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Abstract: In most species, the centromere is comprised of repetitive DNA sequences, which rapidly
evolve. Paradoxically, centromeres fulfill an essential function during mitosis, as they are the
chromosomal sites wherein, through the kinetochore, the mitotic spindles bind. It is now generally
accepted that centromeres are transcribed, and that such transcription is associated with a broad range
of functions. More than a decade of work on this topic has shown that centromeric transcripts are
found across the eukaryotic tree and associate with heterochromatin formation, chromatin structure,
kinetochore structure, centromeric protein loading, and inner centromere signaling. In this review,
we discuss the conservation of small and long non-coding centromeric RNAs, their associations with
various centromeric functions, and their potential roles in disease.
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1. Introduction

Centromeres are essential for ensuring accurate chromosome segregation in eukaryotes.
Centromeric chromatin is characterized by the enrichment of nucleosomes containing the
centromere-specific histone H3 variant CENP-A/CENH3, which in turn, directly and indirectly,
recruit kinetochore components. Despite their essential function, these centromeric and kinetochore
proteins are fast-evolving [1–3]. This rapid evolution is also a characteristic of centromeric DNAs [4,5],
which are highly repetitive in nature. This discrepancy between the essential function of centromeres
and the rapid evolution of its components is known as the centromere paradox [5].

Despite the variation in centromere structure and sequence, a common theme has recently emerged.
Whether a point centromere or a regional centromere, centromeric transcription is critical for centromere
function. Interestingly, centromeric transcripts (cenRNAs) are found in two forms: long non-coding
RNAs (lncRNAs) (>200 nt) and small RNAs (<200 nt). Indeed, the rapid evolution of centromeric
DNA is mirrored by the rapid evolution of lncRNAs [6,7]. In general, lncRNAs can be processed based
on their nuclear localization [8,9], but they can also be processed into siRNAs by dicer [9,10]. As the
functions of more lncRNAs are being dissected, their roles in modulating mRNA cleavage, translational
repression, and regulation of alternative splicing, have become apparent [8,9,11]. Although many
lncRNAs are fast evolving, several lncRNAs are conserved at both the sequence and synteny (physical
co-localization on genetic locus) levels [6,7], suggesting that some lncRNAs might be conserved at
the functional level across species. Surprisingly, a recent study [12] showed that a conserved lncRNA
expressed in human and mouse embryonic stem cells displayed surprisingly divergent subcellular
localization and functions. The human version of the lncRNA was spliced more often, resulting in
preferential cytoplasmic localization, whereas the mouse version was exclusively nuclear [12].

Although centromeres are transcribed, it remains unclear what features of these transcripts
drive their associated functions. Centromeric DNA sequences evolve rapidly and only show limited
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conservation, even among closely related species [4]. In addition, centromeres are known to reposition
on chromosomes [13]. This creates a scenario wherein centromeric lncRNAs are conserved based
on their function rather than on their sequence and synteny. In this review, we highlight recent
advances in our understanding of centromeric transcription, how common centromeric transcription
is, how transcripts may impact centromere biology, and how aberrant centromeric transcription
contributes to disease.

2. Centromeric Transcription

RNA polymerase 2 (RNAP2) is capable of transcribing most DNA sequences without strong
sequence-specificity [14,15]. Consequently, as long as transcriptional initiation and elongation occur,
RNAP2 will transcribe most underlying DNA [14,16–18]. Sequence-specific factors, such as TBP,
help direct where the pre-initiation complex is assembled and thus where transcription occurs [16,18].
In contrast, for highly repetitive sequences, such as centromeric DNA, no strong promoter activity
has been reported [19,20]. Nevertheless, centromeric transcripts have been observed across a broad
range of species (Table 1, Figure 1). The transcripts identified so far fall into two main categories:
long non-coding RNAs (>200 nt) and small RNAs (<200 nt).Genes 2020, 11, x FOR PEER REVIEW 5 of 23 

 

 
Figure 1. Cladogram showing which types of transcripts have been found in which species. The 
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each species described in Table 1. The colors yellow, blue, green, and red represent the Animalia, 
Fungi, Plantae, and Chromista kingdoms, respectively. 
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In addition to lncRNAs, small RNAs (<200 nt in length) from centromeric DNA have also been 
found across a broad range of species (Table 1, Figure 1). Indeed, centromeric small RNAs were first 
isolated from Arabidopsis [73], after strong clues came from fission yeast studies that showed that 
deletion of components of the RNAi machinery resulted in aberrant accumulation of pericentromeric 
transcripts [64,65]. The centromeric structure of fission yeast is distinctly different from that of most 
plants and animals. The centromere core, where CENP-A nucleosomes are localized, is flanked by 
pericentric inverted repeats [84]. These repeats are transcribed and essential for pericentric 
heterochromatin formation [85–87]. This clear-cut demarcation between the functional centromere 
and pericentromere is much fuzzier in repeat-rich regional centromeres. Nevertheless, a similar 
increase in the abundance of centromeric small RNAs was observed in Arabidopsis mutants of the 
RNAi machinery and histone deacetylases [73]. Shortly after the identification of centromeric small 
RNAs in Arabidopsis, small RNAs were isolated from non-mutant rice plants [75]. In addition, 
centromeric small RNAs have also been identified in the Plasmodium parasite [78], sugar beet [76], 
red flour beetle [50], and Tammar wallaby [45]. These findings provide further evidence that small 
RNAs are produced from centromeric DNA across kingdoms and that these small RNAs are strongly 
associated with the RNAi machinery. 

