validation. TGF-β exposure

drove the model population toward a mesenchymal phenotype, while an epithelial pheno-

type was enhanced following vascular endothelial growth factor A (VEGF-A) exposure.

Simulations predicted that the transcription factors phosphorylated SP1 and NFAT were

master regulators promoting or inhibiting EMT, respectively. Surprisingly, simulations also

predicted that a cellular population could exhibit phenotypic heterogeneity (characterized by

a significant fraction of the population with both high epithelial and mesenchymal marker

expression) if treated simultaneously with TGF-β and VEGF-A. We tested this prediction

experimentally in both MCF10A and DLD1 cells and found that upwards of 45% of the

cellular population acquired this hybrid state in the presence of both TGF-β and VEGF-A.

We experimentally validated the predicted NFAT/Sp1 signaling axis for each phenotype

response. Lastly, we found that cells in the hybrid state had significantly different functional

behavior when compared to VEGF-A or TGF-β treatment alone. Together, these results

establish a predictive mechanistic model of EMT susceptibility, and potentially reveal a

novel signaling axis which regulates carcinoma progression through an EMT versus tubulo-

genesis response.
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Author Summary

Tissue formation and remodeling requires a complex and dynamic balance of interac-

tions between epithelial cells, which reside on the surface, and mesenchymal cells that

reside in the tissue interior. During embryonic development, wound healing, and can-

cer, epithelial cells transform into a mesenchymal cell to form new types of tissues. It is

important to understand this process so that it can be controlled to generate beneficial

effects and limit pathological differentiation. Much research over the past 20 years has

identified many different molecular species that are relevant, but these have mainly been

studied one at a time. In this study, we developed and implemented a novel computa-

tional strategy to interrogate the key players in this transformation process to identify

which are the major bottlenecks. We determined that NFATc1 and pSP1 are essential

for promoting epithelial or mesenchymal differentiation, respectively. We then pre-

dicted the existence of a partially transformed cell that exhibits both epithelial and mes-

enchymal characteristics. We found this partial cell type develops a network of invasive

but stunted vascular structures that may be a unique cell target for understanding cancer

progression and angiogenesis.

Introduction

The epithelial to mesenchymal transition (EMT) is a broadly participating, evolutionarily

conserved differentiation program essential for tissue morphogenesis, remodeling and patho-

logical processes such as cancer [1]. During EMT polarized, tightly adhered epithelial cell

monolayers are transformed into non-interacting motile mesenchymal cells that simulta-

neously degrade and synthesize extracellular matrix (ECM) components and invade into the

underlying tissue space [2]. EMT is the fundamental initiator of developmental processes such

as embryonic gastrulation and valvulogenesis [3]. Transforming growth factor β (TGF-β) fam-

ily members are important inducers of both developmental and pathological EMT [4, 5].

Decades of research has focused on identifying molecular regulators of EMT, but almost all on

a single gene and in a nearly binary yes/no level of qualitative understanding. Medici and

coworkers identified a core signaling program by which TGF-β isoforms induce EMT across a

variety of cell lines [6, 7]. This program involves carefully orchestrated rounds of gene expres-

sion driven by the Smad and Snail families of transcription factors as well as other key factors

such as lymphoid enhancer-binding factor 1 (LEF-1), nuclear factor of activated T-cells, cyto-

plasmic 1 (NFATc1), and specificity protein 1 (Sp1). Coregulators such as β-catenin, NF-κB,

and the ErbB family of receptor tyrosine kinases however also participate in EMT regulation,

but the degree of each’s influence is difficult to ascertain in isolation [8–11]. EMT also exhibits

complex temporal dynamics that are often intractable in gain/loss of function studies. Eluci-

dating the master regulatory architecture controlling EMT therefore requires inclusion of

these complex overlapping and non-binary behaviors.

Systems biology and mathematical modeling are essential tools for understanding com-

plex developmental programs like EMT [12]. Previous computational models of TGF-β
induced differentiation focused on single biological factors or EMT in single cells. For exam-

ple, Chung et al., constructed a model of TGF-β receptor activation and Smad signaling

using ordinary differential equations and mass-action kinetics. Their model suggested that a

reduction of functional TGF-β receptors in cancer cells may lead to an attenuated Smad2 sig-

nal [13]. Similarly, Vilar et al. suggested that specific changes in receptor trafficking patterns
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could lead to phenotypes that favor tumorigenesis [14]. Coarse grained modeling approaches

have also been applied to EMT; Steinway et al. used discrete dynamic modeling to study

developmental EMT and known dysregulation in invasive hepatocellular carcinoma [15].

Although these models provided insight into the role of receptor dynamics, EMT induction

involves many other components, including competing second messengers and interconnec-

ted transcriptional regulatory loops. Integrating these additional scales of molecular signal-

ing while maintaining the capacity for robust prediction requires a new and expanded

computational and experimental strategy. Data-driven systems approaches [16] or logical

model formulations [17] are emerging paradigms that constrain model complexity through

the incorporation of training and validation data. These are interesting techniques because

the data informs model structure (which can be expanded as more data becomes available).

Alternatively, Bailey proposed more than a decade ago that a qualitative understanding of a

complex biological system should not require complete definition of its structural and

parametric content [18]. Shortly thereafter, Sethna and coworkers showed that complex

model behavior is often controlled by only a few parameter combinations, a characteristic

seemingly universal to multi-parameter models referred to as “sloppiness” [19]. Thus, rea-

sonable model predictions are often possible with only limited parameter information. Tak-

ing advantage of this property, we developed sloppy techniques for parameter identification

using ensembles of deterministic models [20]. Furthermore, we proposed that the sloppy

behavior of biological networks may also be seen as a source of cell-to-cell [21] or even

patient-to-patient heterogeneity [22]. Bayesian parameter identification techniques have also

been used to explore cell-to-cell heterogeneity [23, 24], where a population of cells could be

viewed as a dynamic ensemble of context-specific biochemical networks [25].

In this study, we developed a family of mathematical models describing the induction of

EMT by TGF-β isoforms in the presence and absence of vascular endothelial growth factor

A (VEGF-A). We integrated a simple rule-based description of activity and gene expression

regulation with traditional ordinary differential equation (ODE) modeling to describe an

EMT interaction network containing 97 gene, protein or mRNA components interconnec-

ted through 169 interactions. This integration allows the description of complex regulatory

interactions in the absence of specific mechanistic information, it also allowed to build a pre-

dictive yet compact model. A family of model parameters was estimated using 41 molecular

data sets generated in DLD1 colon carcinoma, MDCKII and A375 melanoma cells using the

Pareto optimal ensemble technique (JuPOETs) multiobjective optimization algorithm.

JuPOETs generated an ensemble of approximately 1400 models for analysis. Analysis of the

model population suggested that both MCF10A and DLD1 cells could exhibit phenotypic

heterogeneity if treated simultaneously with TGF-β1/2 and VEGF-A. This heterogeneity was

characterized by a significant fraction of the population being in a “hybrid state” having

both high E-cadherin and high Vimentin expression. We tested these predictions using

qRT-PCR and flow-cytometry studies in a variety of experimental conditions. Validation

studies confirmed that upwards of 45% of the cellular population could be put into the

hybrid state in the presence of both TGF-β1/2 and VEGF-A. Moreover, this response

depended upon both activation of Sp1 by MAPK and NFATc1 transcriptional activity con-

sistent with the predicted molecular signaling. Lastly, the hybrid populations of both DLD1

and MCF10A cells exhibited different functional behavior than those from either TGF-β or

VEGF-A treatment. The extent of ductal branch formation significantly increased with

MCF10A cells in the hybrid phenotype, compared with cells treated with VEGF-A alone.

Together, these results establish a predictive mechanistic model of EMT susceptibility, and

reveal a novel signaling axis, which possibly regulates carcinoma progression through an

EMT versus tubulogenesis response.
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Results

The model population captured key features of TGF-β induced EMT

The EMT model architecture, based upon curated molecular connectivity, described the

expression of 23 genes following exposure to TGF-β isoforms and VEGF-A (Fig 1). The EMT

model contained 74 molecular species interconnected by 169 interactions. Model equations

were formulated as ordinary differential equations (ODEs) augmented with rule-based

descriptions of activity and gene expression regulation. ODEs are common tools to model bio-

chemical pathways [26–28]. However, while ODE models can simulate complex intracellular

behavior, they require estimates for model parameters which are often difficult to obtain. The

EMT model had 251 unknown model parameters, 169 kinetic constants 38 control constants

and 44 saturation constants. In addition to constants appearing in the signaling kinetics, char-

acteristic gene expression and translation parameters were estimated from literature, and then

corrected for each protein and transcript (four correction factors per gene product, see materi-

als and methods). As expected, the unknown parameters were not uniquely identifiable given

the training data [29]. Thus, instead of identifying a single best fit (but uncertain) model, we

estimated a sloppy population of models (each consistent with the training data) by simulta-

neously minimizing the difference between model simulations and 41 molecular data sets

using the Pareto Optimal Ensemble Technique (JuPOETs). The training data were generated

in DLD1 colon carcinoma, MDCKII, and A375 melanoma cells following exposure to TGF-β
isoforms [7]. We organized these data sets into 11 objective functions which were simulta-

neously minimized by JuPOETs. Additionally, we used data generated in this study (S1 Fig),

and 12 molecular data sets generated in HK-2 cells following VEGF-A exposure to train

VEGF-A responsive model processes [30]. To guard against overfitting, we augmented the

multiobjective optimization with leave-one-out cross validation to independently estimate

both the training and prediction error for each objective. Thus, we generated 11 different

model ensembles. Lastly, we compared model predictions with independent data sets not used

during training (both at the molecular and model population levels) to evaluate the predictive

power of the parameter ensemble.

