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Introduction
Structural variation includes rearrangements (inversions and 
translocations) and copy number variations (CNVs), consisting 
of duplications, deletions, insertions, and multi-allelic varia-
tions ranging from one kilobase (kb) to several megabases of 
DNA, leading to possible dosage imbalances. In other words, 
genes that were originally understood to be present in two 
copies have now been revealed to sometimes exist in one, three, 
more than three copies, or even missing altogether. We define 
a CNV as a DNA segment that is 1 kb or larger and exists at 
variable copy numbers when referred to a reference genome.1

So far, among the numerous insights gained from the 
completion of the Human Genome Project, single nucle-
otide polymorphisms (SNPs) have been recognized as a major 
source of genetic variation, which led to the speculation that 
the majority of phenotypic variations in humans are due to 
SNPs.1 Consequently, immense amount of research has 
focused on developing genotyping assays and methodolo-
gies for SNP analysis, making it the most frequently assayed 
type of intraspecific genetic variation and the most centered 
gene-mapping studies with regard to the relationship between 
SNPs and human diseases. However, growing number of 

studies have confirmed that more nucleotide bases are affected 
by CNVs as opposed to SNPs between any two individuals,2 
and along with the advances in high-throughput technologies 
to detect the magnitude and location of genomic alterations 
within a single human genome, it is clear that large frag-
ments of our genome have been deleted or duplicated. These 
structural variations can change the genes copy number that 
encompass the affected regions and alter gene regulation. In 
particular, one group of scientist conducted a pilot study in 
mapping the CNVs in the complete human genome,2 which 
demonstrated the remarkable extent of large structural varia-
tion in the human genome, both within closely related people 
and between the global populations due to sizeable duplica-
tions and deletions of genomic segments. Likewise, similar 
studies have shown that despite the existence of powerful 
repair mechanisms in the human genome, CNV occurrence 
frequency is 100–10,000 times higher than point mutations.3

Studies have shown that some types of genes are more 
prone to be copy number variables than others, such as the 
genes involved in immunological and neurological develop-
ment, possibly due to the rapid human evolution in these two 
functions.4,5 On the other hand, genes that play a role in early 
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development and mitosis, which are fundamental to life, are 
likely to be spared.5 CNVs have been reported to play a role 
in cancer susceptibility, formation, and progression.6–8 These 
CNVs may be germline variants or somatic mutations. A few 
association studies have already elucidated the significance 
of CNVs as disease-susceptibility variants.9–12 In one study, 
CNV detected in 1,400 regions have overlaps with 14.5% of 
human disease-causal genes.9 Recent studies concluded that 
CNV is frequently found in susceptible individuals who were 
predisposed to diseases such as color blindness in Mendelian 
disease, as well as autism, Parkinson’s, HIV, cancer, and lupus 
in complex traits diseases.10–16

This intriguingly frequent and dynamic type of genomic 
variation has challenged the concept of analyzing the genome 
through the breakdown of a single diploid human reference 
genome and has also triggered more research on the techniques 
of detecting CNVs. Array comparative genome hybridization 
(aCGH) is a popular experimental technique for detecting 
copy number variants in genomes.17–19 aCGH requires the 
hybridization of fluorescently tagged differential DNA frag-
ments from both a test genome and a reference genome to a 
set of probes originated from the reference genome sequence. 
The proportion of the test versus reference fluorescence 
intensity at each probe will identify the positions in the test 
genome that have fewer, more, or similar copy as the refer-
ence genome, which can generate a copy number profile of the 
test genome.17–19 These CNV profiles are generally compared 
across individuals in a group of interest to identify common 
CNVs that are shared among a portion of the group.

Another method that is popular for CNV detection and 
analysis is by using high-throughput array technologies for 
SNP genotyping from commercial companies such as Affyme-
trix and Illumina, due to their ability to perform a dual role 
for both SNP-based and CNV-based association studies. One 
widely used array is the Affymetrix genome-wide human SNP 
array 6.0 (Affy6), which is an array platform that aims to per-
form both high-density SNP genotyping and high-resolution 
CNV discovery simultaneously. Aside from the 906,600 SNP 
probe sets, the Affy6 array also contains 946,000 copy number 
probe sets that can be used to assess chromosomal copy num-
ber changes in regions of the genome that are not well covered 
by SNPs.