2.3. Post-Transcriptional Processing of Centromeric Transcripts 

It has long been appreciated that more RNA is produced than is strictly needed to maintain all 
cellular functions. In addition to pre-mRNA being processed into a mature mRNA, many RNAs are 
actively degraded [88,89]. Although genes can be embedded in centromeric chromatin [90], repetitive 
centromeric DNA is not known to encode proteins. Nevertheless, polyadenylation isolation protocols 
consistently detect centromeric transcripts across kingdoms (Table 1), providing evidence that 
cenRNAs can be processed like lncRNAs and mRNAs. These two latter groups of transcripts also 

Figure 1. Cladogram showing which types of transcripts have been found in which species.
The presence of centromeric small RNAs (<200 nt) and centromeric lncRNA (>200 nt) is shown
behind each species described in Table 1. The colors yellow, blue, green, and red represent the Animalia,
Fungi, Plantae, and Chromista kingdoms, respectively.
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Table 1. Summary of centromeric transcription as reported in various eukaryotic species, including the name of the transcribed sequence, where in the cell cycle
transcription occurs, the reported lengths of the transcriptional products, any proteins they are known to interact with, whether these transcripts are 5′ capped (5′),
polyadenylated (pA), and/or spliced (S), and whether these sequences have been described to act cis or trans.

Species Sequence Name Cell Cycle Transcript Length Interacting Proteins 5′ pA S cis/trans Ref.

Humans
(Homo sapiens) α-satellite *, L1 * early G1,

mitosis 0.5–2.45 kb

CENP-A, CENP-B,
CENP-C, HJURP, SGO1,

Aurora B, DHX38,
SUV39H1

+ cis [21–33]

Mouse
(Mus musculus)

minor satellite *,
major satellite # S, G2/M 0.1–5 kb, 120 nt

CENP-A, Aurora B,
Survivin, INCENP,

WDHD1, Dicer,
SUV39H2

+ [34–44]

Tammar wallaby
(Macropus eugenii) KERV-1 #, sat23 # 34–42 nt CENP-B [45,46]

Xenopus laevis, Xenopus
tropicalis cen-RNA *, fcr1 * CENP-C, Aurora B,

INCENP, Borealin + trans [47–49]

Red flour beetle (Tribolium
castaneum) TCAST *, # 21–26 nt + [50]

Fruit fly
(Drosophila melanogaster) satellite III * mitosis ~1.3 kb CENP-C trans [51–53]

Budding yeast
(Saccharomyces cerevisiae) cenRNA * S phase 462–1754 nt + trans [54–56]

Fission yeast
(Schizosaccharomyces pombe) Otr #, imrl #, cnt * S phase 0.5–10 kb Rdp1, Ago1, Chp1, Clr4,

Swi6 + + + cis [57–68]

Corn (Zea mays) CentC *, CRM * 40–900 nt CENP-A, CENP-C + [69–72]
Arabidopsis thaliana cen180 * 24 nt [73]

Rice
(Oryza sativa) CentO *, CRR * 4–15 kb;

21–25 nt + + [74,75]

Sugar beet
(β vulgaris) pBV *, pEV satellite * 24 nt [76]

Melon
(Cucumis melo)

CmSat162 *,
CmSat189 * [77]

Plasmodium falciparum Cen2 *, Cen3 * 75 nt, 175 nt [78]

* centromere core region and # pericentromeric region. The yellow, blue, green, and red colors represent the Animalia, Fungi, Plantae, and Chromista kingdoms, respectively.
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2.1. Centromeric Long Non-Coding Transcripts

The first reported centromeric transcripts came from mouse satellite DNA in the late 1960s [36,37],
but it took several more decades before the functional implication of centromeric transcription was
appreciated. Today, centromeric transcripts have been observed in Apicomplexa, plants, fungi,
and animals (Table 1, Figure 1). Their sequences and transcript lengths remain to be determined for
most species. A fundamental problem is that most centromeres do not appear to have well-defined
lncRNA genes with distinctive genic features such as promoters, splice sites, and polyadenylation
signals. Consequently, with short-read sequencing technologies, although they effective at assessing
the transcription and splicing of annotated genes, it is technically difficult to assemble de novo
transcripts from centromeric RNAs [79,80]. An alternative method to assess the length and abundance
of centromeric transcripts is to perform a Northern blot from isolated total RNAs. Indeed, such efforts
have been made in various species with varying results (Figure 1). In human cell lines, one study used
a consensus α-satellite probe and found that human centromeric transcripts are ≈1.3 kb in length [21].
However, another study used probes specific to centromeric D17Z1, D17Z1-B, and DXZ1 arrays,
and observed a smear ranging from 0.3 to 2 kb [22]. In mouse cell lines different sizes of satellite RNA
(0.12–4 kb) were found. Curiously, the 120-nt minor satellite transcripts were sensitive to different
growing conditions [35]. This shows that centromeric transcription can be regulated by external
stimuli. Uncovering the functional consequences of altering the transcriptional output of centromeres
is important for understanding how centromeric transcription is related to disease.