JuPOETs generated a population of probable signaling models which captured the multiple

phases of EMT induction (Fig 2). JuPOETs sampled well over 104 probable models during

each stage of the cross-validation using global random sampling. From this analysis, N’ 1400

models were selected for further analysis. The selected models all had the same possible molec-

ular connectivity, but different values for model parameters. Transcription and translation

rates, as well as mRNA and protein degradation terms, were set using physical values from the

literature [31], and allowed to vary by a scaling factor, see methods. Model selection was based

upon Pareto rank, the prediction and training error across all objectives. The model popula-

tion recapitulated key signaling events following TGF-β exposure. We subdivided the response

to TGF-β exposure into two phases. First, TGF-β1/2 signaling initiated a program which

downregulated E-cadeherin expression in a MAPK dependent manner while simultaneously

upregulating TGF-β3 expression. Second, TGF−β3 secretion initiated an autocrine feedback

which upregulated the expression of mesenchymal markers such as Vimentin and key

upstream transcription factors such as LEF-1 in a SMAD dependent manner. TGF-β3 expres-

sion was also able to sustain β-catenin release by inhibiting its sequestration by the APC com-

plex through PI3K mediated GSK3, which was captured by the model (S2 Fig). Each phase

involved the hierarchal expression and/or post-translational modification of several key tran-

scription factors. During the first phase, stimulation with TGF-β1/2 (10 a.u.) activated both the

SMAD and MAPK pathways. MAPK activation resulted in the phosphorylation of the tran-

scription factor activator protein 1 (AP-1), which in-turn upregulated the expression of Snail,
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a well established transcriptional repressor (Fig 2A). Snail expression was MAPK-dependent;

the MEK inhibitor U0126 blocked AP-1 activation and Snail expression following TGF-β1/2

exposure (Fig 2A, Lane 3). Overexpression of either Snail or Slug upregulated TGF-β3 expres-

sion (Fig 2C) while simultaneously downregulating E-cadeherin expression (Fig 2F). During

the second phase, TGF−β3 secretion and the subsequent autocrine signaling resulted in the

upregulation of mesenchymal marker expression. The TGF−β3 induced gene expression pro-

gram involves a complex hierarchy of transcriptional and post-translational regulatory events.

Absence of E-cadherin indirectly promoted TGF−β3 expression through the β-catenin/TCF4

complex following Snail or Slug expression (Fig 2C, Lane 2 or 3). Conversely, over-expression

of E-cadherin inhibited the TGF−β3 autocrine production by sequestering cytosolic β-catenin,

thereby blocking EMT (Fig 2C, Lane 4 or 5). TGF−β3 signaled through the Smad pathway to

regulate LEF-1 expression and downstream target EMT genes (Fig 2G). TGF−β3 (10 a.u.) in

combination with downstream inhibitors (DN-Smad4 and DN-LEF-1) completely inhibited

Vimentin expression, while elevating E-cadherin expression (Fig 2H and 2I).

Fig 1. Model connectivity recreates the core architecture during EMT. The EMT network contains 97 nodes (proteins, mRNA, and

genes) interconnected by 169 interactions. Central to EMT induction, activation of the MAPK cascade occurs through TGF-β1/2 binding

which activates the AP-1/Sp1 transcriptional axis. AP-1/Sp1 drives an autocrine response of TGF-β3, which activates the Smad cascade,

leading to phenotypic change. Conversely, VEGF-A binding can stabilize an epithelial phenotype through NFAT activation. Downstream

activation of β-catenin signaling due to E-cadherin loss and GSK3 inactivation of β-catenin confinement is critical to the complete

activation of the EMT program. The complete list of molecular interactions that comprise the model is given in the supplement.

doi:10.1371/journal.pcbi.1005251.g001
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Fig 2. Training and validation simulations. The population of EMT models qualitatively captured TGF−β-induced EMT signaling. (A-I)

The population was generated using JuPOETs and trained using 11 different objective functions (41 data sets) taken from Medici et al. [7]. The

model captured the simulated experiments for all cases when compared to randomized controls. (J-L) The model populations were also

compared against untrained temporal data to measure the effectiveness as a pure prediction. The western blot data was reproduced from Medici

et al. [7]. The intensity of each band was estimated using the ImageJ program. These blot intensities were then used as the training data for the

EMT parameter estimation studies.

doi:10.1371/journal.pcbi.1005251.g002
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The predictive power of the ensemble was tested using cross validation and by comparing

simulations with data not used for model training. In whole, all of our training objectives were

statistically significant (at a 95% confidence interval) compared to a randomized parameter

family (N = 100) generated from a random starting point. Conversely, we predicted all of

the training objectives, at a 95% confidence interval compared to randomized parameters

(Wicoxon non-parametric test). The model also captured the temporal gene expression

responses of E-cadherin, pSmad2, and LEF-1 (not used for model training) to within one-stan-

dard deviation (up to the 48 hr time-point) (Fig 2J–2L). Taken together, the model captured

the key signaling events revealed by Medici et al. [7] that drive the phenotypic conversion. A

listing of objective function values resulting from training, cross validation and the random

parameter control is given in the supplement (S3 Fig).

TGF−β1/2 and VEGF-A exposure promotes phenotype heterogeneity

through NFATc and phosphorylated Sp1

While we captured the central tendency of many of the molecular features of EMT induction

following TGF−β1/2 exposure, an often neglected but important emergent feature of develop-

mental and pathological programs is population heterogeneity [32]. We (and others) have pre-

viously hypothesized that deterministic model ensembles can simulate population behavior, at

least at a course grained level [21]. We tested this hypothesis by analyzing the response of the

population of EMT models to extracellular cues and then comparing this response to flow

cytometry studies. We quantified the phenotypic response of the individual members of the

ensemble to TGF−β1/2 stimulation for two downstream phenotypic markers, Vimentin (mes-

enchymal) and E-cadherin (epithelial) following the addition of TGF−β1/2 alone (Fig 3), and/

or VEGF-A in combination with NFATc inhibitors (Fig 3).

We identified model subpopulations that exhibited different behaviors following exposure

to TGF−β1/2 (Fig 3B). Analysis of the molecular signatures of these subpopulations suggested

the abundance, localization and state of the Sp1, AP-1 and NFATc transcription factors con-

trolled population heterogeneity. The majority of models (>80%) responded to treatment,

moving away from the untreated population (Fig 3A–3F, gray). These models showed the clas-

sically expected behavior, a switch from an epithelial to mesenchymal phenotype following

TGF−β1/2 exposure. Some models resembled untreated cells; they had elevated phosphory-

lated Sp1, relative to non-induced cells, which decreased E-cadherin expression through Slug-

mediated inhibition, which in turn increased Vimentin expression through TGF−β3 autocrine

signaling and the liberation of β-catenin. However, the most biologically interesting behavior

was exhibited by cells achieving a hybrid phenotype, most notable in a dual treatment condi-

tion (Fig 3C, black arrow), but also present in a small percentage of untreated cells (Fig 3B,

gray arrow). Models with this hybrid phenotype had elevated Sp1 and NFAT transcriptional

activity, resulting in simultaneously increased Vimentin and E-cadherin expression (Fig 4A).

However, these conclusions are likely sensitive to the components that we have included in the

model, and could also involve proteins that we have not considered.