A number of CNV calling methods for individual 
patients have been implemented, which either follows the 
circular binary segmentation (CBS) method or the hidden 
Markov model (HMM) method. CBS is a segmentation-based 
method that scans for change points in an ordered sequence 
of values to delineate segments with different distributions of 
values (measured by having different means). In other words, 
it will recursively divide up the genome until segments that 
have probe distribution different than neighbors have been 
identified.20 For the HMM method, the aim is to uncover the 
hidden copy number states (0, 1, 2, 3 copies, etc) by searching 
the data point by point to determine the most probable copy 

number states based on observation and transitions between 
states correspond to changes in copy number.21,22

These methods share a common feature in which the 
CNV regions are segmented by individual-specific break-
points, and detection is carried out sample by sample. How-
ever, it is much more likely for shared/common CNV regions 
(ie, recurrent CNV) to occur at the same genomic positions 
across different individuals in a homogeneous group of people. 
As a result, recurrent CNV regions are more likely to har-
bor disease-causal genes, as it is more probable to encompass 
“driver” alterations (functionally significant for disease initia-
tion or progression), while individual-sample CNVs are subject 
specific and would be more likely to contain “passenger” altera-
tions (random somatic events irrelevant to pathological events) 
than disease-relevant alterations.23 Several methodologies have 
been proposed for recurrent CNV detection.24–29 These meth-
ods mainly differ in the type of input data and the algorithm 
models being implemented. For the input, most of the recurrent 
CNV detection methods fall under two categories: continu-
ous (log 2 ratio)25,27,28 and discrete (gains/losses).24,26,29 For the 
algorithms, they can be categorized into three main models: 
permutation,24,27 probabilistic null model,25,28–30 or none.26

In this study, we aim to develop a graph-based algo-
rithm to identify recurrent CNV regions. The algorithm 
will be applied to analyze the breast cancer data retrieved 
from Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC).31

Materials and Methods
Data source. We retrieved the individual patient-level 

CNV data from METABRIC,31 which consists of whole-gene 
expression profiles, SNPs, and individual patient-level DNA 
CNV data. All samples were derived from ∼2,000 clinically 
annotated primary fresh-frozen breast cancer specimens from 
tumor banks in the UK and Canada, which were divided into 
two subsets by METABRIC: Discovery (997  samples) and 
Validation (995 samples).

Experimental assay and genotype calling. DNA was 
extracted from each tumor specimen and subject to copy 
number analysis on the Affymetrix Human SNP 6.0 platform. 
Data from Affymetrix SNP 6.0 arrays were preprocessed and 
genotyped using the SNP-RMA (Robust Multi-Array Aver-
age) algorithm, available in the crlmm Bioconductor R pack-
age. This quantifies raw intensity values into proportional 
amount of DNA in the target sample associated with each of 
the alleles, A and B, for each SNP. Feature intensities were 
corrected for fragment length and sequence effects, followed 
by quantile normalization to a predefined reference distribu-
tion. Intensities were then summarized by median polish, 
with a single value for each allele. A mixture model was then 
used to adjust for remaining fragment length and intensity-
dependent biases on the log ratio of the summarized intensi-
ties. Samples with a signal-to-noise ratio ,5 were flagged in 
downstream analyses.
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Individual CNV calling. Affymetrix SNP 6.0 arrays 
were preprocessed for copy number segmentation using aroma.
affymetrix. Both tumor and normal samples were indepen-
dently normalized using the single-array method referred to 
as copy number estimation using robust multichip analysis32 
(CRMAv2), along with a publicly available SNP 6.0 data 
set consisting of 270 HapMap individuals. For each sample, 
allelic cross-talk calibration, probe sequence effects normali
zation, probe-level summarization, and polymerase chain 
reaction fragment length normalization were performed in 
order to obtain log 2  intensity values for total copy number 
estimation. Afterward, probes were sorted by their genomic 
position, replicate probes were summarized by their median 
value, and missing values (generated by negative intensities 
in the normalization) were imputed using the loess procedure 
included in the snapCGH Bioconductor R package.

