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Abstract: In this study, the possibility of using adhesives of natural origin for the manufacture
of wood fiber-based lightweight panels was investigated. The boards, of a density ranging from
150 to 250 kg/m3, were glued together using commercial urea–formaldehyde resin (control board),
solutions of rye flour and potato starch and two types of starch: oxidized and gelatinized. The density
and density profile, compressive strength, modulus of elasticity, acoustic properties and thermal
conductivity were determined in the produced boards. These studies show that when food compo-
nents are used as binding agents in the manufacture of lightweight wood fiberboards, the properties
obtained can be comparable with those of commercial boards manufactured using synthetic agents.

Keywords: lightweight insulation boards; natural-origin adhesives; wood fibers; fiberboard; starch

1. Introduction

Properties of wood-based panels to a significant extent depend on the bonding agent
used in their manufacture. In the production of building materials, synthetic resins, primar-
ily formaldehyde resins, i.e., phenol–formaldehyde (PF), phenol–resorcinol–formaldehyde
(PRF), melamine–urea–formaldehyde (MUF), urea–formaldehyde (UF) and isocyanine
resins, have been applied for years. The advantages of formaldehyde resins are connected
with their relatively low price and the good physicomechanical properties of materials
manufactured using these resins [1–10]. Moreover, boards bonded with PF resin are charac-
terized by low free formaldehyde and phenol emissions both during the manufacturing
process and during their service life, thanks to which they are classified as emission class
E0 and work stations involved in their production meet higher occupational safety stan-
dards [11] compared, e.g., to the use of urea–formaldehyde resins. Free formaldehyde
emissions are dependent both on the quantity and quality of used resins [12–15].

Construction boards are not only medium- or high-density boards, i.e., structural
panels, but also lightweight panels, i.e., those of low and very low density dedicated to
thermal and acoustic insulation [16–18]. These panels are typically manufactured from
engineered wood fibers. In Europe, Steico is the leading company producing wood fiber
insulation panels used to insulate building structures. Its products are manufactured using
isocyanate adhesives (polymeric diphenyl methane diisocyanate (pMDI)), and their density
ranges from 100 to 250 kg/m3. A reduction in density results in an almost proportional
decrease in the amount of used resin [19]. However, irrespective of the quantity and type
of the applied bonding agent, the panels are not environmentally friendly. In turn, in
recent years we have been observing a trend to eliminate materials for which recycling is
problematic or that are not biodegradable. Consequently, as has been observed since at
least the 1980s, new engineered materials are being searched for, in line with the concept
of sustainable development. More eco-friendly materials are at present primarily at the
research and development (R&D) stage; as a result, their prices are much higher than
those of commercially produced materials. A certain alternative to synthetic compounds
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based on formaldehyde may be provided by their replacement with more environmentally
friendly agents [20–23]. Another alternative is offered by panels manufactured without
the application of an adhesive. However, except for the older wet fiberboard forming
systems, the current adhesive-free wood bonding systems have not been implemented
on a broader scale due to the required application of high pressure and high pressing
temperature [24,25]. Natural-origin adhesives are an alternative to such solutions. Natural
origin adhesives may include starch, sucrose, glucose, chitosan, lignin, tannin, protein,
gums and citric acid and have been used in numerous studies [26–41]. Application of
adhesives based on natural components gives satisfactory results in terms of mechanical
strength properties, while inferior properties are observed in terms of water soaking or
swelling in thickness [42–44]. Since most cited studies concern tests conducted on plywood
or particleboards of densities exceeding 600 kg/m3, swelling in thickness may be crucial
in this case. However, this parameter is less significant in the case of lightweight panels
dedicated to thermal or acoustic insulation. Thus, the aim of this study was to evaluate the
applicability of compounds or products containing starch in the manufacture of lightweight
panels from wood fibers.

