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ABSTRACT

Differences in the substrate specificity of mamma-
lian family X DNA polymerases are proposed to
partly depend on a loop (loop 1) upstream of the
polymerase active site. To examine if this is the
case in DNA polymerase j (pol j), here we charac-
terize a variant of the human polymerase in which
nine residues of loop 1 are replaced with four
residues from the equivalent position in pol b.
Crystal structures of the mutant enzyme bound to
gapped DNA with and without a correct dNTP reveal
that the change in loop 1 does not affect the overall
structure of the protein. Consistent with these
structural data, the mutant enzyme has relatively
normal catalytic efficiency for correct incorporation,
and it efficiently participates in non-homologous
end joining of double-strand DNA breaks.
However, DNA junctions recovered from end-joining
reactions are more diverse than normal, and the
mutant enzyme is substantially less accurate than
wild-type pol j in three different biochemical
assays. Comparisons of the binary and ternary
complex crystal structures of mutant and wild-type
pol j suggest that loop 1 modulates pol j’s fidelity
by controlling dNTP-induced movements of the
template strand and the primer-terminal 30-OH as
the enzyme transitions from an inactive to an
active conformation.

INTRODUCTION

Family X polymerases are small, single-subunit enzymes
devoid of 30- to 50-exonuclease activity that fill short
gaps during DNA repair. Mammalian cells contain four
family X polymerases, pol b, pol �, pol m and terminal

deoxynucleotidyl transferase (TdT). Pols b and � are
involved in base excision repair (BER) (1–5), whereas
TdT, pol m and pol � contribute to repairing double-strand
DNA breaks via non-homologous end joining (NHEJ)
(6,7). TdT is a template-independent polymerase that
randomly adds nucleotides to the ends of broken DNA
to generate N-regions during V(D)J recombination (8–10).
Pol m can also perform limited template-independent syn-
thesis that contributes to junctional diversity during V(D)J
recombination occurring at different developmental stages
(11,12). In addition, pol m is unique among family X
members in having the ability to fill short gaps by
template-dependent extension of primers that lack their
template strand partner (13,14). Pol � is a
template-dependent polymerase that is also implicated in
V(D)J recombination (15). Moreover, pol m and pol �, but
not TdT, are implicated in general NHEJ of DNA
damage-induced double-strand breaks that can have
variety of different end configurations (16,17).
Given their important but somewhat diverse biological

functions, it is of interest to understand the determinants
of the substrate specificities of the four mammalian family
X polymerases. X-ray crystal structures reveal that all four
enzymes share a similar structure overall, yet each enzyme
individually has small but important structural features
that are likely to be relevant to their different substrate
specificities (18). One such structural element is loop 1.
Loop 1 was first described in TdT, where it lies between
b sheets 3 and 4 of the palm subdomain. In the TdT struc-
ture, loop 1 is in a position proposed to preclude binding
of the template strand, thereby limiting TdT to
template-independent synthesis (19,20). In pol m, which is
a template-dependent polymerase that nonetheless can
conduct limited template-independent synthesis, loop 1 is
similar in length to loop 1 in TdT. Thus, when pol m is
conducting template-independent synthesis, loop 1 may
play a similar function as in TdT. Consistent with this
idea, pol m that lacks loop 1 has strongly reduced ability
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to catalyze template-independent synthesis and template-
dependent extension of a primer terminus lacking its
template partner, yet it retains the ability to perform
more classical, short gap-filling synthesis either alone or
with its partners in NHEJ (13,21). Thus loop 1 in pol m is
an important determinant of substrate specificity.
In this study, we extend previous efforts to examine the