Two pooled references were generated, one using the 
median intensities across the HapMap individuals and another 
for the normals and tumors, using the median intensity values 
from a set of 473 normals. Next, log 2 ratios were generated 
for the HapMap samples by subtracting the pooled value from 
the log 2 intensities. Similarly, log 2 ratios were obtained for 
the 473 normals using the corresponding pool. For the 997 
tumor samples, two data sets were produced: one using the 
normal pool as the reference for all the tumors and another 
using the matched normal for each tumor when available, and 
the normal pool for the remainder. A similar approach was 
taken for the validation set.

The HapMap and normal data sets were used to estimate 
the frequency of germline CNVs in the cohort, while the tumor 
samples were used for estimating somatic CNVs. After com-
puting the log 2 ratios for each probe, samples were segmented 
using the CBS algorithm implemented in the DNAcopy R 
Bioconductor package and individual patient-level CNVs 
were called. For the tumor samples, any segmented mean that 
fell within a region included in the HapMap+Normals CNV 
list was labeled as an inherited CNV. In order to remove all 
possible germline CNVs, the frequencies of somatic CNVs in 
the tumor samples were obtained after removing the germline 
CNVs from the normalized pool reference. For the Discov-
ery data set, a total of 13,391  individual patient-level CNV 
gains and 20,540  individual patient-level CNV losses were 
detected. For the Validation data set, a total of 13,963 indi-
vidual patient-level CNV gains and 20,308 individual patient-
level CNV losses were detected.

Identification of recurrent CNVs. Representing CNVs as 
an interval graph. We denote a CNV segment as Rj = (lj, rj), 
where j is the jth CNV and lj, rj are its left and right chromo-
some positions. For a CNV set, we have R = {R1, R2, …, Rn}. 
When r is infinite, we call R is a right-censored univariate 
data set. An intersection graph can easily be constructed from 
R as follows: each member in R corresponds to a vertex which 
we denote by its index. Hence, Rj corresponds to vertex j. 
We denote the set of vertices as V. Two vertices j and k are 

linked by an edge if the corresponding members Rj and Rk 
in R are intersected. We denote the edge as jk and the set of 
edges as E. When the R is a linearly ordered set, the intersec-
tion graph is called an interval graph, and all interval graphs 
are triangulated.

Figure 1A shows the examples of six individual patient-
level CNV segments (A, B, C, D, E, F) on the same chromo-
some. Each of the six CNVs contains chromosomal-specific 
start (left) and end (right) positions. To identify the common 
regions of individual patient-level CNVs on the same chro-
mosome, the intersection among the individual patient-level 
CNVs can be represented as an interval graph, treating each 
called individual patient-level CNV as a vertex of the graph 
and connecting two vertices only if the corresponding inter-
vals have an intersecting region. Thus, the constructed interval 
graph G(V,E) is composed of a set of vertices V, where each 
vertex (v∈V) corresponds to a specific interval of the individ-
ual patient-level CNV and each edge ({u,v}∈E) connects two 
intersecting intervals u and v. In Figure 1B, an example of the 
interval graph is shown where A through E are the intervals 
(nodes of the graph or individual patient-level CNVs) and an 
edge connects two nodes (individual patient-level CNVs) if 
the intervals overlap.

Finding maximal cliques from an interval graph. A clique is 
a set of vertices in which any two vertices are connected by an 
edge in the interval graph. A maximal clique is a clique that 
cannot be a subclique of a larger clique. In the context of a 
CNV set R, a clique can be viewed as a set of CNV segments 
whose regions intersect. For example, Figure 1B shows that 
{A, B, C, D} is a maximal clique, as it cannot be extended by 
adding any other vertices. However, {A, C, D} is not a maxi-
mal clique but a clique, as it can be extended by adding vertex 
B to it.