To better understand the hybrid phenotype, we simulated the response of the model popu-

lation to TGF−β1/2 and VEGF-A treatment with and without NFATc inhibitors (Fig 3). As

expected, stimulation with VEGF-A (50 a.u.) maintained an epithelial population (Fig 3A),

while TGF−β1/2 (10 a.u.) exposure shifted the population from an epithelial to a mesenchymal

phenotype (Fig 3B). On the other hand, combined stimulation with TGF−β1/2 (10 a.u.) and

VEGF-A (50 a.u.) increased both E-cadherin and Vimentin expression, resulting in a hybrid

phenotype with both epithelial and mesenchymal characteristics (Fig 3C). Vimentin expres-

sion was correlated with high levels of nuclear phosphorylated Sp1, following TGF−β1/2

Heterogeneity in EMT Phenotype
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Fig 3. Simulated VEGF-A and TGF−β1/2 exposure promoted phenotype heterogeneity. Simulated response to TGF−β1/2 and

VEGF-A exposure with and without axis specific inhibitors. Vimentin and E-cadherin abundances (in nM) were used to quantify the shift in

population at 48 hrs. (A-C) VEGF-A (50 a.u.) treatment resulted in a population with enhanced epithelial properties. This was contrary to the

addition of TGF−β2 (10 a.u.), which shifted the population towards a mesenchymal phenotype. Interestingly, the combined effects of TGF

−β2 and VEGFA was found to increase both ecadherin and vimentin levels, creating a heterogeneous population (black arrow), which can

also be seen in a minority of untreated cells (gray arrow). (D-F) To isolate the effect of NFAT, we inhibited NFAT de-phosphorylation in

combination with VEGFA. This negated the increase in ecadherin expression and shifted the population towards a mesenchymal

phenotype. Likewise, combining NFAT inhibition with TGF−βmitigated all VEGF enhanced ecadherin expression. Lastly, combination of

TGF−β2, VEGFA, and NFAT inhibition nearly mitigated all effects of VEGFA, shifting the heterogeneous population towards a

mesenchymal phenotype. In whole, high levels of phosphorylated-Sp1 correlated with vimentin expression, while NFAT was responsible for

maintaining E-cadherin expression in the presence of other factors, although neither were mutually exclusive.

doi:10.1371/journal.pcbi.1005251.g003
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exposure. Conversely, elevated E-cadherin expression depended upon the activity of NFAT

transcription factors downstream of VEGF-A stimulation. To further isolate the role of NFAT

on this hybrid state, we simulated the inhibition of NFAT transcriptional activity across all

conditions (all else being equal). NFAT inhibition in combination with VEGF-A or TGF−β1/2

treatments blocked increased E-cadherin expression in the case of VEGF-A (Fig 3D), but did

not influence TGF−β1/2 signaling (Fig 3E). Lastly, NFATc inhibition in combination with

simultaneous TGF−β1/2 and VEGF-A exposure repressed nearly all E-cadherin expression,

shifting nearly the entire population towards a mesenchymal phenotype (Fig 3F). Taken

together, high levels of nuclear localized phosphorylated Sp1 correlated with Vimentin expres-

sion, while NFATc transcriptional activity was critical for maintaining E-cadherin expression

in the presence of competing signals.

Identification of a novel LEF-1 regulator

During model identification, we found that consistent TGF-β induced EMT from a stable epi-

thelial cell population required an additional regulatory protein. This protein, which we called

hypothetical regulator 1 (YREG1), was required to mediate between SNAIL/SLUG transcrip-

tional activity and the upregulation of LEF-1 expression following TGF-β1/2 exposure.

SNAIL/SLUG are well known transcriptional repressors [33–35], although there are a few

studies which suggest that at least SNAIL can also act as a transcriptional activator [36]. In the

model, we assumed the expression of SNAIL/SLUG was likely regulated by AP1/SP1 [37].

Thus, upon receiving direct SNAIL/SLUG and TGF-β3 signals, the model predicted enhanced

SNAIL/SLUG expression, consistent with experimental observations. TGF-β1/2 stimulation

also induces LEF-1 expression. However, literature evidence suggested that LEF-1 expression

was not strongly dependent upon AP1/SP1 activity [38]. Thus, either SNAIL/SLUG are acting

as inducers (contrary to substantial biochemical evidence) or, they are repressing the expres-

sion of an intermediate repressor. Given the biochemical evidence supporting SNAIL/SLUG

as repressors, we created the hypothetical YREG1 repressor whose expression is downregu-

lated by SNAIL/SLUG. The literature data therefore suggested that YREG1 had two transcrip-

tional targets, LEF-1 and TGF-β3. By adding this regulator, our simulations became consistent

with training and literature data. Medici et al. suggested that feedback between β-catenin and

LEF-1 was likely, although this feedback had yet to be identified [7]. Low levels of YREG1

expression were present in all simulations to regulate the formation of the β-catenin-LEF-1

complex. To test the effect of YREG1 on the epithelial population, we conducted over-

Fig 4. Analysis of underlying signaling responses. (A) We examined the distribution of NFATc1 and AP1/SP1 in cells containing the hybrid phenotype

(VEGF-A + TGF−β2 case), showing the potential for cells to express both SP1 and NFATc1 in a non exclusive manner. (B) In the absence of YREG1,

most of the population failed to consistently to retain a stable epithelial state. (C) We identified a novel regulator of LEF1 called YREG1 that allows Snail/

Slug to emulate an inducer by repressing YREG1, which was required to stabilize the untreated population. YREG1 overexpression revealed an enhanced

epithelial phenotype, while some inherently transformed cells moved towards a hybrid phenotype.

doi:10.1371/journal.pcbi.1005251.g004
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expression and knockdown simulations on untreated cells (Fig 4B and 4C). In the absence of

YREG1, the population of models failed to consistently to retain a stable epithelial state (Fig

4B). Conversely, YREG1 amplification revealed an enhanced epithelial phenotype, while some

inherently transformed cells moved towards a hybrid phenotype (Fig 4C). Elevated YREG1

repressed LEF-1 and TGF-β3 expression, thereby not allowing free β-catenin to form the β-

catenin-LEF-1 complex, or TGF-β3 induced SMAD activation. Taken together, low YREG1

expression was required for the maintenance of a stable epithelial phenotype that was simulta-

neously inducible across TGF-β1/2, TGF-β3 and SNAIl/SLUG transfection.

Combined TGF−β2 and VEGF-A exposure drives heterogeneity in

MCF10A and DLD1 cells

The EMT model simulations suggested the transcriptional activity of NFATc and Sp1 could be

independently tuned to generate a hybrid cell population with both epithelial and mesenchy-

mal characteristics. To test this hypothesis, we exposed either quiescent epithelial (MCFA10,

Fig 5) or transformed epithelial cells (DLD1, S4 Fig) to combinations of TGF−β1/2 and/or

VEGF-A. As expected, TGF−β1/2 treatment (10ng/ml) increased Slug and Vimentin expres-

sion, while repressing E-cadherin expression both at the transcript and protein levels in

MCF10A (Fig 5A and 5B) and DLD1 cells (S5C Fig). Both MCF10A (Fig 5C) and DLD1 cells

(S4E and S4G Fig) transitioned from quiescent cobblestone morphology to spread spindle

shapes, consistent with EMT. As predicted, we found increased nuclear localization of phos-

phorylated Sp1 following TGF−β1/2 stimulation in both MCF10A (Fig 5B and 5C) and DLD1

cells (S4E and S4F Fig). Consistent with model predictions, VEGF-A (50ng/ml) treatment

increased the abundance of NFATc1 and E-cadherin at both the transcript and protein level in

both MCF10A (Fig 5A) and DLD1 cells (S4 Fig). We also found that NFATc1 nuclear localiza-

tion significantly increased in both MCF10 (Fig 5B and 5C) and DLD1 (S4C and S4E Fig) cells

treated with VEGF-A. Interestingly, combining VEGF-A (50ng/ml) with TGF−β1/2 (10ng/ml)

resulted in significantly elevated expression of both E-cadherin and Vimentin at the transcript

and protein levels in both MCF10A (Fig 5A and 5B) and DLD1 cells (S4 and S5 Figs). NFATc1

expression increased, while Sp1 expression was similar to the TGF−β1/2 case alone (Fig 5A

and 5B, S4D and S4E Fig), supporting their independent regulation. The expression of Slug,

and Vimentin significantly increased, while E-cadherin levels were increased in MCF10A cells

(Fig 5A) and maintained at control levels in DLD1 cells (S4D Fig). As predicted, nuclear co-

localization of both NFATc1 and phosphorylated Sp1 were apparent in MCF10A (Fig 5B and

5C) and DLD1 (S4E and S4F Fig) cells treated with both ligands. Taken together, combined

VEGF-A and TGF−β1/2 treatment elicited a hybrid phenotype expressing both mesenchymal

and epithelial characteristics in both MCF10A and DLD1 cells. This phenotype was driven by

the transcriptional activity of two key transcription factors, Sp1 and NFATc, which could be

modulated independently by TGF−β1/2 and VEGF-A exposure.