2. Materials and Methods

Under laboratory conditions, panels were manufactured from pine fibers typically
used in the manufacture of dry-formed fiberboards. Panels were bonded using a commer-
cial urea–formaldehyde resin (UF), rye flour and potato starch solutions and two starch
types: E 1404 (oxidized starch) and gelatinized starch. Basic properties of UF resin (Silekol
Sp. z o.o., Kędzierzyn-Koźle, Poland) used in the tests were as follows: viscosity, 650 mPa·s;
solid content, 69%; gel time at 100 ◦C, 69 s; density, 1.282 g/cm3; pH, 8.09.

The rye flour solution was prepared from 100 g water and 25 g rye flour of approx.
3.5% moisture content. The solution was mixed until a homogeneous blend was obtained;
it was left for 20 min and after being mixed again it was used as an adhesive. In turn,
the potato starch solution was prepared as follows: 4 g of starch was added to 100 g of
water. After being thoroughly mixed to produce a suspension, the solution was heated
while mixing continuously to ensure its thickening. Fibers of 7.2% moisture content were
coated with bonding agent solutions at 12% adhesive dry mass for UF resin, 12% and 6%
adhesive dry mass for the rye flour solution and 2.4% and 3.6% adhesive dry mass for the
potato starch solution.

In turn, starch was applied onto fibers with approx. 12% and 28% moisture content.
Three days before the bonding process, fibers of a 7.2% moisture content were sprayed
with water in an amount ensuring an increase in the fiber moisture content to 15% and
30%. After thorough mixing, 0.5 kg batches were placed in a double-sided plastic bag and
sealed tightly. At least twice daily, the mass in the bags was mixed thoroughly. The fiber
moisture content prior to bonding amounted to approx. 12% (± 0.2%) and 28% (± 0.34%).
Starch was applied in the amount ensuring a bonding rate at 12% or 20%. Starch was
applied using a pneumatic lacquer spray gun. The mat was formed from such prepared
material. After formation, the mat was pressed at 0.8 MPa at the temperature of heat press
platens of 180 ◦C (semi-automatic press with the dimensions of the shelves 80 cm × 60 cm,
Siempelkamp). Panels were manufactured at a thickness of 25 mm and design density
ranging from 150 to 250 kg/m3. Pressing time was dependent on the type of the applied
bonding agent. More detailed data are given in Table 1. For each panel type, three panels
were manufactured, formed from frames of 20 cm × 40 cm.
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Table 1. Pressing variants applied.

Bonding Agent MC Fiber,
% Symbol Density of Board,

kg/m3
Bonding Rate,

%
Temperature,

◦C
Pressing Time,

s/mm of Thickness

UF 7.2
U1 175 12 180 30
U2 250 12 180 30

Rye flour 7.2
R1 175 12 180 34
R2 175 6 180 34

Potato starch 7.2

P1 150 2.4 180 38
P2 150 3.6 180 38
P3 150 2.4 150 38
P4 150 3.6 150 38
P5 150 2.4 150 48
P6 150 3.6 150 48

E 1404 12 E0 200 12 180 18
Gelatinized

starch

28

S1 200 12 180 24

Gelatinized
starch S2 200 20 180 18

Gelatinized
starch S3 200 20 180 12

E 1404 E1 200 12 180 24
E 1404 E2 200 20 180 18
E 1404 E3 200 20 180 12

One of the panels was assigned only for the determination of thermal conductivity,
with the panel being dried to constant mass at a temperature of 103 ◦C, while the other two
were used in the other tests and conditioned at 20 ± 2 ◦C and relative humidity of 60 ± 5%.
After the conditioning period (14 days), panels with approx. 7.4–8.2% moisture content the
following parameters were assessed in terms of the following:

• Density (ρ) based on PN-EN 323:1999 [45].
• Compressive strength (fv)—the value of compression stress at 10% true strain accord-

ing to PN-EN 826 [46].
• Modulus of elasticity (E) according to PN-EN 310 [47].
• Thermal conductivity was determined using a measuring system presented in a study

by Mirski [48]. In this case, thermal conductivity λ was calculated from Equation (1):

λ = q × d/(Tg − Tc) [W/mK] (1)

where q is the heat flux density calculated from Equation (2):

q = C × U [W/m2] (2)

where C is the sensor calibration factor of 35.8 (W/ m2 mV), U is the voltage (mV), d is
the partition thickness (m), Tg is the temperature of specimen surface in the heating
chamber and Tc is the temperature of specimen surface in the cooling chamber.