To find maximal cliques in an interval graph con-
structed from individual patient-level CNVs, we applied the 
algorithm of Gentleman and Vandal.33 The main idea of the 
algorithm is to sort the vertices based on their chromosomal 
end positions. The ordering is important because it allows the  

Figure 1. Representing CNVs as an interval graph. (A) A, B, C, D, E, F 
are individual patient-level CNVs on a specific chromosome. Each of the 
CNVs has chromosome start and end positions. (B) This is an interval 
graph where A, B, C, D, E, F are the individual patient-level CNVs in (A). 
The edge between each of the two vertices in the graph represents that 
the two individual patient-level CNVs share a piece of common regions 
on the chromosome.
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algorithm to discard vertices in each iteration without losing 
the triangulation property. The input of the algorithm is the 
individual patient-level CNVs on a specific chromosome, 
which include two parameters for each CNV segment: start 
and end positions (base pair). It should be noted that we need 
to analyze CNV gains and losses separately. The algorithm 
adapted for processing individual patient-level CNV data is 
summarized as follows:

Algorithm Finding the maximal cliques M

Sort all the vertices in terms of their chromosomal end positions

Initialize M = {} and k = 0, where k is the kth maximal clique

For each vertex v, initialize S(v) = 0, where S(v) is the number of 
neighbors of v

For each vertex v, check

if adjacent neighbor of v, adj(v) is empty,  
k = k+1, Mk = {v}, M = M ∪Mk

else

Xv = adj(v), where Xv is the set of neighbos of vertex v

S(u) = max{S(u),|Xv|−1}, where u is the next vertex to be eliminated

if S v Xv( ) |

k = k+1, Mk = {v}∪Xv, M = M∪Mk

else eliminate v

return M

The output of the algorithm will be a list of maximal 
cliques. We implemented the algorithm using R package 
Icens,33 which implemented the algorithm to find maximal 
cliques of a triangulated graph based on the fact that all inter-
val graphs are triangulated.34 The method is efficient and 
the time complexity of the maximal clique detection algo-
rithm is O(n+e), where e is the total number of edges in the 
corresponding graph.

Analyzing recurrent CNVs from the maximal cliques. Each 
of the identified maximal cliques is a recurrent CNV, which is 
common in multiple patients. The shared region of the recurrent 
CNV across multiple patients is the minimal common region 
(MCR) of the CNV, which has the potential to harbor cancer-
causing genes. In practice, the size of the maximal cliques should 
be at least 2 and the size of the MCRs should be at least 1 kb.

Unlike the algorithm of Gentleman and Vandal to iden-
tify maximal cliques, Wu et al.35 also proposed an algorithm 
to identify maximal cliques for detecting recurrent CNVs. 
However, this algorithm is based on a scoring scheme where 
blocks of consecutive maximal cliques were scored, defining a 
pivot within the block and calculating the number of left and 
right end position pairs that crosses that pivot.

Results
Figure  2  shows our analysis flowchart using the maxi-
mal clique-based recurrent CNV detection. The individual 
patient-level CNV data in Discovery data set containing 997 
patient samples was separated into two CNV types: gain and 

loss. Filtering criteria include retaining CNV data that were 
generated by $10 probes and having a CNV size of at least 
5  kb. Among the total 997 patients, there are 13,391  indi-
vidual patient-level CNV gain regions and 20,540 individual 
patient-level CNV loss regions. The recurrent CNV calling 
algorithm was run separately for the CNV gains and CNV 
losses, and analysis was done chromosome by chromosome. 
Further filtering at the recurrent CNV level includes retain-
ing those that have a minimal region of at least 1 kb, and the 
number of patients per recurrent CNV region to be at least 5. In 
total, there are 351 recurrent CNV gain regions (99/351 gain 
regions encompassing protein-encoding genes) and 475 recur-
rent CNV loss regions (111/475 loss regions encompassing 
protein-encoding genes).