function of loop 1 in pol m (13,21) and TdT (20) to the
analogous loop 1 in pol �. As dNTP binding induces pol �
to transition from an inactive to an active conformation, b
sheets b3 and b4 partially unravel to form loop 1, a
nine-residue loop that repositions as the DNA template
strand assumes its active conformation. Motivated by the
fact that shortening loop 1 in pol m was informative re-
garding its substrate specificity in NHEJ, here we decided
to take the same approach with pol �, by characterizing a
pol � derivative whose loop 1 was shorter than normal. In
deciding how to shorten loop 1, we took advantage of the
fact that in its family X sibling, pol b, strands b3 and b4
are shorter than in pol � and their conformation does not
change during catalytic cycling. Moreover, not only are
the nine residues of loop 1 conserved in pol � from differ-
ent organisms (Figure 1A), but certain amino acids in this
region of pol � align with those in pol b (Figure 1B), and
in a manner that suggests that five residues in pol � might
be deleted without inducing major structural changes. The
goal in studying this variant enzyme is to better under-
stand the nature of the catalytic cycle for
template-dependent DNA synthesis by pol �, both mech-
anistically, and also in the context of its biological role in
NHEJ. Toward these goals, we compare several biochem-
ical properties of the mutant enzyme to those of wild-type

(wt) pol �, when operating alone and when participating
in the more complex NHEJ reaction. We solve binary and
ternary complex crystal structures of the mutant enzyme,
and compare them with each other and to their wt coun-
terparts. The results demonstrate that loop 1 is not essen-
tial for catalytic activity, but it is important for the fidelity
of DNA synthesis and the accuracy of NHEJ. We present
a model for involvement of loop 1 in modulating fidelity
by controlling the position of the template strand and the
30-O of the primer terminal nucleotide, as pol � cycles
from an inactive to an active conformation.

MATERIALS AND METHODS

Materials

The human full-length wt pol �, full-length pol � with
deletion of loop1 (designated pol � DL) and its 39-kDa
domain were expressed in Escherichia coli and purified as
described (22). Oligonucleotides were from Oligos Etc.
(Wilsonville, OR, USA) and radioactive nucleotides were
from Perkin Elmer (Boston, MA, USA).

Specific activity

Reaction mixtures (40 ml) contained 50mM Tris (pH 7.5),
1mM dithiothreitol, 4% glycerol, 0.1mg/ml bovine serum
albumin (BSA) and either 2.5mMMgCl2, 1mg of activated
DNA (Amersham Biosciences Corp. Piscataway, NJ,
USA), 50 mM dNTPs, 5 mCi of a 32P dCTP and 50 nM
full-length wt pol � or pol � DL or 0.5mM MnCl2,
0.75 mg of pol(dA)/olido(dT) (Amersham Biosciences
Corp.), 10 mM dTTP, 5 mCi of a 32P dTTP and 10 nM wt
pol � or pol � DL. Reactions were incubated in 37�C, and
two 5 ml aliquots were removed after 5, 10, and 15min of
incubation and mixed with 45 ml of 16mM EDTA,
followed by precipitation of the synthesized DNA with
0.5ml of ice-cold 10% trichloroacetic acid (TCA) for
15min on ice. The precipitated DNA was collected by
vacuum filtration through Whatman GF/C glass fiber
filters and the amount of radioactivity bound to the
filter was measured in a Beckman Coulter LS 6500
Scintillation Counter.

Primer extension reactions

Measurements were performed with T5g, 36-mer oligo-
nucleotide, 50-CTCCGTCGTCCGGCACGTAATACTG
CTCAGTCGTAC, as template primed at a 1.2:1 molar
ratio with 50 32P-labeled P17 primer: 50-GTACGACTGA
GCAGTAT. Reaction mixtures (20ml) contained 50mM
Tris–HCl (pH 7.5), 5mM MgCl2, 1mM dithiothreitol,
2 mg of BSA, 4% glycerol and 50 mM each of dATP,
dGTP, dCTP and dTTP, 200 nM DNA and 10, 50, and
150 nM wt or pol � DL. The reactions were incubated in
37�C. Aliquots (10ml) were removed at 10 and 20min and
mixed with equal volume of 99% formamide, 5mM
EDTA, 0.1% xylene cyanol and 0.1% bromophenol
blue. DNA products were analyzed by electrophoresis in
12% denaturing polyacrylamide gels.