• Acoustic insulation capacity—sound absorption coefficient according to PN-EN ISO
10534-2:2003 [49] within the frequency range of 80–5000 Hz.

• Density profile—determined using a laboratory DAX profile measurement gauge by
GreCon (Fagus-GreCon Greten GmbH&Co. KG, Alfeld-Hannover, Germany).

Density, compressive strength and the modulus of elasticity were determined on
samples of 100 mm × 100 mm. Tests were performed on 10 specimens. Recorded results
were analyzed statistically. Statistical calculations were conducted using the Statistica 13.0
software (StatSoft Inc., Tulsa, OK, USA).
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3. Results and Discussion

Prior to the tests, pastes were prepared from the selected agents and used to bond
two beech wood specimens. Specimens were bonded at 120 ◦C under the pressure of
1.4 N/mm2. Next, the specimens were subjected to the joinery test (nonstandardized chisel
test) in order to evaluate bond quality. The best results (the largest number of fragments
of pulled-out wood) were recorded for starch solutions, while potato starch and rye flour
solutions proved to be slightly weaker bonding agents.

Properties of panels manufactured from fibers with the initial moisture content are
presented in Table 2. As it results from these data, the recorded densities slightly deviate
from the assumed value, which results from the still imprecise determination of increments
in dimensions resulting from fitting to the size of the mold in which the mat was formed.
Nevertheless, the obtained results can be considered satisfactory.

Table 2. Effect of manufacturing parameters on the compressive strength of manufactured boards—fiber moisture 7.2%.

Bonding Agent Symbol Density of Board,
kg/m3

Density of Board,
kg/m3

Compressive
Strength, kPa

Coefficient of Variation,
%

UF
U1 175 99.7 e,* 14.3 0.037 (±0.001)
U2 240 515.7 f 9.97 0.039 (±0.001)

rye flour R1 174 79.6 d 3.79 0.038 (±0.001)
R2 165 40.1 c 6.14 0.037 (±0.001)

potato flour

P1 142 29.2 b 10.3 0.037 (±0.001)
P2 144 28.3 b 28.6 0.037 (±0.001)
P3 137 14.0 a 7.86 0.037 (±0.001)
P4 153 30.9 b 13.1 0.038 (±0.001)
P5 156 30.6 b 11.3 0.038 (±0.001)
P6 159 40.8 c 22.6 0.039 (±0.001)

* Letters a–f mean homogeneous groups for the NIR test.

The view of the mold before and after pressing is shown in Figure 1. Panels after
pressing, apart from the slight changes in length and width in relation to the assumed
values, slightly darkened under the influence of applied temperatures. As it results from
the data given in Table 2, compressive strength of panels resinated with UF adhesive is
99.7 and 515.7 kPa for boards with the density of 175 and 240 kg/m3, respectively. Thus,
in their case, an increase in density by slightly below 40% causes an increase in strength by
over 500%. In contrast, all of the panels manufactured using potato starch and rye flour
exhibit much lower compressive strength. The greatest compressive strength was recorded
for panels produced with a 12% share of rye flour. This is approx. 20% lower than the
value for panels manufactured from wood fibers resinated with UF adhesive. A decrease
in the bonding rate with the rye flour solution from 12% to 6% leads to a reduction in
compressive strength by almost a half. The compressive strength of panels manufactured
from wood fibers bonded with the potato starch solution is generally much lower than that
of panels manufactured with a share of rye flour.
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Figure 2. Correlation of modulus (E) of elasticity with compressive strength (fv). 