Validation testing was then performed using the Validation 
data set, which contains 995 patient samples. All filtering criteria 
and algorithm implementations followed the same procedure as 
the Discovery data set analysis. For recurrent CNV gain regions, 
a total of 252 regions have been validated (found in both the 
Discovery and Validation data sets), of which 67/252 regions 
have encompassed 57 unique protein-encoding genes (Supple-
mentary Tables 1 and 2). For recurrent CNV loss regions, a total 
of 350 regions have been validated, of which 77/350 regions have 
encompassed 70 unique protein-encoding genes (Supplementary 
Tables 3 and 4). In total, 144 validated recurrent CNV regions 
with protein-encoding genes have been identified, along with 
458 validated recurrent CNV regions that did not encompass 
any protein-encoding genes. There is no significant difference 
of the validated number of CNV gain and loss regions in both 
Discovery and Validation data sets (P-value = 0.58, Fisher’s exact 
test). Figure 3A and B shows the number of patients identified in 
validated recurrent CNV gain regions with the protein-encoding 
genes (A) and without any genes (B), respectively. It appears that 
most of the recurrent CNV gain regions have similar number of 
patients in Discovery and Validation sets. We also observed the 
same trend in the validated recurrent CNV loss regions with the 
protein-encoding genes (C) and without any genes (D), respec-
tively. Since the number of patients in Discovery and Validation 
sets are similar (997 vs. 995), the Y-axis in Figure 3A–D is also 
called as the proportion of the patients.

Gene set pathway overrepresentation analysis was per-
formed separately for the 67 validated recurrent CNV gain 
regions (Supplementary Table  1) and 77 validated recurrent 
CNV loss regions (Supplementary Table  3) via Consensus-
PathDB with default settings (http://consensuspathdb.org/). 
Enrichment map analysis was then performed using the soft-
ware Cytoscape (http://www.cytoscape.org/). For the recur-
rent CNV gain regions, an enrichment in the glutathione 
metabolism pathway involving cytochrome 450 is detected 
(Fig. 4A), with genes GSTM2 and GSTT1 playing a major 
role in this pathway. For the recurrent CNV loss regions, an 
enrichment in the metabolism pathway involving starch and 
sucrose digestion is detected (Fig. 4B), with genes AMY1A 
and MGAM playing a major role in this pathway.
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Gene ontology analysis was performed to determine 
the functions of the genes encompassed within the recurrent 
CNV gain (Table  1A) and loss regions (Table  1B). Overall, 
majority of the genes in both the recurrent CNV gain and 
loss regions play a role in sensory perception, especially in 
G-protein coupled receptor (GPCRs) events and chemical 
stimulus detection. GPCRs constitute a large family of pro-
teins that sense extracellular stimuli and activate intracellular 

signal transduction and have been shown to be crucial players 
in tumor growth and metastasis.36 This finding came from the 
observation that in order for tumor cells to survive and pro-
liferate, they often seize control of the normal physiological 
functions of GPCRs, including evasion of the immune system, 
increase in their blood supply, invasion of surrounding tissues, 
and metastasis to other organs.36 Chemical carcinogenesis is 
another major pathway found involving the role of chemical 
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Figure 2. Flowchart analysis for implicating proposed algorithm.
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stimulus detection. GSTT1 and GSTM2, members of the 
glutathione S-transferase (GST) superfamily, have been widely 
studied in cancer risk with regard to the homozygous deletion 
of the gene (GSTM1 null), leading to a lack of corresponding 
enzymatic activity. Since tumorigenesis requires suppression 
of the apoptotic and anti-proliferative effects of p38 MAPK 

pathway, it has been proposed that tumor cells can uncouple 
ROS production from the p38 MAPK activation in order to 
overcome the tumor-suppressive roles of p38 MAPK, and the 
increased expression of GSTM proteins in these tumor cells 
may serve this function.37 By acting as ROS sensors suppress-
ing the p38 MAPK pathway, the GStm proteins were proposed 
to be good candidate drug targets for cancer therapies.37

Conclusion
In this study, we first propose how to build an interval graph 
based on individual patient-level CNVs. A maximal clique-
based graph algorithm is then applied to call recurrent CNVs 
in breast cancer patients. The algorithm has an optimal solution, 
which means all maximal cliques can be identified. Addition-
ally, it guarantees that the identified CNV regions are the most 
frequent and that the minimal regions have been delineated. 
Our algorithm is based on the sample-specific CNVs called 
from other published CNV calling algorithms. Therefore, the 
potential uncertainties or errors in our identified recurrent 
CNVs will depend on the sample-specific CNVs identified by 
other algorithms. From application to the METABRIC breast 
cancer data set, we have identified 252 validated recurrent CN 
gain regions and 350 validated recurrent CN loss regions and 
have located the corresponding candidate genes that were 
encompassed in these regions. It should be noted that the algo-
rithm has also been successfully used to identify and validate 
recurrent CNV-based genomic signatures in circulating tumor 
cells from breast cancer,38,39 but the algorithm details have not 
been described in those applications.
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Figure 3. Comparison of the number patients in each recurrent CNV in Discovery set and Validation set. The number of patients in validated recurrent 
gain CNV regions with genes (A) and without genes (B) and in validated recurrent loss CNV regions with genes (C) and without genes (D). 
Notes: The red line represents the Discovery set and the black circle represents the Validation set.