A                                    472
Polλ 
Hs    457 LTDDLVSQEENGQ------------QQKYLGVC 477
Mcm   457 LTDDLVSQEENGQ------------QQKYLGVC 477
Bt    457 LTDDLVSQEENGQ------------QQKYLGVC 477
Eqc   457 LTDDLVSQEENGQ------------QQKYLGVC 477
Clf   467 LTDDLVSQEENGQ------------QQKYLGVC 487
Rn    455 LTDDLVSQEENGQ------------QQKYLGVC 475
Mum   455 LTDDLVSQEENGQ------------QQKYLGVC 475
Gg    457 LTDDLVSQEDNGD------------QKKYLGVC 477
XSt   460 LTDDLVNQEVNGN------------QKKYLGVC 480
Dr    449 LTDDLVSHEENGE------------QKKYMGIC 469

Polβ  224 ITDTLSKGE-----------------TKFMGVC 239
Polμ  361 LYHQHQHSCCESPTRLAQQ-SHMDAFERSFCIF 392
TdT   375 LYYDLVESTFEKLRLPSRKVDALDHFQKCFLIF 407

B
Polλ 457 LTDDLVSQEENGQ------------QQKYLGVC 477
Polβ  224 ITDTLSKGE-----------------TKFMGVC 239

Figure 1. Loop 1 is conserved in pol � from different species. (A)
Sequence alignment of pol � loop 1 region from different species.
Identical residues are in gray background except for K472, which is
in red background. Conserved and non-conserved residues are in green
and black background, respectively. Human (Hs) pol � sequence is
aligned with sequences of pol � from: rhesus monkey, Macaca
mulatta (Mcm); cattle, Bos taurus (Bt); horse, Equus caballus (Eqc);
dog, Canis lupus familiaris (Clf); rat, Rattus norvegicus (Rn); mouse,
Mus musculus (Mum); red jungle fowl, Gallus gallus (Gg); western
clawed frog, Xenopus (Silurana) tropicalis (Xst); zebrafish, Danio rerio
(Dr); human pol b, pol m and TdT. (B) The sequence of loop 1 in pol �
(nine residues in green background) is replaced with the corresponding
sequence in pol b (four residues in yellow background).
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Kinetic analysis of nucleotide insertion

DNA substrates were prepared by hybridizing a 32P-50-
end-labeled 18-nt primer (P18, 50-AGCAGGGTAGCCC
ACTGC) and a 17-nt downstream primer (DP17, 50-GTG
GACGTTCGGTGGAG) with a phosphate on the 50-end
to a 32-mer template (TT36, 50-CTCCACCGAACGTCC
ACTGCAGTGGGCTACCCTGCT) to create a 1-nt gap
substrate. Reaction mixtures (10ml) contained 50mM
Tris, pH 7.5, 1mM dithiothreitol, 4% glycerol, 0.1mg/
ml BSA, 2.5mM MgCl2, 200 nM DNA and 4 nM
full-length wt pol � or pol � DL. Reactions were initiated
by adding dATP at one of nine concentrations (0.05, 0.1,
0.2, 0.5, 1, 2, 5, 10, 20 mM) and incubated at 37�C for
3min. To measure misincorporation, reaction mixtures
contained 50 or 100 nM wt pol � or 5 or 7 nM pol �
DL. Reactions were initiated by adding dGTP at one of
eight concentrations (1, 2, 5,10, 25, 50, 100 or 150 mM to
reactions with wt pol � or 2, 5, 10, 20, 50, 100, 150 or
200 mM to reactions with pol � DL) and incubated at 37�C
for 6min. After adding an equal volume of 99%
formamide, 5mM EDTA, 0.1% xylene cyanol and 0.1%
bromophenol blue, products were resolved on a 12%
denaturing polyacrylamide gel and quantified by
phosphor screen autoradiography. The data were fit
to the Michaelis–Menten equation using non-linear
regression.