Our phenotypic analysis predicted that NFATc transcriptional activity was critical to main-

taining E-cadherin expression in the presence of both VEGF-A and TGF−β1/2. We experi-

mentally tested this hypothesis by exposing both MCF10A (Fig 5E and 5F) and DLD1 cells (S5

Fig) to combinations of VEGF-A and TGF−β1/2 in the presence or absence of VIVIT, a soluble

peptide inhibitor of NFATc transcriptional activity [39]. Treatment with VEGF-A (50ng/ml)

and VIVIT (10μM) in MCF10A cells significantly reduced E-cadherin expression compared to

VEGF-A alone (Fig 5D and 5E). Co-treatment with VIVIT and TGF−β1/2 did not enhance

EMT capacity of MCF10A cells above that of TGF−β1/2 alone (Fig 5A, 5B and 5E). Likewise,

VIVIT in combination with both TGF−β1/2 and VEGF-A resulted in a loss of E-cadherin gene

and protein expression, while Slug and Vimentin levels remained increased (Fig 5D and 5E).
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Fig 5. Simultaneous TGF-β1/2 and VEGF-A treatment induced phenotype heterogeneity and is dependent upon NFAT activity in-vitro. (A) In

MCF10A, treatment with (10ng/ml) TGF−β2 increased Slug and vimentin, while ecadherin expression was inhibited at both the gene and protein level at

48 hrs. Conversely, VEGFA alone increased both NFATc1 and ecadherin gene expression. Simultaneous TGF−β2 (10ng/ml) and VEGFA (50ng/ml)

treatment increased Slug, NFATc1, and vimentin expression, while also increasing ecadherin levels via qPCR. (B-C) Immunofluorescence confirmed

these results and nuclear co-localization of both phospho-Sp1 and NFAT were found dependent upon TGF−β2 and VEGFA, respectively. (D) To isolate

the effect of NFAT, treatment of VEGFA (50ng/ml) and VIVIT (10μM) reduced ecadherin expression at 48hrs (control-dashed line). Similarly, combined

TGF−β2, VEGFA and VIVIT treatment increased Slug and vimentin expression, while inhibiting ecadherin levels via qPCR. (E) These findings were

confirmed via immunofluorescence as the VIVIT peptide inhibited ecadherin and nuclear localization of NFATc1 in all three cases. (F) Quantitative flow

cytometry also confirmed this trend. Similar experiments in DLD1 followed a similar trend (supplement). Magnification, 40x. Scale bars: 50μm.

C = Control, T = TGF−β2, V = VEGFA, VI = NFAT inhibitor (VIVIT). Asterisks signify statistical differences from each other according to a one-way

ANOVA with Tukey’s post hoc (p�0.05).

doi:10.1371/journal.pcbi.1005251.g005
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Quantitative flow cytometry confirmed these results in both MCF10A (Fig 5F) and DLD1 cells

(S5C Fig). Both epithelial cell lines initially had high levels of E-cadherin expression, and low

Vimentin abundance (Q1–99.5%), but both MCF10A and DLD1 cells shifted from an epithe-

lial to mesenchymal phenotype (Q1–33.4%, Q4–42.8%) following TGF−β1/2 exposure. As

expected, NFATc nuclear localization was repressed with VIVIT treatment regardless of ligand

stimulation, while the abundance of nuclear phosphorylated Sp1 increased for both TGF−β1/2

and TGF−β1/2 + VIVIT conditions (Fig 5C and 5E). Combined TGF−β1/2 and VEGF-A

increased both Vimentin and E-cadherin expression (Q1–42.1%, Q2–52.3%) compared to

TGF−β1/2 alone. Together, these results demonstrate that NFATc and phosphorylated Sp1 are

critical for regulating E-cadherin and Vimentin expression during phenotype heterogeneity in

MCF10A and DLD1.

Ductal branching during acini formation is dependent upon phenotype

heterogeneity in MCF10A and DLD1 cells

We finally employed established three-dimensional (3D) in vitro models of invasion, migra-

tion, compaction, and tubulogenesis [40] to determine the functional consequences of the

hybrid phenotype (Fig 6). MCF10A and DLD1 cells were aggregated via hanging drop, placed

on the surface of a collagen gel, and cultured for 72 hrs under various biochemical treatments.

TGF−β1/2 stimulation significantly enhanced cell matrix invasion and matrix compaction,

while in contrast VEGF-A stimulation promoted surface migration but no invasion or com-

paction (Fig 6B–6D). Interestingly, combined TGF−β1/2 and VEGF-A stimulation signifi-

cantly increased cell migration potential above that of VEGF-A alone while maintaining 3D

matrix compaction, though with decreased magnitude compared to TGF−β1/2 alone. Inhibi-

tion of NFATc transcriptional activity by VIVIT decreased migration following treatment

with VEGF-A alone (Fig 6B). Co-treatment of VIVIT significantly decreased migration, while

complementarily increasing invasion and compaction, when MCF10A cells were stimulated

with both VEGF-A and TGF−β1/2 (Fig 6B–6D). The responses of DLD1 cells followed a simi-

lar trend to MCF10A, although the magnitudes of migration, invasion, and compaction were

less. Cell circularity within 3D gels strongly and negatively correlated with both invasion and

compaction regardless of treatment (Fig 6E). Circularity refers to the morphology of the cells.

In general, a quiescent epithelial cells assumes a circular morphology in culture, while an active

mesenchymal cell is highly elongated. The circularity index, a common means of quantifying

cell morphology, relates cell area to perimeter. A perfect circle has a circularity index equal to

1.0, while a straight line has a circularity index equal to 0.0, see Butcher et al. [41]. TGF−β1/2

treatment alone resulted in irregular and spindle shaped morphology, while VEGF-A exposure

promoted round quiescent cells (Fig 6A). Combined VEGF-A and TGF−β1/2 promoted mor-

phology between these extremes. VIVIT mediated NFATc inhibition significantly reduced the

circularity index, similar to TGF−β1/2 treatment (Fig 6F). VEGF-A treatment also induced the

formation of tubular structures (acini), but the number of tubular branches relative to total

acini was significantly increased upon combined TGF−β1/2 and VEGF-A. No tubular struc-

tures were identified within the DLD1 constructs during the 7 day tubulogenesis endpoints,

supporting that MCF10A and DLD1 cells have some cell-type specific EMT sensitivity despite

their underlying competency for acquiring a heterogeneous phenotype. This suggests that ini-

tial EMT sensitivity of a cell influences downstream functional response from TGF-b and

VEGFA stimulation. Together, these results establish that VEGF-A and TGF−β1/2 ligand

concentrations potentiate between acini and ductal branch formation in 3D culture, and are

dependent upon NFATc activity.
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Fig 6. Ductal branching is dependent upon phenotype heterogeneity within MCF10A in 3-D culture.

MCF10A and DLD1 were formed into spheroids overnight and explanted to a collagen gel for 72 hrs. For

compaction and tubular assays, cells were embedded into collagen gels for 72 hrs, and the extent of

tubulogenesis was measured at 7 days. (A-D) Within MCF10A, TGF−β2 (10ng/ml) enhanced invasion and

contractile properties while, VEGFA (50ng/ml) promoted increased migration. TGF−β2 with VEGFA

significantly increased migration, while limiting with compaction. VIVIT (10μM) in combination with VEGFA

and TGF−β2 decreased migration and compaction, while increasing invasion. (D) Likewise, cell morphology

(circularity index) correlated with both invasion and compaction in MCF10A. (E-F) The size of tubular

structures (acini) also increased significantly upon addition of VEGFA, while the number of ductal branches
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Discussion

In this study, we developed a family of mathematical models describing the induction of EMT

by TGF-β isoforms in the presence and absence of VEGF-A. The model, which contained 74

molecular species interconnected by 169 interactions, described the expression of 23 genes in

response to growth factor stimulation. We estimated an ensemble of likely model parameters

using the JuPOETs multiobjective optimization framework. The model population was trained

and cross-validated to prescribe biological significance using 41 data sets generated in DLD1

colon carcinoma, MDCKII, and A375 melanoma cell lines [7]. Analysis of this population pre-

dicted possible phenotypic modes (and their associated signaling) that cells could exhibit when

stimulated with TGF-β and/or VEGF-A. The most novel hypothesis generated from the analy-

sis was that cells could operate in a hybrid state defined by both epithelial and mesenchymal

traits when stimulated simultaneously with TGF-β and VEGF-A. We tested this hypothesis in

MCF10A and DLD1 cells stimulated with combinations of TGF-β and VEGF-A. As expected,

in the presence of TGF-β or VEGF-A alone, MCF10A and DLD1 cells were either mesenchy-

mal or epithelial, respectively. However, with both TGF-β and VEGF-A, MCF10A and DLD1

cells exhibited a hybrid phenotype, having both epithelial and mesenchymal characteristics.

Furthermore, we found that functional traits such as tubulogenesis and ductal branching were

different for cells in this hybrid phenotype. Together, this study established a predictive model

of EMT induction, determined that deterministic model ensembles could predict population

heterogeneity, and proved the existence of a unique hybrid phenotype resulting from the

simultaneous integration of extracellular growth factor signals.