Figure 4. Pathway enrichment map generated by Cytoscape. 
(A) Pathway enrichment map for the 67 validated recurrent CNV gain 
regions. (B) Pathway enrichment map for the 77 validated recurrent 
CNV loss regions. Each solid circle represents one pathway. Edge 
thickness represents overlap between two pathways. Color represents 
P-value – the redder the color, the lower the P-value. Node size 
represents the size of the pathway. Pathways with similar biological 
meanings were clustered, and a name was assigned to each cluster in 
the map using text-mining application “WordCloud” within Cytoscape. 
The generated name acts as a general representative of the cluster.
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Table 1. Gene ontology (GO) analysis via ConcensusPathDB.

Term_GOid Term_name P-value Q-value Term_category Term_level

(A) GO analysis of genes encompassed in recurrent CN gain regions (q-value , 0.05)

GO:0050906 Detection of stimulus involved in sensory perception 1.00E-05 0.000509 B 3

GO:0070458 Cellular detoxification of nitrogen compound 1.27E-05 0.000509 B 3

GO:1901685 Glutathione derivative metabolic process 2.38E-05 0.000509 B 3

GO:0018916 Nitrobenzene metabolic process 2.54E-05 0.000509 B 3

GO:0051410 Detoxification of nitrogen compound 4.23E-05 0.000677 B 3

GO:0009593 Detection of chemical stimulus 7.65E-05 0.00102 B 3

GO:0043295 Glutathione binding 0.00023104 0.002633 M 3

GO:0016765 Transferase activity, transferring alkyl or aryl (other 
than methyl) groups

0.00029258 0.002633 M 3

GO:0006790 Sulfur compound metabolic process 0.00091456 0.010452 B 3

GO:0042277 Peptide binding 0.00115433 0.006849 M 3

GO:0006575 Cellular modified amino acid metabolic process 0.00135798 0.01358 B 3

GO:0098553 Lumenal side of endoplasmic reticulum membrane 0.00155266 0.029828 C 3

GO:0038023 Signaling receptor activity 0.001658 0.006849 M 3

GO:0042605 Peptide antigen binding 0.00190249 0.006849 M 3

GO:0016021 Integral component of membrane 0.00248563 0.029828 C 3

GO:0009636 Response to toxic substance 0.00490397 0.043591 B 3

GO:0006805 Xenobiotic metabolic process 0.00568268 0.045461 B 3

GO:0009410 Response to xenobiotic stimulus 0.00673018 0.048947 B 3

(B) GO analysis of genes encompassed in recurrent CN loss regions (q-value , 0.05)

GO:0009593 Detection of chemical stimulus 4.11E-05 0.0025821 B 3

GO:0050906 Detection of stimulus involved in sensory perception 4.92E-05 0.0025821 B 3

GO:0016021 Integral component of membrane 6.04E-05 0.0017514 C 3

GO:0038023 Signaling receptor activity 0.0005567 0.0133617 M 3

GO:0007586 Digestion 0.0005624 0.0196841 B 3

GO:0098553 lumenal side of endoplasmic reticulum membrane 0.002344 0.0339873 C 3

GO:0009812 Flavonoid metabolic process 0.0026886 0.0705755 B 3

GO:0042605 Peptide antigen binding 0.0028693 0.0332701 M 3

Abbreviations: b, biological process; m, molecular function; c, cellular component term level: the level of the GO term in GO hierarchy.