In fission yeast, the central centromere core Cnt1 produces transcripts of ≈0.5 kb in length [57].
Interestingly, different RNA-processing and kinetochore mutants changed the abundance of this
transcript [57]. Many plants have retrotransposons at their centromeres, which are expressed (Table 1).
In rice, in addition to the smear of 4–15 kb, a distinct band at ≈3.1 kb was observed for various
centromeric retrotransposons [74]. In maize, the centromere-specific retrotransposon CRM-derived
transcripts are 40–900 nt in length [70]. Whereas most species have a regional centromere that
is commonly comprised of tandem repeat arrays and transposable elements, budding yeast has a
point centromere [81]. Despite the seemingly stark differences in DNA sequence organization and
DNA binding capabilities, a pivotal study demonstrated that budding yeast centromeres are also
transcribed into lncRNAs and that these lncRNAs are important for centromere homeostasis [54,55].
That a broad range of species produce lncRNAs from centromeric DNA suggests that centromeric
lncRNAs serve a functional role in centromere biology. A key missing part of the puzzle is whether
centromeric transcription also occurs in holocentric species. Work on the nematode Caenorhabditis
elegans [82] and lepidopteran Bombyx mori [83] indicate anti-correlations between active transcription
and the localizations of CENP-A and CENP-T chromatin, respectively. These data were obtained in
asynchronized cells, which might not reveal low-level transcription at centromeric chromatin. It will
be interesting to learn whether holocentric transcription indeed does occur, despite the complicated
nature of studying centromeres with a diffuse phenotype.

2.2. Centromeric Small RNAs

In addition to lncRNAs, small RNAs (<200 nt in length) from centromeric DNA have also been
found across a broad range of species (Table 1, Figure 1). Indeed, centromeric small RNAs were first
isolated from Arabidopsis [73], after strong clues came from fission yeast studies that showed that
deletion of components of the RNAi machinery resulted in aberrant accumulation of pericentromeric
transcripts [64,65]. The centromeric structure of fission yeast is distinctly different from that of most
plants and animals. The centromere core, where CENP-A nucleosomes are localized, is flanked
by pericentric inverted repeats [84]. These repeats are transcribed and essential for pericentric
heterochromatin formation [85–87]. This clear-cut demarcation between the functional centromere and
pericentromere is much fuzzier in repeat-rich regional centromeres. Nevertheless, a similar increase in
the abundance of centromeric small RNAs was observed in Arabidopsis mutants of the RNAi machinery
and histone deacetylases [73]. Shortly after the identification of centromeric small RNAs in Arabidopsis,
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small RNAs were isolated from non-mutant rice plants [75]. In addition, centromeric small RNAs have
also been identified in the Plasmodium parasite [78], sugar beet [76], red flour beetle [50], and Tammar
wallaby [45]. These findings provide further evidence that small RNAs are produced from centromeric
DNA across kingdoms and that these small RNAs are strongly associated with the RNAi machinery.

2.3. Post-Transcriptional Processing of Centromeric Transcripts

It has long been appreciated that more RNA is produced than is strictly needed to maintain all
cellular functions. In addition to pre-mRNA being processed into a mature mRNA, many RNAs are
actively degraded [88,89]. Although genes can be embedded in centromeric chromatin [90], repetitive
centromeric DNA is not known to encode proteins. Nevertheless, polyadenylation isolation protocols
consistently detect centromeric transcripts across kingdoms (Table 1), providing evidence that cenRNAs
can be processed like lncRNAs and mRNAs. These two latter groups of transcripts also tend to undergo
splicing events to produce mature transcripts [91,92]. Indeed, centromeric RNAs are associated with
splicing factors (Table 1). In the case of fission yeast, the pericentric non-coding dg RNA contains an
intron that plays an important role in the recruitment of the RNAi-machinery needed for pericentric
heterochromatin formation [63]. Human α-satellite has been found to associate with the RNA helicase
DHX38 [32], which is thought to be important for pre-mRNA splicing [93]. Although the data are
sparse thus far, they do provide tantalizing hints that centromeric RNAs interact with various RNA
processing components. Whether splicing itself is an important maturation step for cenRNAs or
whether the splicing machinery serves as a physical link with other nuclear components remains to
be determined.

In several species, both centromeric lncRNA and small RNAs have been found (Table 1). Thus far
though, in most species, only one of the two RNAs has been identified. One technical reason for
this may be that different RNA isolation methods do not isolate all types of RNA equally, especially
if the RNA types are not equally abundant or stable [94]. Identification of centromeric transcripts
depends on knowing the sequence composition of the actively transcribing centromere in each species.
Understanding the relationship between centromeric lncRNAs and small RNA production is important.
Recently, the sequence of the fruit fly centromere was deciphered [95] and this has opened up a
new avenue to study the evolution of centromeric transcription in a highly tractable system. Indeed,
in Drosophila species centromeric DNA is highly repetitive and fast-evolving [96]. In other words,
it will be of interest to understand the evolutionary conservation of the production of both centromeric
lncRNAs and small RNAs. Furthermore, uncovering when and how centromeric transcripts are
processed and with which biological function this processing is associated is an exciting avenue for
future research.