Figure 1. (a) The view of the mold before pressing. (b,c) The view of the board after pressing at (b) 180 ◦C and (c) 150 ◦C.
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Strength properties to a considerable degree depend on panel manufacturing condi-
tions. Considerably better results are obtained when applying longer pressing times and
lower heat press platen temperatures rather than vice versa. Unfortunately, at a very long
pressing time of panels at 180 ◦C, a very strong darkening of the panel surface is observed,
resulting from fiber degradation. The use of potato starch solutions is problematic, since
their dry mass is very low; thus, in order to obtain a minimal required bonding rate (the
ratio of the dry mass of the active component to the dry mass of fibers), a very large amount
of the solution needs to be applied. Although panel density was reduced to accelerate water
vapor evacuation, this is a relatively long process. However, the obtained compressive
strength levels for these variants do not have to be considered as very negative, as in terms
of the bonding rate the obtained results were comparable or even more advantageous than
those recorded for the variant with the application of UF resin. This is obviously assuming
the linear dependence of strength on resination rate, which may not be considered as
certain. Table 3 also gives results of the analysis of homogeneity for the groups determined
using the LSD test. However, at very large differences in compressive strength between
individual panel types, this analysis is not highly informative. The modulus of elasticity
for panels manufactured using natural adhesives is lower than that of panels produced
using urea–formaldehyde resin (Figure 2). This is determined both by the greater density
of panels produced using UF resin and the greater stiffness of the glue line itself. A linear
correlation between the modulus of elasticity and compressive strength was found for
panels manufactured with a share of natural adhesives. Thus, an increase in the level of
this property may be expected as the panel density increases.

Materials 2021, 14, x FOR PEER REVIEW 5 of 10 
 

 

(a) (b) (c) 

Figure 1. (a) The view of the mold before pressing. (b,c) The view of the board after pressing at (b) 180 °C and (c) 150 °C. 

Strength properties to a considerable degree depend on panel manufacturing condi-

tions. Considerably better results are obtained when applying longer pressing times and 

lower heat press platen temperatures rather than vice versa. Unfortunately, at a very long 

pressing time of panels at 180 °C, a very strong darkening of the panel surface is observed, 

resulting from fiber degradation. The use of potato starch solutions is problematic, since 

their dry mass is very low; thus, in order to obtain a minimal required bonding rate (the 

ratio of the dry mass of the active component to the dry mass of fibers), a very large 

amount of the solution needs to be applied. Although panel density was reduced to accel-

erate water vapor evacuation, this is a relatively long process. However, the obtained com-

pressive strength levels for these variants do not have to be considered as very negative, 

as in terms of the bonding rate the obtained results were comparable or even more advan-

tageous than those recorded for the variant with the application of UF resin. This is obvi-

ously assuming the linear dependence of strength on resination rate, which may not be 

considered as certain. Table 3 also gives results of the analysis of homogeneity for the 

groups determined using the LSD test. However, at very large differences in compressive 

strength between individual panel types, this analysis is not highly informative. The mod-

ulus of elasticity for panels manufactured using natural adhesives is lower than that of 

panels produced using urea–formaldehyde resin (Figure 2). This is determined both by 

the greater density of panels produced using UF resin and the greater stiffness of the glue 

line itself. A linear correlation between the modulus of elasticity and compressive strength 

was found for panels manufactured with a share of natural adhesives. Thus, an increase 

in the level of this property may be expected as the panel density increases. 

-100 0 100 200 300 400 500 600

Compressive strength (kPa)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M
o
d
u
lu

s 
o
f 

el
as

ti
ci

ty
 (

N
/m

m
2
)

0.0

0.2

0.4

0.6

0.8

1.0

M
o
d
u
lu

s 
o
f 

el
as

ti
ci

ty
 (

N
/m

m
2
)

 Resin UF (P)

 Flours (L)

 E = 0.0115 + 0.0006*fv;

 r = 0.9673; p = 0.00002; r2 = 0.9357

 

Figure 2. Correlation of modulus (E) of elasticity with compressive strength (fv). 

The obtained values of thermal conductivity range from 0.037 to 0.039 W/(m·K), and 

it is rather difficult to assess the effect of applied modifications. Since these values are 

consistent with the reports of manufacturers of insulation boards produced from pulp, it 

needs to be assumed that this parameter is more strongly dependent on fiber quality and 

panel density, rather than the applied fiber bonding agent. 