Cells routinely process a multitude of signals simultaneously, especially when coordinating

developmental or pathological programs. For example, oncogenic cells integrate both mechan-

ical and chemical cues in their local microenvironment during tumorigenesis, including cyto-

kines VEGF and TGF−β [42]. VEGF-A mediates pathological angiogenic remodeling of

tumors [43], while TGF−β can elicit both protective and oncogenic responses [44, 45]. While

much research has tested signaling pathways individually, far less is understood about combi-

natorial stimulation, such as with both VEGF-A and TGF−β. Both in vitro and in vivo studies

have suggested that epithelial cells can exhibit heterogeneous phenotypes in addition to classi-

cally defined epithelial or mesenchymal states [46, 47]. For example, expression profiling in

human epithelial cancer cell lines demonstrated a spectrum of phenotypes, including some

that expressed both E-cadherin and Vimentin simultaneously [48, 49]. Zajchowski et al., spec-

ulated that these expression profiles were somehow important for maintaining epithelial prop-

erties, while simultaneously allowing other functional behavior such as proliferation and

migration [50]. Whether and how heterogeneous phenotypes arise and participate in cancer

progression, as well as their response to pharmacological inhibition are fundamental questions

that should receive increased attention. In this study, we determined that a hybrid phenotype

could be obtained through combined treatment with VEGF-A and TGF−β, both common fac-

tors localized in the tumor microenvironment. Furthermore, our systematic simulation-exper-

imentation strategy identified that the transcriptional activity of Sp1 and NFATc were the

was most significant upon simultaneous TGF−β2 and VEGFA treatment (Red-Ecadherin, Green-Factin, Blue-

Nuclear). DLD1 cells followed a similar trend, although the degree of migration, invasion, and compaction was

less significant. In addition, no tubular structures were identified during the 7 day tubulogenesis endpoints.

Scale bars: 500μm, 1000μm, 250μm, and 80μm, respectively. C = Control, T = TGF−β2, V = VEGFA,

VI = NFAT inhibitor (VIVIT). Asterisks signify statistical differences from each other according to a one-way

ANOVA with Tukey’s post hoc (p�0.05). Boxes in the left-most panel identify regions identified by arrows that

were then imaged in greater zoom in the panel immediately below. The box diagram was not repeated for

arrows in the other panels for clarity, but the same method was applied.

doi:10.1371/journal.pcbi.1005251.g006
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critical factors controlling this phenotypic heterogeneity. Several studies have highlighted the

importance of NFATc as a key transcription factor involved in cell growth, survival, invasion,

angiogenesis and cancer [51]. For example, proliferation and anchorage-independent growth

of pancreatic tumor cells is dependent on calcineurin and NFATc1 activity, consistent with the

high levels of nuclear NFATc1 found in pancreatic tumors [52]. Likewise, our results found

that VEGF-A was a potent inducer of NFATc1 expression, which may be required for epithelial

cell migration and tubulogenesis. Although specific NFATc isoforms were not distinguished in

the model, our simulations suggested that NFATc transcriptional activity was capable of main-

taining epithelial traits, even during TGF−β induced EMT. Experimentally, we found that E-

cadherin expression was dependent upon NFATc dephosphorylation in response to simulta-

neous VEGF-A and TGF−β1/2 treatment. Thus, these results support the hypothesis that

NFATc activity plays a critical role in maintaining cell-cell contacts, even during partial EMT.

Epithelial cells reproduce tissue-like organization when grown in a three-dimensional

extracellular matrix (ECM) environment, and therefore are an attractive model to study mor-

phogenic mechanisms. It is well established that MCF10A cells form structures that closely

resemble acini (multi-lobed cluster of cells) in three-dimensional in vitro cultures [53]. It has

been postulated that a cellular response reminiscent of partial EMT underlies this process,

stimulating further branching and formation of acini [54]. Normally well controlled process

such as tubulogenesis can be co-opted by cancer cells to break away from a primary lesion and

invade through the surrounding stroma [55]. However, by retaining a transient hybrid EMT-

like state, clusters of these tube-forming tumor cells can reform at a high rate after invasion,

possibly explaining why invasive human carcinomas frequently appear to be cellular collec-

tions with varying degrees of gland-like differentiation [56]. In this study, we showed that our

predicted hybrid phenotype generated by simultaneous treatment of epithelial cells with

VEGF-A and TGF−β possessed altered migration and invasion, which enhanced tubular

branching. A salient feature of this behavior, however, was the retention of cell-cell contacts

that allowed cells to migrate without completely dissociating from their neighbors. Thus, our

results support a mechanism in which hybrid cells can maintain some functional characteris-

tics of epithelial cells such as cell-cell adhesion, which are normally lost in a fully differentiated

mesenchymal state. The tumor microenvironment contains many soluble signals simulta-

neously, including VEGF and TGF−β. Thus, it is likely that some cancerous epithelial cells

could exhibit hybrid EMT phenotypic states. This may explain why fibroblastoid morphology,

a classical feature of EMT, is not commonly observed in human carcinomas [56]. This study

focused on the combinatorial effects of two very different ligand families present together in

the tumor environment. Additional modeling studies are required to unravel the global

response of epithelial cells to the full spectrum of chemical, substrate, and mechanical cues.

The simulation strategy presented here is readily adaptable to larger species sets, with the

major advantage that experimentally testable hypotheses can be generated regarding how sig-

nals get integrated to produce global cellular response. Furthermore, by simulating multiple

ensembles of parameter sets, subpopulations across a constellation of phenotypes can be cre-

ated and mined for common and/or divergent signaling characteristics. This is a significant

advantage over forced convergence to a single unique solution and thereby generating a poten-

tially non-physiological homogeneous population.

The deterministic population of EMT models predicted heterogeneous behavior that

was qualitatively consistent with experimental studies. There is a diversity of algorithmic

approaches to estimate model parameters [57], as well as many strategies to integrate model

identification with experimental design [58, 59]. However, despite these advances, the identifica-

tion of models describing intracellular network behavior remains challenging. There are differ-

ent schools of thought to deal with this challenge. One school has focused on model reduction.
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Data-driven approaches [16], boolean [60] or other logical model formulations [17, 61] are

emerging paradigms that constrain model complexity by the availability of the training and vali-

dation data. Other techniques such as constraints based modeling, which is commonly used to

model metabolic networks, have also been applied to model transcriptional networks, although

primarily in lower eukaryotes and prokaryotes [62]. These techniques (and many others, see

review [63]) are certainly exciting, with many interesting properties. Here, we used a traditional

approach of mass action kinetics within an ordinary differential equation framework that also

included transfer functions to simplify scenarios where reactions involving one species are con-

trolled by several others (e.g. E-cadherin transcription). The identification problem for the EMT

model was underdetermined (not uncommon for differential equation based models). However,

a central criticism leveled by biologists is that model simplification is often done at the cost of

biological reality, or done for reasons of computational expediency [64]. To avoid this criticism,

we systematically identified an ensemble of likely models each consistent with the training data,

instead of a single but uncertain best fit model. Previously, we (and others) have suggested that

deterministic ensembles could model heterogeneous populations in situations where stochastic

computation was not feasible [21]. Population heterogeneity using deterministic model families

has previously been explored for bacterial growth in batch cultures [65]. In that case, distribu-

tions were generated because the model parameters varied over the ensemble, i.e., extrinsic

noise led to population heterogeneity. In this study, parameters controlling physical interactions

such as disassociation rates, or processes such as gene expression were distributed over the

ensemble. Population heterogeneity can also arise from intrinsic thermal fluctuations, which

are not captured by a deterministic population of models [66]. Thus, deterministic ensembles,

provide a coarse-grained or extrinsic-only ability to simulate population diversity. Despite this

limitation, our prediction of phenotypic heterogeneity (and the underlying signaling events

responsible for the heterogeneity) was consistent with experimental observations. This suggested

that deterministic ensembles could simulate disease or developmental processes in which het-

erogeneity plays an important role, without having to resort to stochastic simulation.

A common criticism of ODE modeling has been the poorly characterized effect of struc-

tural and parametric uncertainty. In this study, parametric uncertainty was addressed by

developing an ensemble of probable models instead of a single best-fit but uncertain model

using multiobjective optimization. While computationally complex, multiobjective optimiza-

tion is an important tool to address qualitative conflicts in training data that arise from experi-

mental error or cell line artifacts [67]. On the other hand, structural uncertainty is defined as

uncertainty in the biological connectivity. The EMT model connectivity was assembled from

an extensive literature review. However, several potentially important signaling mechanisms

were not included. First, we identified a potential gap in biological knowledge surrounding the

regulation of LEF-1 expression, that was filled by the addition of the hypothetical YREG1 tran-

scriptional repressor. The LEF-1 transcription factor is expressed in tissues that undergo EMT

during embryogenesis [68, 69], and has been suggested to promote an invasive phenotype in

cancer cells [8, 70]. Low levels of YREG1 were important for stabilizing the interaction

between LEF-1 and β-catenin, while elevated levels inhibited EMT by downregulating LEF-1

transcriptional activity. Recent evidence has established a complex role of Amino terminal

Enhancer of Split (AES) and Groucho/TLE on suppressing LEF-1 activity. AES opposes LEF-1

transcriptional activation while Groucho/TLE binds with LEF-1 for a histone deacetylase

repression. In addition, β-catenin directly displaces Groucho/TLE repressors from TCF/LEF-1

in Wnt-mediated transcription activation [71, 72]. Our model agrees with this newly discov-

ered feedback system, as YREG1 regulates LEF-1 activity leading to EMT stabilization.