3. Functions of Centromeric Transcription

A logical prediction for the existence of the two classes of centromeric RNAs is that the lncRNA is
the precursor of the small RNAs to ultimately produce pericentromeric heterochromatin (Figure 2).
Yet non-centromeric, long non-coding RNAs have been implicated in a much broader range of
cellular functions, including chromatin architecture, chromatin remodeling, transcriptional regulation,
formation of nuclear bodies, and translational regulation [8,97]. Overall, lncRNA can function
as a guide, scaffold, decoy, or signal [6]. In fact, well-known chromatin binding factors, such as
CTCF [98] and the polycomb complex [99], not only bind distinct DNA motifs but are also functionally
associated with RNA. This raises the question, what is the full breadth of the functional implications of
centromeric transcription?
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structure can be modulated through DNA-RNA hybrids as well as through CENP-B, both of which 
associate with centromeric transcripts. Centromeric lncRNAs facilitate recruitment and loading of 
new CENP-A nucleosomes, whereas the kinetochore component CENP-C pulls down centromeric 
transcripts as well, contributing to kinetochore formation and structure. Finally, Aurora B signaling 
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nucleosomes [126,127]. Similarly, when endogenous CENP-A is degraded using the auxin-inducible 
system, CENP-B still partially allows centromeres to form a functional kinetochore [128]. 
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Figure 2. Biological functions of centromeric transcripts. The centromere-specific nucleosomes are
distributed in a species-specific manner. For instance, in fission yeast, CENP-ACnp1 nucleosomes
are restricted to the centromere core, whereas in humans CENP-A chromatin is interspersed with
H3 chromatin at the centromere. Despite these different distribution patterns of CENP-A chromatin,
centromeric transcription has been observed in a broad range of species. Centromeric transcripts are
processed and are found as either lncRNAs or small RNAs. Through the argonaut/dicer machinery,
centromeric small RNAs facilitate the pericentric heterochromatin formation. Centromeric chromatin
structure can be modulated through DNA-RNA hybrids as well as through CENP-B, both of which
associate with centromeric transcripts. Centromeric lncRNAs facilitate recruitment and loading of
new CENP-A nucleosomes, whereas the kinetochore component CENP-C pulls down centromeric
transcripts as well, contributing to kinetochore formation and structure. Finally, Aurora B signaling at
the inner centromere is critical for faithful chromosome segregation, and centromeric transcription is
important for this process.

3.1. Recruitment and Loading of CENP-A

During every cell division, the total number of centromeric CENP-A nucleosomes is halved [100].
To guarantee continued faithful chromosome segregation over many cell cycles, the number of
centromeric CENP-A nucleosomes must be maintained to guarantee that the kinetochore can be
formed. Thus, the centromeric CENP-A nucleosome pool must be replenished with new CENP-A
nucleosomes. Indeed, CENP-A nucleosomes are loaded on centromeric chromatin in a cell cycle-specific
manner [54,100–103]. In the last several years it has been shown that centromeric transcription plays
critical roles in various aspects of loading of new CENP-A nucleosomes. The first clues came from
studies in fission yeast; various mutants of the RNAP2 machinery, including transcription initiation and
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elongation factors, showed reduced levels of CENP-ACnp1 [57,104]. Direct evidence came from work in
mammalian cell lines and Xenopus oocyte extracts where knock-down of centromeric transcripts resulted
in reduced CENP-A levels at the centromere [21,24–26,33,48]. Indeed, recent work in mammalian
and fruit fly cell lines showed that chemical inhibition of activated RNAP2 resulted in the loss of
centromeric CENP-ACID chromatin [21,52]; and the elongation factor Spt6 facilitates maintenance of
centromeric CENP-ACID [105]. These lines of investigation strongly hint at a distinct role for both the
act of transcription and the production of an RNA species in the loading of CENP-A.

It is not very likely that new CENP-A is loaded exclusively on naked DNA, rather than on
chromatin. Indeed, in human and fruit fly cell lines, active transcription is needed to remove
so-called placeholder H3.3 nucleosomes prior to new CENP-A loading at the centromere [53,105,106].
Similarly, in fission yeast, H3 nucleosomes function as placeholder nucleosomes [61]. None of these
experiments addressed how CENP-A:H4 is recruited to the centromere. In many species, a dedicated
CENP-A chaperone has been identified that performs this function. Human cells use HJURP [107,108]
and RbAp48 [109], fruit flies use CAL1 [110], fission and budding yeast uses SCM3 [111–114],
the holocentric roundworm Caenorhabditis elegans uses RbAp46/48LIN-53 [115], and Arabidopsis thaliana
uses NASPSIM3 [116]. Although knock-down of fruit fly 359-bp satellite RNA resulted in reduced
levels of CAL1 at the centromere [51], HJURP has been shown to directly interact with α-satellite
lncRNAs [21]. Additionally, soluble pre-assembled HJURP/CENP-A complexes were observed,
and knock-down of these α-satellite lncRNAs resulted in reduced levels of CENP-A and HJURP at
the centromere [21]. Altogether, a picture emerges wherein centromeric transcription plays multiple
active roles in both recruitment and incorporation of new CENP-A nucleosomes, including the eviction
of placeholder nucleosomes. This begs the question: What are the precise roles of each step of
transcription of centromeric DNA and subsequent post-transcriptional RNA processing in establishing
and maintaining centromere identity?