It is becoming progressively clear that genetic studies of 
complex diseases must heed to the involvement of recurrent 
CNVs. Therefore, investigation into recurrent CNVs could 
provide significant contributions to the understanding of the 
basis of genetic variations in biological functions and disease 
predisposition. At present, CNV studies with regard to cancer 
are still in its infancy, but it is an area that is growing rap-
idly due to denser microarrays and next-generation sequenc-
ing technologies. As we lean toward personalized structural 
genomic analysis and diagnostics, the conventional genomic 
definition of what is “normal” versus “diseased” will start 
to blur. There is much to take in from previous studies on 
genomic disorders and by incorporating the knowledge of the 
vast amount of CNVs present in our genome. It can give new 
insights into the role of CNVs in cancer predisposition and 
development and contribute to a more accurate and complete 
human genome sequence reference.
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The InnerStart and InnerEnd positions of a given recurrent 
CNV are the start and end positions of the minimal common 
region of the recurrent CNV. Inner.CNV.Size is the size (base 
pair) of the recurrent CNV. Discovery.Start and Discovery.
End are the start and end positions of the minimal common 
region of the recurrent CNV in Discovery set while Valida-
tion.Start and Validation.End are the start and end positions of 
the minimal common region of the recurrent CNV in Valida-
tion set. Discovery.Cluster.Size and Validation.Cluster.Size are 
the number of samples with the recurrent CNV in Discovery 
set and Validation set, respectively. genesymbol is the symbol(s) 
of the gene(s) in the recurrent CNV region.

Supplementary Table  2. 185 validated recurrent CNV 
gain regions without encompassed genes.

Supplementary Table  3. 77 validated recurrent CNV 
loss regions with encompassed genes.

Supplementary Table  4. 273 validated recurrent CNV 
loss regions without encompassed genes.

References
	 1.	 Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the 

human genome. Nature. 2006;444:444–54.
	 2.	 Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human 

health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–81.
	 3.	 Iafrate AJ, Feuk L, Rivera MN, et al. Detection of large-scale variation in the 

human genome. Nat Genet. 2004;36:949–51.
	 4.	 Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. 

Nat Rev Gen. 2006;7:85–97.
	 5.	 Perry GH, Yang F, Marques-Bonet T, et al. Copy number variation and evolu-

tion in humans and chimpanzees. Genome Res. 2008;18:1698–710.
	 6.	 Ohno S. Evolution by Gene Duplication. Berlin, New York: Springer-Verlag; 1970.
	 7.	 Volik S, Raphael BJ, Huang G, et al. Decoding the fine-scale structure of a breast 

cancer genome and transcriptome. Genome Res. 2006;16:394–404.
	 8.	 Brodeur GM, Hogarty MD. In: Vogelstein B, Kinzler KW, eds. Part 1: Basic 

Concepts in Cancer Genetics. The Genetic Basis of Human Cancer. New York: 
McGraw-Hill; 1998:161–72.

	 9.	 Shlien A1, Malkin D. Copy number variations and cancer susceptibility. Curr 
Opin Oncol. 2010;22:55–63. 

	 10.	 Crespi BJ, Crofts HJ. Association testing of copy number variants in schizophre-
nia and autism spectrum disorders. J Neurodev Disord. 2012;4:15.

	 11.	 Liu S, Yao L, Ding D, Zhu H. CCL3 L1 copy number variation and susceptibil-
ity to HIV-1 infection: a meta-analysis. PLoS One. 2010;5:e15778.

	 12.	 Lupski JR. Structural variation in the human genome. N Engl J Med. 2007;356: 
1169–71.

	 13.	 Hyman E, Kauraniemi P, Hautaniemi S, et al. Impact of DNA amplification on 
gene expression patterns in breast cancer. Cancer Res. 2002;62:6240–5.

	 14.	 Cancer Genome Atlas Research Network. Comprehensive genomic characterization 
defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

	 15.	 Phillips JL, Hayward SW, Wang Y, et  al. The consequences of chromosomal 
aneuploidy on gene expression profiles in a cell line model for prostate carcino-
genesis. Cancer Res. 2001;61:8143–9.