NF-κB may also play an essential role of in the epithelial transformation. NF-κB may influ-

ence Snail expression through the AKT pathway and directly stabilize Snail activity [73]. This is
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particularly important for integrating inflammation pathways, such as interleukin-6 (IL-6) and

tumor necrosis factor-α (TNF-α), which have been linked to EMT in pathological conditions

[74]. Other pathways such as Notch have also been shown to act synergistically with TGF-β to

express Slug in the developing embryo [75]. In addition, other regulatory proteins such as ZEB1

could be added to the next generation model. ZEB1 can activate the expression of mesenchymal

genes such as collagens, smooth muscle actin and myosin, Vimentin while simultaneously con-

tributing to the repression of epithelial genes [76]. Therefore, ZEB1 can act in parallel to SNAIL

and is an alternative to the canonical signaling paradigm presented here. Hong et al. developed

an ODE model of ZEB1 signaling in MCF10A cells which also demonstrated intermediate

EMT states [77]. Thus, there may be alternative modes resulting in a hybrid phenotype that

should be included in future model architecture. Lastly, while we have modeled classical protein

signaling, we have not considered the role of regulatory RNAs on EMT. There is growing evi-

dence that microRNAs (miRNAs) play a strong role in EMT, where several miRNAs, for exam-

ple miR-21 and miR-31 are strongly associated with TGF-β exposure [78], and have suggested

that the EMT process is driven by a miR-34/SNAIL and/or miR-200/ZEB feedback circuit [79–

81]. Addressing missing structural components like these (and potentially others), could gener-

ate more insight into TGF-β signaling and its role in phenotypic transformation.

Materials and Methods

The model code and parameter ensemble is freely available under an MIT software license and

can be downloaded from http://www.varnerlab.org.

Signaling network connectivity

The EMT model described the gene expression program resulting from TGF−β and VEGF-A

signaling in a prototypical epithelial cell. The TGF−β-EMT network contained 97 nodes (pro-

teins, mRNA or genes) and 169 interactions. The network connectivity was curated from more

than 40 primary literature sources in combination with on-line databases [82, 83]. The model

interactome was not specific to a single epithelial cell line. Rather, we assembled canonical

pathways involved in TGF−β and VEGF-A signaling, defaulting to human connectivity when

possible. Using a canonical architecture allowed us to explore general features of TGF−β
induced EMT without cell line specific artifacts.

Our signaling network reconstruction was based on Medici et al. who identified the path-

ways though which MDCKII, DLD1 colon carcinoma, and A375 melanoma cells transition

towards a mesenchymal phenotype [7]. Sequential activation of MAPK and Smad pathways

were initiated upon addition of TGF−β1/2. Briefly, TGF−β2 signals through the RAS-RAF-

MEK-ERK pathway to up-regulate Snail and Slug expression [6]. Snail, a known repressor of

junctional proteins, inhibits the expression of E-cadherin [70]. This initial repression of E-cad-

herin leads to a release of β-catenin from the cell membrane. This release of β-catenin can then

translocate to the nucleus and form transcriptional complexes with TCF-4 to drive TGF−β3

expression [7]. The PI3K to GSK3 pathway was included and acted as an activating mechanism

of β-catenin signaling through TGF−β3 signaling [7]. GSK3 is known to act on β-catenin sig-

naling through the ubiquitin-proteasome pathway [84, 85]. Thereby, further β-catenin release

also resulted from by TGF−β3 signals to the cells interior by binding to type II receptors,

which form heterodimers with type I receptors (ALK5) [86]. This activates the receptors ser-

ine/threonine kinase activity to phosphorylate and activate the receptor Smads 2/3 [87]. In the

model, receptors are simplified and represented as either bound or unbound complexes with

their ligands. Phosphorylated Smads 2/3 (pSmad2/3) form heterodimers and translocate to

the nucleus. pSmads complexes up-regulate other transcription factors, such as LEF-1. The
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pSmad2/4-LEF-1 complex has been shown to directly repress the E-cadherin gene [88]. LEF-1

also binds with β-catenin to upregulate mesenchymal proteins such as fibronectin [89]. In the

model, Smad signaling is consolidated into a single Smad species that can act in a co-depen-

dent fashion with LEF1 to downregulate E-cadherin via a transfer function, eliminating the

need for an explicity LEF-1, pSmad complex. The EMT gene expression program was initiated

by the binding of TGF−β isoforms to TGF−β surface receptors, starting the downstream signal-

ing program. Repression of E-cadherin expression is the central event in the transition from an

epithelial to a mesenchymal phenotype [70]. However, this transition is not solely driven by

transcriptional events. At the protein level, the repression of E-cadherin leads to a release of β-

catenin from cell membrane. Cytosolic β-catenin then translocates to the nucleus and forms

transcriptionally-active complexes with immunoglobulin transcription factor 2 (TCF-4) to

drive TGF−β3 expression [7]. The PI3K to GSK3 pathway was included and acted as an activat-

ing mechanism of β-catenin signaling through TGF−β3 signaling [7]. GSK3 is known to act on

β-catenin signaling through APC complex associated ubiquitin-proteasome pathway. The

APC complex is represented in our model and serves as a second reservoir of β-catenin in

untransformed cells whose sequestration is regulated by GSK3 [7, 84, 85]. Lastly, VEGF-A acti-

vation of NFATc1 takes place through calcineurin signaling leading to an enhancement of E-

cadherin expression [90], as supported by our VEGF-A experimental data (S1 Fig).

Formulation, solution and analysis of the EMT model equations

The EMT model integrated kinetic ODE modeling with a rule-based description of signaling

activity and gene expression regulation. Regulation of enzyme activity or gene expression pro-

cesses was modeled by combining individual regulatory contributions, quantified by transfer-

functions, into a control coefficients using an integration rule. These control coefficients then

modified the kinetic rates that appeared in the model. This strategy is similar in spirit to the

Constrained Fuzzy Logic (cFL) approach of Lauffenburger and coworkers which has been

used to effectively model signal transduction pathways important in human health [17]. In our

formulation, Hill-like transfer functions 0� f(x)� 1 were used to calculate the influence of

factor abundance upon enzyme activity or a gene expression process. In this context, factors

can be individual metabolite or protein levels or some function of abundance, e.g., the product

of metabolite or proteins levels. However, more generally, factors can also correspond to non-

modeled influences, categorial variables or other abstract quantities. In the current study, we

let factors correspond to the abundance of individual proteins, inhibitors or transcription fac-

tors, as well as products of transcription factors where it is necessary to represent a co-depen-

dent regulatory activity. When a protein or gene was potentially sensitive to more than one

regulatory input, logical integration rules were used to select which regulatory transfer func-

tion influenced enzyme activity at any given time. Thus, our EMT network model encoded

complex signaling and regulatory features with a relatively small number of equations. This

model formulation has been used previously to construct reduced order kinetic models of syn-

thetic RNA circuits [91], cell free metabolic models [92] and reduced-order models of blood

coagulation [93]. In this study, we extended this approach to describe gene expression pro-

cesses in addition to signal transduction events.

EMT signaling events. EMT signaling events were modeled using either saturation or

mass-action kinetics within an ordinary differential equation (ODE) framework:

1

ti

dxi

dt
¼
XR

j¼1

sijrj x; �; kð Þ � mxi i ¼ 1; 2; � � � ;M ð1Þ

where R denotes the number of signaling reactions and M denotes the number of signaling
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proteins in the model. The quantity τi denotes a time scale parameter for species i which cap-

tures un-modeled effects; in the current study τi = 1 for all species. The quantity rj(x, �, k)

denotes the rate of reaction j. Typically, reaction j is a non-linear function of biochemical and

enzyme species abundance, as well as unknown model parameters k (K� 1). The quantity σij

denotes the stoichiometric coefficient for species i in reaction j. If σij > 0, species i is produced

by reaction j. Conversely, if σij < 0, species i is consumed by reaction j, while σij = 0 indicates

species i is not connected with reaction j. Species balances were subject to the initial conditions

x(to) = xo.

Rate processes were written as the product of a kinetic term (�rj) and a control term (vj) in

the EMT model. The rate of enzyme catalyzed reactions was modeled using saturation kinet-

ics:

�r j ¼ kcat
j �i

xs

Kjs þ xs

 !