3.2. Recruitment of CENP-C

Recent work showed that knock-down of CENP-C resulted in increased centromeric
transcription [117], whereas knock-down of centromeric transcripts resulted in increased levels
of centromeric CENP-C [31]. These data suggest that there is a functional interaction between CENP-C
and centromeric transcription. The question remains as to whether this is an indirect effect, driven
by CENP-A, or a direct effect. A direct association between CENP-C and centromeric transcripts is
possible, as CENP-C has extensive nucleic acid binding activity [24,69,118,119], and both budding
yeast and human CENP-C associates with AT-rich DNA [118,119]. Interestingly, in vitro, a 24-nt
single-stranded centromeric RNA facilitates the binding of maize CENP-C to centromeric DNA [69].
Outside of the centromere, RNA–DNA triplexes are stabilized by nucleosomes in vitro; and in human
cells, these RNA–DNA triplex structures were enriched at active regulatory sites [120]. This raises
the possibility that RNA has a pivotal function in stabilizing CENP-C at the centromere, either
in a CENP-A-dependent or CENP-A-independent manner. It will be interesting to dissect how
centromeric RNA contributes to CENP-C localization and stabilization on centromeric DNA in other
eukaryotic species.

3.3. Centromeric RNA, CENP-B, and Centromeric Chromatin Structure

Interestingly, the DNA binding centromeric protein CENP-B has also been found to associate
with centromeric RNAs (Table 1). CENP-B binds to the 17-bp CENP-B box sequence [121], which is
found in a subpopulation of α-satellite DNA, which can be occupied by either CENP-A or H3
nucleosomes [122–124]. In addition, CENP-B binds at the DNA entry site of CENP-A nucleosomes,
helping to phase CENP-A nucleosomes on centromeric DNA [125]. On α-satellite arrays on
human artificial chromosomes, the presence of CENP-B is critical for the recruitment of CENP-A
nucleosomes [126,127]. Similarly, when endogenous CENP-A is degraded using the auxin-inducible
system, CENP-B still partially allows centromeres to form a functional kinetochore [128]. Interestingly,
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a recent study showed that CENP-B serves as a “beacon” for H3.3 incorporation [129]. Furthermore,
in a recent fluorescence microscopy-based interaction-trap assay, components of both heterochromatin
(SUV39H1 and HP1) and open chromatin (including histone methyltransferases ASH1L and NSD1)
were recruited by CENP-B [130]. These results point towards a role for CENP-B in organizing
centromeric chromatin structures to be competent for both new CENP-A loading and heterochromatin
formation. Nevertheless, it remains poorly understood whether or not, and if so how, centromeric
transcription facilitates CENP-B’s role in chromatin organization. Therefore, understanding whether
or not, and if so how, centromeric transcripts associated with CENP-B help to distinguish between
the formation of these two mutually exclusive chromatin domains is important. From a chromatin
organizational perspective, CENP-B can potentially cross-link neighboring chromatin fibers through
its dimerization domain [131]. In addition, RNA–DNA triplexes [132], such as R-loops, have also
been observed at centromeres, and these R-loops were associated with the ATR kinase, which is
important in safeguarding genome stability [133]. In maize, circular RNA derived from centromeric
CRM retroelements potentially associated with two R-loops, and thereby formatted chromatin loops.
Knock-down of these circular RNAs resulted in the loss of chromatin loops and reduced levels of
CENP-ACENH3 [72]. These latter studies imply that R-loops might be involved in organizing local
chromatin structures which might contribute to the regulation of ATM/ATR kinase activity. Thus,
understanding how centromeric chromatin conformation contributes to both centromere organization
and centromere maintenance is an important question to explore.

3.4. Inner Centromere Signaling

In addition to the functions described above, centromeric transcripts have another critical role
in centromere biology. Prior to anaphase, the mitotic checkpoint must be met, guaranteeing that all
chromosomes are properly oriented and attached to the mitotic spindles. At the chromatin region
(inner centromere) between the inter-sister chromatids, the chromosomal passenger complex (CPC)
accumulates [134] and senses and responds to the pulling forces generated at the kinetochores [135,136].
The CPC is comprised of the mitotic kinase Aurora B, INCENP, survivin, and borealin [134]. Recently,
CPC was reported to form coacervates, which are thought to be functionally important [137].
Interestingly, in various vertebrate species, CPC components have been shown to pull down centromeric
transcripts (Table 1). In particular, when Aurora B is bound to centromeric RNA, it regulates both
its activity and its localization [47]. Shugoshin (SGO1) is thought to protect centromeric cohesion
from cleavage during prophase [138], but SGO1 also brings RNAP2 to the centromere [29] and indeed
associates with centromeric RNA as well [29]. Mitotic transcription specifically is important for the
spatiotemporal functioning of CPC at the inner centromeres [47]. Interestingly, using a nucleosome
affinity library a recent study showed that the CPC interacts with the nucleosome acid patch [139] and
the acid patch is known to modulate higher-order chromatin structure [140]. Thus, how centromere
chromatin structures dictate the recruitment of SGO1 and CPC; and how CPC modifies the centromere
chromatin to facilitate mitotic progression are exciting avenues for future studies.