Processivity

Measurements were performed with the same DNA sub-
strate as used in the primer extension reactions. Reactions
(20 ml) contained 50mM Tris–HCl (pH 7.5), 5mM MgCl2,
1mM dithiothreitol, 2 mg of BSA, 4% glycerol and 50 mM
each of dATP, dGTP, dCTP and dTTP, 200 nM DNA
and 2 nM wt pol � or pol � DL. The reactions were
incubated in 37�C. Aliquots (5 ml) were removed at 3, 6
and 9min and mixed with 5 ml 99% formamide, 5mM
EDTA, 0.1% xylene cyanol and 0.1% bromophenol
blue. DNA products were analyzed by electrophoresis in
12% denaturing polyacrylamide gels. Product bands were
quantified by phosphorimagry, and the probability of
terminating processive synthesis at any given site was ex-
pressed as the ratio of the amount of product at that site
to the amount of product at that site plus all longer length
products (23).

NHEJ reactions

To generate internally labeled plasmid substrates, plasmid
pRZ56 was linearized with MluI and then 10- and 11-base
50-overhangs were formed by controlled 30-resection with
T4 DNA polymerase in the presence of dTTP (24).
Construction of a vector containing a site-specific DNA
double-strand break with 30-phosphoglycolate termini and
analysis of the products of end joining in CV-1 cells (24).
An unlabeled 13-mer (50pGCCGGACGCGACG) and a
50-end-labeled 14-mer (50*pCGAGGAACGCGACG)
were ligated into the 10- and 11-base overhangs, respect-
ively, and the plasmid was purified by agarose gel electro-
phoresis and electroeluted (25). End-joining reactions
contained 3.2mg/ml extract (Promega in vitro

transcription grade), 50mM triethanolamine-NaOH (pH
7.5), 1mMMg(OAc)2, 40mM KOAc, 0.5mM
dithiothreitol, 1mM ATP, 50 mM of each dNTP,
50 mg/ml BSA, 1 mg/ml substrate and 5 mg/ml XRCC4/
DNA ligase IV complex (Trevigen). In some cases,
extracts were immnuodepleted with antibodies against
pol � (gift of Luis Blanco), as described (17). Following
incubation for 6 h at 37�C, DNA was deproteinized, cut
with BstXI and AvaI, and analyzed by denaturing gel
electrophoresis and phosphorimagry (17). Aliquots of
some reactions were transfected into DH5a bacteria,
clones were isolated and the plasmid repair joints
sequenced.

Forward mutation assay

This assay score errors generated in the LacZ
a-complementation gene in M13mp2 during synthesis to
fill a 407-nt gap. Reaction mixtures (25 ml) contained 2 nM
M13mp2 gapped DNA substrate, 50mM Tris–HCl (pH
8.5), 2.5mMMgCl2, 1mM dithiothreitol, 2 mg of BSA, 4%
glycerol and 50 mM each of dATP, dGTP, dCTP and
dTTP. Polymerization reactions were initiated by adding
full-length wt (300 nM) or DL (50 nM or 150 nM) pol �,
and were incubated at 37�C for 1 h, and terminated by
adding EDTA to 15mM. Reaction products were
analyzed by agarose gel electrophoresis as described
(26). Correct synthesis produces M13mp2 DNA that
yields dark blue phage plaques upon introduction into
an E. coli a-complementation strain and plating on indi-
cator plates. Errors are scored as light blue or colorless
mutant phage plaques. DNA from independent mutant
clones was sequenced to define the lacZ mutation. Since
most of the mutant clones generated by pol � contained
both phenotypically detectable and silent changes, the
error rates are described as the number of observed mu-
tations divided by the number of nucleotides sequenced.