Since satisfactory results were obtained for physicomechanical properties when ap-

plying relatively long pressing times, it was decided to reduce the amount of water intro-

duced to the system. For this purpose, panels were again manufactured from pine fibers 

under laboratory conditions; however, this time it was decided not to introduce the adhe-

Figure 2. Correlation of modulus (E) of elasticity with compressive strength (fv).

The obtained values of thermal conductivity range from 0.037 to 0.039 W/(m·K), and
it is rather difficult to assess the effect of applied modifications. Since these values are
consistent with the reports of manufacturers of insulation boards produced from pulp,
it needs to be assumed that this parameter is more strongly dependent on fiber quality and
panel density, rather than the applied fiber bonding agent.

Since satisfactory results were obtained for physicomechanical properties when apply-
ing relatively long pressing times, it was decided to reduce the amount of water introduced
to the system. For this purpose, panels were again manufactured from pine fibers under
laboratory conditions; however, this time it was decided not to introduce the adhesive
in the liquid form. Gelatinized starch and oxidized starch (E1404) were used as bonding
agents. When the adhesive is applied in the powder form, it is relatively easy to modify
the amount used, and the level of mat moisture content before pressing is much more
advantageous. Other tests, not described in this paper, were also performed, in which
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starch was applied on dry fibers and moisture content was increased to reach 12–15%.
However, it was observed that when employing such a method of starch application, some
of the grains are left in the mixer. Data in Table 3 indicate that this method also provides
satisfactory results, while it is easier to apply and facilitates a considerable reduction in
panel manufacturing time. The obtained compressive strength levels were comparable to
those of panels manufactured from fibers bonded with urea resin. The most advantageous
results were observed for a 20% share of starch in relation to pulp and pressing time of
18 s per 1 mm panel thickness. Panel density was increased so that their results could be
compared to commercial panels. As it results from the values given in Table 2, wet-formed
panels of such density exhibit strength lower than that of laboratory panels by as much as
50%, and it may be assumed that it is exactly 50% lower than that of dry-formed boards.
It may be inferred that a small amount of phenol–formaldehyde resin was used in the
former case and pMDI was used in the latter case.

Table 3. Effect of manufacturing parameters on the compressive strength of manufactured boards—fiber moisture 28%.

Bonding Agent Symbol Density of Board,
kg/m3

Compressive Strength,
kPa

Coefficient of
Variation, %

Thermal Conductivity
W/(m·K)

Control board * - 201 55.5 a 4.88 -
Control board ** - 200 110 - -

E 1404 E0 203 88.6 b 9.2 -
Gelatinized starch S1 189 85.1 b 14.6 0.038 (±0.001)
Gelatinized starch S2 209 117.0 d 16.1 0.038 (±0.001)
Gelatinized starch S3 206 95.6 b,c 10.4 0.037 (±0.001)

E 1404 E1 199 96.8 b,c 2.63 0.038 (±0.001)
E 1404 E2 216 133.0 e 13.4 0.038 (±0.001)
E 1404 E3 200 89.9 b 10.6 0.038 (±0.001)

* Control board 1—an industrial wet-formed fiberboard, covered with an additional agent to increase surface water resistance. ** Control
board 2—an industrial dry-formed board glued with synthetic agents, the values for which were determined on the basis of commercial
information. Letters a–f mean homogeneous groups for the NIR test.

A change in the method of fiber bonding agent application has no effect on the level of
thermal conductivity. In this case, the value of λ was within the range of 0.037–0.038 W/m·K,
and no influence of the applied board manufacture parameters was observed. In turn, the
level of moisture content in the pressed mat has a significant effect on the density profile of
manufactured panels. As it results from values presented in Figure 3, boards manufactured
from pulp with an approx. 28% moisture content have considerably more compacted
subsurface zones. In that area, a density increase to over 260 kg/m3 was recorded in the
case of panels manufactured from pulp with a greater moisture content. In turn, for pulp
with an approx. 12% moisture content in the subsurface zone, the density of subsurface
layers slightly exceeds 220 kg/m3 and is only slightly higher than in certain areas located
deeper. This dependence may explain such advantageous properties of E0 panels at com-
pression perpendicular to grain despite their low initial moisture content. Thanks to the
more uniformly distributed density at the cross-section, they effectively transfer external
loads.