3.5. Pericentromeric Heterochromatin

In fission yeast, the importance of pericentromeric transcription for heterochromatin formation
has been extensively studied (reviewed here [86]). Beyond fission yeast, only a few studies have
addressed directly whether centromeric transcription plays an important role in pericentromeric
heterochromatin formation [23,43,141]. Why are CENP-A nucleosomes deposited where they are
and not somewhere else on the chromosome? In addition, ectopic CENP-ACID prefers to seed
at euchromatin-heterochromatin boundaries [142]. This latter observation suggests that CENP-A
chromatin prefer to be right next to a heterochromatin domain. If centromeric transcription can
create a chromatin environment that is conducive to both heterochromatin formation and kinetochore
establishment, it would be the ideal double-edged sword. Two recent studies in human and mouse
cells [23,141] showed that centromeric RNAs are important for heterochromatin formation. In the
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paternal mouse pronucleus, pericentric transcripts suppress SUV39H2 activity, resulting in subsequent
reduced H3K9me3 levels [141], potentially through the formation of RNA–DNA triplexes near
nucleosomes [43]. In contrast, in human cells, SUV39H1 needs to bind α-satellite RNA to establish
constitutive heterochromatin [23]. The latter scenario is more reminiscent of what is observed in fission
yeast, wherein, through a dicer-mediated pathway, constitutive heterochromatin is established and
maintained [86]. Indeed, in mouse cell lines, dicer has been associated with centromeric RNA [41].
It is therefore conceivable that centromeric small RNAs might have specific developmental roles in
establishing where and when constitutive heterochromatin is formed. The make-up of the respective
protein complexes with which centromere small RNAs associate might provide important clues.

4. Centromeric Transcription in Disease

Given the biological functions with which centromeric transcripts are thought to be associated,
misregulation seems almost inevitable. Indeed, the misregulation of mouse minor satellite RNAs leads
to impaired centromere function and defective chromosome segregation [35]. In addition, work in
budding yeast has focused on how CENP-ACse4 loading is limited to the centromere [143–147]. Whether
the removal of ectopic CENP-A in non-Ascomycota species happens by the same mechanism with the
same efficiency remains to be determined. The fact that centromeric DNA is not conserved strongly
argues against a model wherein the sequence is the driving factor in the functional consequences of
centromeric transcription. Thus, the question of whether transcription at non-centromeric loci can
hijack centromere-like functions is at the heart of ectopic centromeric chromatin formation.

4.1. Ectopic CENP-A and Neocentromeres

In many cancers, various centromere and kinetochore components are overexpressed, including
CENP-A and its dedicated chaperone HJURP [148]. Overexpressed CENP-A has been found to not only
associate with HJURP but also with the H3.3 chaperones DAXX/ARTX and HIRA [149–152], resulting
in ectopic incorporation of CENP-A nucleosomes. One potential consequence of ectopic CENP-A
chromatin sites is the formation of dicentric chromosomes, rendering the chromosome unstable [153].
Indeed, ectopic CENP-A sites promote the formation of ectopic kinetochores and subsequent mitotic
defects [150]. Similarly, artificially overexpressed CENP-ACID in Schneider S2 cells was also able to
form functional ectopic kinetochores [142]. Similarly, in fission yeast [154] and budding yeast [155,156],
ectopic localization of CENP-A occurs when CENP-A is overexpressed. In another experimental setup,
ectopic CENP-A was found when the innate centromere was deleted [157].

These results give the impression that CENP-A readily goes ectopic, consistently posing the
risk of creating dicentric chromosomes. One would expect that mechanisms have evolved to
reduce this risk to a minimum without impacting the native centromere functions. In the case
of the point centromere of budding yeast, which is thought to contain only of a single CENP-ACse4

nucleosome [158], SUMOylation of N-terminal tail of CENP-ACse4 is a driving force in preventing
CENP-ACse4 mislocalization [143–147]. In plants, active removal of CENP-ACse4 has also been
observed [159]. In contrast, a recent study in human cell lines suggested that ectopic CENP-A
nucleosomes are removed during replication [160]. Nevertheless, in various cancers, ectopic CENP-A
nucleosomes are readily detected [149,161]. This either means that, in the case of the human cells,
replication has a limited capacity to correct ectopic localization of CENP-A nucleosomes, or an
alternative mechanism is actively recruiting CENP-A to ectopic sites. As centromeric DNA evolves
very quickly, it is unlikely that a strong sequence signal is driving the functional associations between
centromeric transcripts and new CENP-A loading. Nevertheless, neocentromeres and ectopic CENP-A
sites are not randomly distributed across the human genome [149], implying that certain loci have
centromeric potential, whereas other loci do not. Studies on human artificial chromosomes showed
that a chromatin environment containing a distinct set and distribution of histone modifications
was important for CENP-A chromatin formation as well [162–164]. Using the marker chromosome
mardel(10), L1 retrotransposon transcripts have been found to facilitate the formation of CENP-A
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chromatin [165]. Given these results, it is therefore tempting to speculate that some non-centromeric
regions might have the capacity to mimic transcriptional conditions of the centromere.