Crystallography

Crystals of the 39-kDa pol � DL in complex with oligos
T11 (50-CGGCAGTACTG), PB (50-CAGTAC) and DT
(50-GCCG) for a binary complex or oligos T11T (50-CG
GCAATACTG), PT (50-CAGTA), DT and ddTTP for a
ternary complex were grown using the hanging drop
method. The protein/DNA solution contained 100mM
NaCl and 10mM MgCl2. Binary complex crystals grew
in 50mM sodium cacodylate, pH 6.5, 12% 2-propanol,
100mM ammonium acetate and 15mM magnesium
acetate. Ternary complex crystals grew in 50mM sodium
cacodylate, pH 5.5, 21% 2-propanol and 200mM sodium
citrate. Crystals were transferred in four steps to a
solution containing 50mM sodium cacodylate, pH 6.5,
12% 2-propanol, 100mM ammonium acetate, 15mM
magnesium acetate, 100mM NaCl and 25% ethylene
glycol (binary complex crystals) or 50mM sodium caco-
dylate, pH 5.5, 21% 2-propanol, 10mM magnesium
chloride, 100mM NaCl, 200mM sodium citrate and
25% ethylene glycol (ternary complex crystals) and flash
cooled. Data collection for both structures were per-
formed at �178�C on a Saturn92 CCD area detector
mounted on a MicroMax-007HF (Rigaku Corporation)
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rotating anode generator equipped with Varimax HF
mirrors. All data were processed using the HKL2000
data processing software (27). The structures were solved
by molecular replacement using ternary or binary struc-
tures of pol � wt (PDB codes 1XSN and 1SXL, respect-
ively) as search models and using MOLREP (28).
Refinement was carried out using CNS (29) and phenix
(30), and model building with O (31) and Coot (32). The
quality of the model was assessed using Molprobity (33)
and found to have good stereochemistry (Table 5).

RESULTS

Construction of pol j DL

The nine amino acids of loop 1 in human pol �
(463-SQEENGQQQ-471) were replaced with the
four-residue turn between b3 and b4 in human pol b
(Figure 1B). The resulting polymerase (pol � DL) was ex-
pressed in E. coli and purified as described (34), in two
different forms. One was the full-length protein containing
the BRCT domain that is required for use in the NHEJ
reactions (35). The other form was the 39-kDa protein
that lacks the BRCT domain but contains both the poly-
merase and 8-kDa dRP lyase domains. This protein was
used for crystallography.

Catalytic activity of pol j loop DL

The catalytic activity of pol � DL was first measured using
activated calf thymus DNA as a generic primer-template.
The specific activity of pol � DL was 3-fold higher than
that of wt pol � (1800 versus 560 pmol/nmol/min).
Because manganese has been suggested to be the physio-
logically relevant metal for pol � (36), we also measured
the specific activity of the mutant enzyme in the presence
of manganese as the activator. We performed this meas-
urement as described by Blanca et al. (36), using poly(dA)/
oligo(dT) as the DNA substrate. The specific activity of
pol � DL was 4-fold higher than that of the wt pol � (2800
versus 700 pmol/nmol/min). Next, equivalent amounts
(10 nM) of the two enzymes were compared for the
ability to extend a primer hybridized to an oligonucleotide
template (Figure 2A). Pol � DL (Lane 4) reproducibly
extended more primers and generated longer products
than did wt pol � (Lane 1). A 15-fold higher concentration
of wt pol � (Lane 3) was required to extend most of the
original primer and to obtain a DNA product ladder
similar to that observed with pol � DL (Lane 4).

Processivity of pol j DL

The experiment in Figure 2A was performed under condi-
tions that allow primers to be extended multiple times. To
measure the processivity of a single cycle of synthesis, we
decreased the ratio of enzyme to DNA substrate to ensure
that each primer was extended only once. Under these
conditions, as expected based on an earlier study (37),
wt pol � is largely distributive (Figure 2B, Lanes 1–3),
terminating synthesis after each incorporation with
�90% probability. However, pol � DL is more processive,

as illustrated by the ability to generate somewhat longer
product chains (Figure 2B) and by lower termination
probabilities following each of five incorporation events
(�60%).

Steady-state kinetics analysis of dNTP insertion

Next, we determined steady-state parameters for single
nucleotide incorporation into a 1-nt gap. For correct in-
corporation of dATP opposite template T, the apparent
Km and kcat of pol � DL differed by <2-fold from the
values for wt pol � (Table 1), such that the catalytic effi-
ciency (kcat/Km) of the two enzymes differed by only
3-fold.