ð2Þ

where kcat
j denotes the catalytic rate constant for reaction j, �i denotes the abundance of the

enzyme catalyzing reaction j, and Kjs denotes the saturation constant for species s in reaction j.
On the other hand, mass action kinetics were used to model protein-protein binding interac-

tions within the network:

�r j ¼ kmax
j

Y

s2m�j

x� ssj
s ð3Þ

where kmax
j denotes the maximum rate for reaction j, σsj denotes the stoichiometric coefficient

for species s in reaction j, and s 2mj denotes the set of reactants for reaction j. Reversible bind-

ing was decomposed into two irreversible steps.

The control terms 0� vj� 1 depended upon the combination of factors which influ-

enced rate process j. For each rate, we used a rule-based approach to select from competing

control factors. If rate j was influenced by 1, . . ., m factors, we modeled this relationship as

vj ¼ I jðf1jð�Þ; . . . ; fmjð�ÞÞ where 0� fij(�) � 1 denotes a regulatory transfer function quantify-

ing the influence of factor i on rate j. The function I jð�Þ is an integration rule which maps

the output of regulatory transfer functions into a control variable. In this study, we used

I j 2 fmin;maxg and hill transfer functions [92, 93]. If a process had no modifying factors,

vj = 1.

EMT gene expression processes. The EMT model described both signal transduction and

gene expression events following the addition of TGF−β and VEGF-A. For each gene of the

G ¼ 23 we considered, we modeled both the resulting mRNA (mj) and protein (pj):

dmj

dt
¼ rT;j � mþ ym;j

� �
mj þ lj ð4Þ

dpj

dt
¼ rX;j � mþ yp;j

� �
pj ð5Þ

where j ¼ 1; 2; . . . ;G. The terms rT,j and rX,j denote the specific rates of transcription, and

translation while the terms θm,j and θp,j denote first-order degradation constants for mRNA

and protein, respectively. Lastly, μ denotes the specific growth rate, and λj denotes the constitu-

tive rate of gene expression for gene j. The specific transcription rate was modeled as the

product of a kinetic term �rT;j and a control term uj which described how the abundance of

transcription factors, or other regulators influenced the expression of gene j. The kinetic rate
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of transcription was modeled as:

�rT;j ¼ aj Vmax
T

Gj

KT þ Gj

 !" #

ð6Þ

where the maximum gene expression rate was defined as the product of a characteristic

transcription rate constant (kT) and the abundance of RNA polymerase, Vmax
T ¼ kT ðRNAPÞ.

The parameter αj denotes the gene specific correction to the characteristic transcription rate

(estimated in this study). Similar to the signaling processes, the gene expression control

term 0� uj� 1 depended upon the combination of factors which influenced rate process j.
For each rate, we used a rule-based approach to select from competing control factors. If

the expression of gene j was influenced by 1, . . ., m factors, we modeled this relationship as

uj ¼ I jðf1jð�Þ; . . . ; fmjð�ÞÞ where 0� fij(�) � 1 denotes a regulatory transfer function quantify-

ing the influence of factor i on the expression of gene j. The function I jð�Þ is an integration

rule which maps the output of regulatory transfer functions into a control variable. In this

study, we used I j 2 fmin;maxg and hill transfer functions [92, 93]. If a gene expression

process has no modifying factors, uj = 1. The degradation rate constants were defined as

θm,j = δjkd,m and θp,j = γjkd,p where kd,m and kd,p denote characteristic degradation constants

for mRNA and protein, respectively and δj and γj denote transcript and protein specific cor-

rection factors to these constants.

Lastly, the specific translation rate was modeled as:

rX;j ¼ bj Vmax
X

mj

KX þmj

 !" #

ð7Þ

where Vmax
X denotes a characteristic maximum translation rate estimated from literature, βj

denotes the transcript specific correction the characteristic translation rate, and KX denotes a

translation saturation constant. The characteristic maximum translation rate was defined as

the product of a characteristic translation rate constant (kX) and the abundance of ribosomes

(RIBO), Vmax
X ¼ kX ðRIBOÞ.

In this study, we estimated kT, kX, kd,m, kd,p, RNAP and RIBO directly from literature using

estimates of transcription and translation rates, the half-life of a typical mRNA and protein and

a typical value for the copies per cell of RNA polymerase and ribosomes. The saturation con-

stants KX and KT were adjusted so that gene expression and translation resulted in gene prod-

ucts on a biologically realistic concentration scale. Next, we calculated the concentration for

gene j by assuming, on average, that a cell had two copies of each gene at any given time. Thus,

the bulk of our gene expression parameters were based directly upon literature values, and were

not adjusted during model identification. The values used for the characteristic transcription/

translation parameters, degradation constants and macromolecular copy number are given in

the supplement along with the specific formulas required to calculate all derived constants.

The signaling and gene expression model equations were implemented in Julia and solved

using the CVODE routine of the Sundials package [94, 95]. The model code and parameter

ensemble is freely available under an MIT software license and can be downloaded from

http://www.varnerlab.org.

Estimation of model parameters using multiobjective optimization. We estimated a

population of likely EMT model parameter sets (each consistent with the training data) using

41 data sets generated in DLD1 colon carcinoma, MDCKII, and A375 melanoma cells taken

from Medici et al. [7]. In addition to rate and saturation constants appearing in the signal

transduction equations, we estimate the transcript/protein specific correction factors αj, βj, δj
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and δj and control coefficients from these data. We used the Pareto Optimal Ensemble Tech-

nique (JuPOETs) multiobjective optimization framework in combination with leave-one-out

cross-validation to estimate an ensemble of model parameters [20, 96]. Model parameter val-

ues were adjusted to minimize the residual between simulations and experimental measure-

ments. Cross-validation was used to calculate both training and prediction error during the

parameter estimation procedure [97]. The 41 intracellular protein and mRNA data-sets used

for identification were organized into 11 objective functions. These 11 objective functions

were then partitioned, where each partition contained ten training objectives and one valida-

tion objective. The training and validation data were Western blots. We achieved a biologically

realistic concentration scale by establishing characteristic rates of transcription, translation,

mRNA and protein degradation, as well as characteristic concentrations of ribosomes and

RNAPs using the Bionumbers database [31], (supplemental materials). The overall concentra-

tion scale was nM, with proteins ranging from 10–1000nM and mRNA ranging from 0.01 to

1nM, reflecting the true abundances and ratios between each species. An initial nominal

parameter set was established by inspection. JuPOETs was then allowed to search in a neigh-

borhood of ±30% of this nominal set. The correction factors estimated by JuPOETs were in

the range of 0.1–10, with the mean value of 1.68; thus, the characteristic rate parameters esti-

mated from literature were consistent with measurements. The parameter ensemble estimated

by JuPOETs is available with the model source code. JuPOETs is open source and freely avail-

able for download under an MIT software license from http://www.varnerlab.org.

Cell culture and experimental interrogation

DLD1 colon carcinoma and MCF10A cells were acquired from the American Tissue Culture

Collection (Manassas, VA). Cells were grown in culture with RPMI-1640 medium with 10%

fetal bovine serum and 1% penicillin/streptomycin or MGEM-2 supplemented with insulin,

bovine pituitary extract, cholera toxin, hEGF, hydrocortisone, 5% horse serum, and 1% peni-

cillin/streptomycin, respectively. Cells were passaged 1:3 or 1:4 every 3–6 d and used between

passages 4 and 8. During treatment regime, DLD1 and MCF10A cells aggregated overnight in

hanging drop culture (20μL; 20,000 cells). The spherical aggregates were placed on the surface

of neutralized type I collagen hydrogels (1.5mg/mL) and allowed to adhere. Cultures were

then serum starved (1% serum) for 24 hours. Recombinant human TGF−β2 (R & D Systems,

Minneapolis, MN) was added to the culture medium at a concentration of 10 ng/ml and

recombinant VEGFA165 at a concentration of (5ng/ml, 50ng/ml) for all relative experiments.

NFAT inhibitor (VIVIT peptide) (EMDBiosciences, Darmstadt, Germany), was added to the

culture medium at a concentration of 10μM for all relative experiments. mRNA was then har-

vested at both the 3hr and 48hr time-point.