Materials 2021, 14, 3219 7 of 10Materials 2021, 14, x FOR PEER REVIEW 7 of 10 
 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26

thickness of board (mm)

40

60

80

100

120

140

160

180

200

220

240

260

280
D

en
si

ty
 o

f 
b
o
ar

d
s 

 (
k
g
/m

3
)

 E 1404 - MC 12%

 E 1404 - MC 28%

 

Figure 3. Density profiles of boards manufactured from pulp differing in initial moisture content. 

Panel E0 was selected for tests assessing the sound absorption coefficient. Although 

such panels did not exhibit the highest strength parameters, their manufacturing process 

ultimately seems the easiest to perform, since the fibers used to form the mat contain the 

lowest amounts of water. Figure 4 presents a graph for sound absorption of the analyzed 

panel. The most advantageous behavior is observed for this panel for frequencies over 

2000 Hz, although it may also be stated that advantageous values of the sound absorption 

coefficient are obtained in the frequency range of 500 to 1600 Hz. It is difficult to assess 

the effect of the bonding agent itself on sound absorption, since the recorded values are 

very similar to those for conventional lightweight insulation fiberboards or panels from 

natural fibers [50,51]. 

80 100 125 160 200 250 315
400

500

630

800

1000
1250

1600

2000

3150

4000
5000

Frequency, Hz
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
o
u
n
d
 a

b
so

rp
ti

o
m

 c
o
ef

fi
ci

en
t

2500

 

Figure 4. Absorption coefficient of fiberboard glued with E1404. 

  

Figure 3. Density profiles of boards manufactured from pulp differing in initial moisture content.

Panel E0 was selected for tests assessing the sound absorption coefficient. Although
such panels did not exhibit the highest strength parameters, their manufacturing process
ultimately seems the easiest to perform, since the fibers used to form the mat contain the
lowest amounts of water. Figure 4 presents a graph for sound absorption of the analyzed
panel. The most advantageous behavior is observed for this panel for frequencies over
2000 Hz, although it may also be stated that advantageous values of the sound absorption
coefficient are obtained in the frequency range of 500 to 1600 Hz. It is difficult to assess the
effect of the bonding agent itself on sound absorption, since the recorded values are very
similar to those for conventional lightweight insulation fiberboards or panels from natural
fibers [50,51].
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4. Conclusions

These tests are preliminary studies aiming at the identification of easy-to-use, readily
available compounds that exhibit bonding properties in contact with water. Although a
wide range of such products has not yet been launched on the market, numerous similar
studies indicate considerable potential applicability, particularly for these agents, which
are food components. This is because they are easily processed and are fully biodegradable,
which in combination with wood makes it possible to manufacture products completely
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neutral in terms of their environmental impact. It seems that the trend towards the
application of such agents to produce insulation materials is promising, since such panels
are not required to exhibit high mechanical strength; as a result, meeting the relevant
requirements is easier. On the other hand, lightweight panels of very low density are more
difficult to produce because they fail to mask errors in the bonding and forming technology
in terms of uniformity of adhesive application and variable density. Nevertheless, such
production processes are deserving of further investigation, which may be aided by the
following results from this study:

• In the application of food components as bonding agents in the manufacturing process
of lightweight insulation panels from wood fibers, the obtained properties may be
comparable to those of commercial panels produced using synthetic agents.

• The compressive strength of manufactured panels to a considerable extent depends
on the ratio of the dry mass of the active agent to the dry mass of fibers.

• Modification of the bonding rate is dependent on the feasibility of preparation of a
solution with a specific concentration from a given flour or starch.

• Since low concentration solutions are required, pressing time needs to be extended
due to the considerable increase in moisture content of the formed pulp.

• It seems that although this problem has not been fully solved, the use of starch in
the powder form on fibers with a high moisture content has considerable potential
applicability.
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