4.2. Centromeric Transcription in Cancer

What happens when centromeric transcription is misregulated? One may predict that when
centromeric transcription is suppressed, essential centromeric functions during mitosis and CENP-A
chromatin maintenance is impaired, resulting in either cell death or senescence. On the other hand,
overexpression of centromeric transcripts may result in aberrant regulation of mitosis, resulting in
genomic instability. Indeed, in various human cancers, α-satellite transcripts are overexpressed [166],
and overexpression of these transcripts strongly correlates with a poor clinical prognosis [148]. In human
and murine cell lines centromeric transcripts can accumulate as a result of DNA demethylation,
heat shock, or the induction of apoptosis [167]. In these cases, and overexpression of centromeric RNA,
genomic instability is observed [167,168], and genome instability is one of the hallmarks of cancer [169].

In human mammary epithelial cells derived from several patients, artificial overexpression
of α-satellite sequences resulted in both hypomethylation of centromeric DNA and a significant
increase in segregation errors, especially in chromosomes 8 and 20 [170]. Furthermore, in mouse
and human breast tumors lacking BRCA1, satellite RNAs are highly expressed [171,172], as BRCA1
facilitates the monoubiquitination of histones associated with satellite DNA, thereby suppressing
transcription [171]. When satellite RNAs are overexpressed the DNA damage response pathways
are activated, inducing aneuploidy, which, in mice, is sufficient for tumor development in mammary
glands [172]. Interestingly, some centromeric transcripts remained associated with distinct genomic
loci, even throughout mitosis [173,174], promoting the localization of chromatin factors, such as
PRC1 and MeCP2 [175]. Furthermore, centromeric transcripts have also been associated with repeat
expansion [176]. Whether misregulation of centromeric transcription also facilitates the expansion
of the pericentric HERV-K retrovirus [177] remains to be determined. In a recent study in fission
yeast, mutations in RNAP2 or TFIISTfs1, a transcription factor that facilitates RNAP2 restarting after
backtracking, increased the incidence of chromosomal rearrangements [178]. All in all, these studies
hint at the possibility that genomic instability as a consequence of aberrant centromeric transcription is
caused by a broad range of nuclear functions.

Thus, what are the functional consequences of overexpressing of centromeric transcripts that
can be directly attributed to these transcripts? One clue how a non-coding RNA can impact nuclear
organization and function comes from the overexpression of the unique lncRNA: ChRO1. ChRO1
expressed specifically during the terminal myoblast differentiation and is involved in the reorganization
of constitutive heterochromatin [179]. Inhibition of ChRO1 leads to aberrant chromatin organization
and mislocalization of histone marks and chromatin binding factors in murine cells [179]. In particular,
ChRO1 mediates centromeric RNA accumulation at centromeric sites through DAXX/ARTX/H3.3 [179].
Interestingly, in fission yeast, a link between the maintenance and nuclear localization of pericentric
heterochromatin and histone chaperone complexes was also observed [180].

As noted above, overexpressed CENP-A can associate with H3.3 chaperones [149–152]. Therefore,
in many cancers, both CENP-A and centromeric transcripts are frequently overexpressed. Whether these
two observations are dependent on each other or have a cumulative or even synergistic effect on tumor
development is still an unanswered question. How the mislocalization of histone variants is driven by
the expression of non-coding RNAs and how histone chaperone complexes are guided by non-coding
RNAs remain of subjects of intense investigation. It is interesting to speculate that the role of histone
chaperones go beyond assisting histone localization and nucleosomes dynamics [181]. Maybe, histone
chaperones function as a critical factor contributing to chromatin domain formation, long-distance
chromatin interactions, and even mechanosensing [182] by bringing together nucleosomes, non-coding
RNAs, and other chromatin binding factors. Consequently, misregulation would lead to a broad range
of chromatin effects, which are commonly observed in cancers.
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5. Conclusions and Future Perspective

Centromeres are genetically different across species and they do not follow synteny [5]. In addition,
frequent ectopic incorporation of CENP-A and the formation of neocentromeres [28,149,150] clearly
indicate that centromere formation is not primarily driven by genetic factors, but rather a complex
interplay between various epigenetic mechanisms. In most species [183], nucleosomes containing
centromere-specific histone variants and their cognate binding partners form the proteinaceous basis
of the kinetochore. Over the last few decades, it has become apparent that centromeric transcription is
found across the eukaryotic tree (Figure 1). Although not every function has been shown to exist in
every species studied so far (Table 1), it is reasonable to predict that these transcripts fulfill a multitude
of roles (Figure 2), as if centromeric transcription were a swiss-army knife.