Activity of pol j DL in NHEJ

To determine if the deletion of loop 1 in pol � affects its
performance in NHEJ, we examined repair of a defined,
site-specifically labeled double-strand break substrate
bearing partially complementary overhangs. Repair was
performed in nuclear extracts made from HeLa cells,
which as described previously (17), were immunodepleted
of pol � and then supplemented with either wt pol � or pol
� DL. Repair of this substrate proceeds predominantly by
annealing of the terminal CG dinucleotides in the
30-overhangs (Figure 3A), followed by single-base gap
filling that is dependent on pol �, Ku and XRCC4/DNA
ligase IV, and finally ligation, resulting in 43-base
(head-to-tail) and 24-base (head-to-head) products follow-
ing AvaI/BstXI cleavage. Pol � DL (Lane 6 in Figure 3A,
bottom panel) was as effective as wt pol � (Lane 4) in
generating the diagnostic 43- and 24-mers. In addition,
however, pol � DL also generated substantial amounts
of products that were 1-nt shorter (42- and 23-mer in
Lane 6).

These shorter products could arise by resection of one
30-overhang to a blunt end, followed by 3-nt gap filling
using the blunt end as primer and 30-overhang on the
opposite end of the break as template (Figure 3A, top
panel). However, because these substrates were con-
structed by ligating 13- or 14-mer onto 10- or 11-base
50-overhangs, there will always be some residual
50-overhangs. Thus, the blunt end from which the
putative synthesis on the 30-overhang template is primed
could also result from fill-in of such a 50-overhang during
end joining. To determine the relative efficiencies of pol �
and pol � DL in catalyzing such fill-in reactions, a sub-
strate was constructed with an oligomer ligated onto only
one end of the plasmid, i.e. having a 3-base 30-overhang at
one end and a 10-base 50-overhang at the other
(Figure 3B). When this substrate was incubated in pol
�-supplemented extracts, a prominent 24-base head-to-
head product was generated, as expected. However, in
comparison to the predominant 43-base head-to-tail
product that was generated from the substrate with two
30-overhangs (Figure 3A), this new substrate yielded a
broader distribution of less prominent products ranging
from about 33 to 42 bases (bracketed bands in Lane 4
of Figure 3B, bottom panel). The 42-base product is
consistent with continuous polymerization across both
the 50- and 30-overhangs, while the shorter products may
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reflect varying degrees of trimming of the two overhangs
prior to ligation.

Interestingly, the 42-base product was more prominent
in the pol �-depleted extracts that were supplemented with
pol � DL (Lane 6 in Figure 3B, bottom panel). This result
suggests that pol � DL is more efficient than the wt
enzyme in filling in long gaps on aligned double strand
break (DSB) ends, consistent with its intrinsically greater
polymerization activity (Figure 2A) and processivity
(Figure 2B) on simple primer-templates. As expected, a
chimera consisting of pol � with the catalytic domain of
pol b (37) did not support any end joining of this substrate
(Figure 3A and B). Extracts supplemented with pol m
yielded only the 24-base head-to-head product and no
head-to-tail products at all, consistent with previous
results indicating that it can efficiently fill only single

nucleotide gaps on aligned DSB ends (17,38).
Importantly, the pol � DL yielded a broad smear of
products surrounding the 42-mer (Figure 3B, Lane 6),
consistent with errors made during gap filling. To test
this possibility, we examined the sequences of gap filling
products in more detail. DNA from pol �
DL-supplemented end-joining reactions was transfected
into E. coli and 25 individual clones were sequenced
(Figure 4). These sequences confirmed the broad hetero-
geneity of products. Some retained the 50- and
30-overhangs, while others contained deletions (of one or
several nucleotides) and base substitutions. Four clones
contained mixed sequences consistent with ligation of
heteroduplexes generated by error-prone gap filling.
These results suggest that gap filling by pol � DL on
aligned DSB ends during NHEJ in a HeLa cell nuclear
extract is less accurate than is gap filling by wt pol �.
Consistent with these results is the observation that
primer extension by pol � DL generated additional
bands (indicated by arrowheads in Figure 2A, Lane 4),
likely products of incorrect incorporation, that were not
observed among the reaction products of wt pol
� (Figure 2A, Lane 3).