	 16.	 Pollack JR, Sorlie T, Perou CM, et al. Microarray analysis reveals a major direct 
role of DNA copy number alteration in the transcriptional program of human 
breast tumors. Proc Natl Acad Sci U S A. 2002;99:12963–8.

	 17.	 Pinkel D, Segraves R, Sudar D, et  al. High resolution analysis of DNA copy 
number variation using comparative genomic hybridization to microarrays. Nat 
Genet. 1998;20:207–11.

	 18.	 Lucito R, Healy J, Alexander J, et al. Representational oligonucleotide micro
array analysis: a high-resolution method to detect genome copy number varia-
tion. Genome Res. 2003;13:2291–305.

	 19.	 Barrett MT, Scheffer A, Ben-Dor A, et  al. Comparative genomic hybridiza-
tion using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad 
Sci U S A. 2004;101:17765–70.

	 20.	 Erdman C, Emerson JW. A fast Bayesian change point analysis for the segmen-
tation of microarray data. Bioinformatics. 2008;24:2143–8.

	 21.	 Colella S, Yau C, Taylor JM, et  al. QuantiSNP: an objective Bayes Hidden-
Markov Model to detect and accurately map copy number variation using SNP 
genotyping data. Nucleic Acids Res. 2007;35:2013–25.

	 22.	 Wang K, Li M, Hadley D, et al. PennCNV: an integrated hidden Markov model 
designed for high-resolution copy number variation detection in whole-genome 
SNP genotyping data. Genome Res. 2007;17:1665–74.

	 23.	 Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of chro-
mosomal aberrations in cancer: Methodology and application to glioma. Proc 
Natl Acad Sci U S A. 2007;104:20007–12.

	 25.	 Shah S, Lam W, Ng R, Murphy K. Modeling recurrent CNA copy number 
alterations in array CGH data. Bioinformatics. 2007;23:i450–8.

	 26.	 Rouveirol C, Stransky N, Hupé P, et  al. Computation of recurrent minimal 
genomic alterations from array-CGH data. Bioinformatics. 2006;22:2066–73.

	 27.	 Kim TM, Jung YC, Rhyu MG, Jung MH, Chung YJ. GEAR: genomic enrichment 
analysis of regional DNA copy number changes. Bioinformatics. 2008;24:420–1.

	 28.	 Lipson D, Aumann Y, Ben-Dor A, Linial N, Yakhinim Z. Efficient calculation 
of interval scores for DNA copy number data analysis. J Comput Biol. 2006;13: 
215–28.

	 29.	 Ben-Dor A, Lipson D, Tsalenko A, et al. Framework for identifying common 
aberrations in DNA copy number data. Proc RECOMB’07. 2007;4453:122–36.

	 30.	 Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. 
GISTIC2. 0 facilitates sensitive and confident localization of the targets of focal 
somatic copy-number alteration in human cancers. Genome Biol. 2011;12:R41.

	 31.	 Curtis C, Shah SP, Chin S-F, et al. The genomic and transcriptomic architecture 
of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

	 32.	 Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normaliza-
tion methods for high density oligonucleotide array data based on variance and 
bias. Bioinformatics. 2003;19:185–93.

	 33.	 Gentleman R, Vandal C. Computational Algorithms for Censored-Data Prob-
lems Using Intersection Graphs. J Comput Graph Stat. 2001;10:403–21.

	 34.	 Fishburn PC. Interval graphs and interval orders. Discrete Math. 1985;5:135–49.
	 35.	 Wu HT, Hajirasouliha I, Raphael BJ. Detecting independent and recurrent copy 

number aberrations using interval graphs. Bioinformatics. 2014;30:i195–203.
	 36.	 Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev 

Cancer. 2007;7:79–94.
	 37.	 Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38α MAP 

kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell. 2007;11: 
191–205.

	 38.	 Kanwar N, Hu P, Bedard P, Clemons M, McCready D, Done SJ. Identification 
of genomic signatures in circulating tumor cells from breast cancer. Int J Cancer. 
2015;137:332–44.

	 39.	 Kanwar N, Hu P, Bedard P, Clemons M, McCready D, Done SJ. Identifying 
genomic signatures in circulating breast cancer cells from breast cancer. Cancer 
Res. 2013;73:D6–2.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10