Several big questions still await answering—not only how well conserved these functions
are, but more importantly, how centromeric transcripts precisely perform their functions.
What attracts centromeres and neocentromeres to be adjacent to heterochromatin? Interestingly,
it is paradoxical that transcriptionally silent heterochromatin requires transcription to be formed.
Is heterochromatin-associated transcription linked to the loading of new CENP-A nucleosomes? Thus,
an obvious question is whether lncRNAs and small RNAs are produced from the same transcript
(Figure 3A). If this were the case, this would allow for precise spatiotemporal regulation of centromeric
RNAs. One primary function of centromeric transcripts appears to be loading of both CENP-A
and CENP-C, setting the stage to form a functional kinetochore. RNA–DNA triplexes have been
implicated in loading both proteins, thereby unraveling the role of RNA–DNA triplexes in both
CENP-A and CENP-C loading (Figure 3B). Whether these loading events are synergistic is important
for understanding how CENP-A chromatin is formed and how it spreads. Indeed, tantalizing evidence
shows a positive feedback loop between CENP-CCID, dCENP-C, and CAL1 [184]. Subsequently,
whether RNA has a structural role in the formation and/or maintenance of kinetochore is also an
unexplored question (Figure 3C). It would be intriguing if different RNases could be linked to different
kinetochore components, allowing the study of the structural role of RNA at the kinetochore. At the
inner centromere, CPC is localized and activated through centromeric transcription during mitosis.
Another unanswered question is whether centromeric transcription is sensitive to mitotic pulling forces
(Figure 3D), potentially linking mitotic biomechanical events to direct transcriptional outputs [182].
In cancers, ectopic CENP-A nucleosomes are commonly found, yet it remains unclear how precisely
CENP-A is recruited to these sites. One interesting possibility is that ectopic sites can mimic structural
features of centromeric RNA, thereby hijacking CENP-A away from the centromere (Figure 3E).
This could also have potential evolutionary implications if RNA folding motifs are a driving force in
the potential of a sequence to become a centromere. Finally, the holy grail in studying centromeres is
the ability to be able to genetically manipulation centromeres. Being able to recruit components to the
centromere at will, and visualize and track transcriptional activity, have not been possible because of the
centromere’s highly repetitive nature. One possibility might be to utilize the Tal1 LTR retrotransposon
from Arabidopsis lyrate (Figure 3F). This LTR is absent in A. thaliana, yet when introduced, it is still
specifically incorporated at A. thaliana’s centromeres [185]. If this system could be engineered to study
centromere biology, including centromeric transcription, a range of previously untestable hypotheses
could finally be tested. The recent publication of the first telomere-to-telomere sequence of a human
chromosome [186,187] might even make human centromeres a target for such studies.
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the presence of centromeric transcripts. If so, which kinetochore components drive this dependence? 
(D) The localization and activity of CPC at the inner centromere are dependent on centromeric 
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Figure 3. Open questions about the functional consequences of centromeric transcription. (A) Even though
two different types of RNAs are produced from the centromere, namely, lncRNAs and small RNAs, it remains
unclear whether these two types of RNAs are produced sequentially or in parallel. (B) Both CENP-A and
CENP-B associate with centromeric transcripts and both CENP-A loading and CENP-C loading have been
linked to RNA–DNA triplex formation. Additionally, in maize, CENP-C binding to centromeric DNA is
associated with small RNA, whereas in humans CENP-A loading has been tied to lncRNAs. It remains unclear
whether the same transcript can recruit and stabilize both CENP-A and CENP-C at centromeric chromatin. (C)
As CENP-A and CENP-C loading is cenRNA-dependent, one intriguing question is whether the kinetochore
structure as a whole is dependent on the presence of centromeric transcripts. If so, which kinetochore
components drive this dependence? (D) The localization and activity of CPC at the inner centromere are
dependent on centromeric transcripts. It will be of great interest to understand how mitotic pulling forces
modulate centromeric transcription, especially during the transition from metaphase to anaphase. (E) CENP-A
nucleosomes have been found both at the centromere and ectopically. Especially in cancers, ectopic CENP-A
accumulates. Little sequence conservation exists between ectopic CENP-A sites and the centromere. This leaves
the possibility that specific secondary and tertiary RNA structures exist that are found similar to/in common
between transcripts derived from the centromere and ectopic sites, allowing ectopic sites to hijack CENP-A
recruitment. In addition, this might also provide critical insights into the evolution of centromere DNA from a
functional perspective as a CENP-A recruitment motif. (F) Whereas various loci on the chromosome arms have
been extensively studied using genetics tools such as LacO operons and MS2/PP7 stem-loops, the centromere
has been recalcitrant to genetic manipulations because of its highly repetitive nature. In Arabidopsis thaliana, the
A. lyrate Tal1 LTR retrotransposon specifically integrates into the A. thaliana centromere. This opens the door to
finally genetically modify the centromere to be able to study transcription in an inducible and tractable manner,
and recruit proteins of interest.
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All in all, the centromere transcription field is still in its early days, as many critical questions
remain unanswered. Being able to learn how a fast-evolving sequence can still perform such a
broad range of essential functions is especially critical for understanding how the genome integrity
is regulated.
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