RT-PCR. RNA extractions were performed using a Qiagen total RNA purification kit

(Qiagen, Valencia, CA) and RNA was reverse transcribed to cDNA using the SuperScript III

RT-PCR kit with oligo(dT) primer (Invitrogen). Sufficient quality RNA was determined by an

absorbance ratio A260/A280 of 1.8–2.1, while the quantity of RNA was determined by measur-

ing the absorbance at 260nm (A260). Real-time PCR experiments were conducted using the

SYBR Green PCR system (Biorad, Hercules, CA) on a Biorad CFX96 cycler, with 40 cycles per

sample. Cycling temperatures were as follows: denaturing, 95C; annealing, 60C; and extension,

70C. Primers were designed to detect GAPDH, E-cadherin, vimentin, Slug, Sp1, and NFATc1

in cDNA clones: Sp1 (F-TTG AAA AAG GAG TTG GTG GC, R-TGC TGG TTC TGT AAG

TTG GG, Accession NG030361.1), NFATc1 (F-GCA TCA CAG GGA AGA CCG TGT C,

R-GAA GTT CAA TGT CGG AGT TTC TGA G, Accession NG029226.1). GAPDH, E-cad-

herin, vimentin, and Slug primers were taken from previously published literature [7].
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Antibody staining. Samples were fixed in 4% PFA overnight at 4C. Samples were then

washed for 15 minutes on a rocker 3 times with PBS, permeabilized with 0.2% Triton-X 100

(VWR International, Radnor, PA) for 10 minutes, and washed another 3 times with PBS. Sam-

ples were incubated overnight at 4C in a 1% BSA (Rockland Immunochemicals, Inc., Gilberts-

ville, PA) blocking solution followed by another 4C overnight incubation with either rabbit

anti-human E-cadherin 1:100 (Abcam, ab53033), mouse anti-human phospho-Sp1 1:100

(Abcam, ab37707), mouse anti-human vimentin 1:100 (Invitrogen, V9), and rabbit anti-

human NFATc1 (Santa Cruz, sc-7294) 1:100. After 3 washes for 15 minutes with PBS, samples

were exposed to Alexa Fluor 488 or 568 conjugated (Invitrogen), species specific secondary

antibodies at 1:100 in 1% BSA for 2 hours at room temperature. Three more washes with PBS

for 15 minutes were followed by incubation with either DRAQ5 far red nuclear stain (Enzo

Life Sciences, Plymouth Meeting, PA) at 1:1000.

FACS. Flow cytometry for E-cadherin 1:100 (Abcam) and vimentin 1:100 expressing cells

was performed. Briefly, cells were trypsinized, fixed with 4% PFA for 10 min and then pre-

served in 50% methanol/PBS. Cells were kept in the -20C until antibody staining was pre-

formed. Samples were divided into multiple aliquots in order to stain the proteins separately

and compensate for secondary antibody non-specific binding. Cells were incubated for 24 hrs

at 4 C in primary antibody diluted in either PBS (extracellular) or 0.2% saponin-PBS (intracel-

lular). Cells were then washed 3 times with PBS and incubated with appropriate secondary

antibodies and imaged using a Coulter Epics XL-MCL Flow Cytometer (Coulter). All samples

were compensated using appropriate background subtraction and all samples were normalized

using 7500 cells per flow condition.

Three-dimensional culture and tubulogenesis assays. For invasion/migration assays,

cells were resuspended in culture media, and allowed to aggregate overnight in hanging drop

culture (20μL; 20,000 cells). The spherical aggregates were placed on the surface of neutralized

type I collagen hydrogels (1.5mg/mL) and allowed to adhere for 2 hrs before adding treat-

ments. Cultures were maintained for 72 hrs, after which they were fixed in 4% PFA and slowly

rehydrated using PBS. For compaction assays, cells were pelleted via centrifugation and resus-

pended within a neutralized collagen hydrogel (1.5mg/mL) solution at a density of 400,000

cells/mL. 250μL of gel was inoculated into culture wells, which solidified after 60min. Treat-

ments were then added within 800μL of the culture medium without serum. Gels were liber-

ated from the surfaces of the culture wells the next day and cultured free floating for an

additional 3–7 days, exchanging serum free media with appropriate factors every 48 hrs.

Tubulogenesis was defined as a typical nonmalignant acini structure. This includes a polar-

ized epithelial cell, hollow lumen, and the basal sides of the cell are surrounded by ECM pro-

teins (Fig 6A, Controls or VEGF treated). Previous work has shown that change in the

morphological characteristics of nontumorigenic MCF10A epithelial acini occur over time

and exploiting them to growth in 3D culture can be quantified. For example, using image seg-

mentation, Chang et al. [98] examined the elongation of the MCF10A acini at 6, 12, and 96

hours after a particular treatment. Polizzotti et al. [99] also suggested a computational method

to quantify acini structure based on morphological characteristics in nonmalignant, noninva-

sive, and invasive conditions. Adapted from these approaches, we first fluorescently labeled

our cultures and captured the acini structures by 3D confocal microscopy. Next individual

acini structures in the images were segmented by imageJ and labeled. We then extracted the

number of ductal branches. Ductal branching was defined as any elongated cell cluster extend-

ing away from the total acini structure, which was manually segmented and counted using

ImageJ. A total of 5 images for each condition were used, and approximately 12 acini were ana-

lyzed in each image. Total branching was normalized to the amount of acini present, and pro-

vides an overall general assessment to the extent of acini remodeling.
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Statistics. Results are expressed as mean ± standard error, n�6. Data was analyzed with

the GraphPad Prism version 4.00 for Windows (GraphPad Software, San Diego, CA) and SAS

(Statistical Analysis Software, Cary, NC). A one-way ANOVA with Tukey’s post hoc was used

to compare differences between means and data was transformed when necessary to obtain

equal sample variances. Differences between means were considered significant at p�0.05.

Supporting Information

S1 Text. Supplemental Materials and Methods.

(PDF)

S1 Fig. VEGF-A qPCR data used to hand fit VEGF enhancement of E-cadherin expression.

mRNA was harvested after 3hr and 48hr timepoint.

(TIF)

S2 Fig. We fit an additional objective demonstrating the activation of GSK3 through PI3K.

The model captured this activation through TGF−β3 signaling. LY294002 is a PI3K inhibitor.

(TIF)

S3 Fig. Training and prediction values as a function of condition for the 11 TGF-β objec-

tive functions versus a random parameter control.

(TIF)

S4 Fig. VEGF-A attenuates TGF-β1/2 to induce phenotype heterogeneity in DLD1. (A) In

DLD1, we found that 5ng/ml of VEGFA increased NFATc1 and E-cadherin gene expression

via qPCR and 50ng/ml potentiated this effect at 48 hrs. (B–C) These findings were confirmed

at the protein level via immunofluorescence, as ecadherin levels and nuclear localization of

NFATc1 increased. (D) Treatment with (10ng/ml) TGFβ2 resulted in mesenchymal transfor-

mation as measured via qPCR against target genes Slug, ecadherin, vimentin, Sp1, and

NFATc1. (E–F) Immunofluorescence and nuclear localization revealed a strong presence of

phospho-Sp1. (G) Combination of VEGFA (50ng/ml) and TGFβ2 (10ng/ml) treatment

resulted in increased Slug, NFATc1, and vimentin expression, while also increasing ecadherin

levels compared to control. (H) Immunofluorescence confirmed these results, as both ecad-

herin and vimentin levels were elevated. (I) A significant increase in nuclear localization of

both NFATc1 and phospho-Sp1 were also found. Magnification, 40x. Scale bars: 50μm.

C = Control, T = TGFβ2, V = VEGFA, VI = NFAT inhibitor (VIVIT). Asterisks signify statisti-

cal differences from each other according to a one-way ANOVA with Tukey’s post hoc

(p�0.05).

(TIF)

S5 Fig. E-cadherin expression is dependent upon NFAT activity in DLD1. (A) Treatment

with VEGFA (50ng/ml) and NFAT inhibitory peptide VIVIT (10μM) resulted in significantly

reduced ecadherin expression (qRT-PCR at 48hrs). Addition of TGFβ2 (10ng/ml) and VIVIT

resulted in increased Slug and vimentin expression, while inhibiting ecadherin levels. Com-

bined TGFβ2, VEGFA, and VIVIT treatment resulted in target genes Slug and vimentin

expression increased, while inhibiting ecadherin levels. No change in Sp1 or NFATc1 expres-

sion was found. (B) These findings were confirmed via immunofluorescence as the VIVIT

inhibitors was shown to inhibit ecadherin levels in all three cases. We also found no change in

gene or nuclear localization of NFATc1 in all three cases, while phospho-Sp1 was found to

increase in both TGFβ conditions. (C) Quantitative flow cytometry also confirmed this trend.

(D,E) TGFβ2, VEGFA and VIVIT treatment in DLD1 and MCF10A resulted in no change of

Sp1 expression or NFATc1 expression. (F) Likewise, no change in nuclear localization of
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NFAT in all three cases, however phospho-Sp1 was found to increase in both TGFβ condi-

tions. Magnification, 40x. Scale bars: 50μm. C = Control, T = TGFβ2, V = VEGFA, VI = NFAT

inhibitor (VIVIT). Asterisks signify statistical differences from each other according to a one-

way ANOVA with Tukey’s post hoc (p�0.05).

(TIF)
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