Error rates for stable misincorporation by pol j DL

The heterogeneity of the products of the primer extension
reactions (Figure 2A, Lane 4) and the NHEJ reactions
(Figure 4) prompted further examination of the fidelity
of DNA synthesis by pol � DL. For this purpose, we

A B

1

primer

2 4 53 6c
min 3 36 69 9

Pol λ WT DL c      1     2      3      4

primer

nM 1010 50 150

Pol λ WT DL

19-mer

Figure 2. Catalytic activity of pol � DL. (A) Products of primer extension reactions by wt pol � and pol � DL. Lane c: control reaction without
enzyme; Lane 1–3, reactions with 10, 50 and 150 nM pol � wt, respectively; and Lane 4, 10 nM pol � DL. All reactions were incubated for 10min in
37�C. The position of the 19-mer full-length product is indicated. Arrowheads point to the double bands in Lane 4 (pol � DL) suggesting products of
nucleotide misincorporation. (B) Products of primer extension reactions under single hit conditions; Lane c, control without enzyme; Lanes 1–3 with
wt pol �; and Lanes 4–6 with pol � DL after 3-, 6- and 9-min incubation, respective.

Table 1. Steady-state analysis of single nucleotide incorporation by

pol � DL

Enzyme Km (mM) kcat (1/s) kcat/Km (/s/mM)

Incorporation of dATP
Pol � wt 0.39±0.10 0.012±0.004 3.0� 10�2±1.3� 10�2

Pol � DL 0.62±0.126 0.0065±0.001 1.0� 10�2±0.3� 10�2

Incorporation of dGTP
Pol � wt 7.4±0.92 0.00014±5.8� 10�6 1.9� 10�5±2.5� 10�6

Pol � DL 28±4.30 0.0064±7.6� 10�4 2.3� 10�4±0.4� 10�4

The values for the kinetic constants are an average of 3–4 independent
determinations.
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used an assay that detects a broad range of different errors
at a large number of sites as a polymerase copies a
template encoding the LacZ a-complementation gene in

gapped M13mp2 DNA (26). Both wt pol � and pol � DL
completely filled the gap (data not shown). The DNA
products were then introduced into E. coli cells, the cells

Figure 3. Alignment-based gap filling by the pol � DL mutant. Internally labeled (*) substrates bearing two 30-overhangs (A) or one 30- and one
50-overhang (B) were incubated for 6 h in HeLa nuclear extracts that had been immunodepleted with either antibodies to pol � (+), or preimmune
antibodies (�), and supplemented with wild-type pol �, pol � /pol b chimera, pol � DL or polm, as indicated. Samples were deproteinized, and DNA
was cut with BstXI and AvaI and analyzed on denaturing gels. Schemes at top show mechanisms of formation of the major 43- and 42-base
products. The 24- and 23-base products are formed by gap filling and ligation as shown in (A), except between the left-hand ends of two plasmid
molecules.
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were plated on indicator plates and the total number of
dark blue M13 plaques (from correct synthesis) and light
blue and/or colorless M13 plaques (containing DNA syn-
thesis errors) were scored. Wild-type pol � and pol � DL
generated mutants at frequencies of 21% and 54%, re-
spectively (Table 2). A comparison of the DNA sequences
of independent LacZ mutants revealed that, like wt pol �,
pol � DL generated a variety of errors (Table 3) that were
distributed throughout the LacZ sequence (data not
shown). Amazingly, a total of 618 sequence changes
were identified among only 50 LacZ mutants generated
by pol � DL, i.e. an average of 12 changes per mutant.
This compares to 2.5 mutations per mutant generated by
wt pol � (39). When the sequence changes are used to
calculate error rates for individual classes of events (see
‘Materials and Methods’ section), the results indicate that
pol � DL is 2- to 3-fold less accurate than wt pol � for

single-base insertion and single- and 2-base deletion errors
(Table 2). Analysis of the specificity of single nucleotide
deletions revealed that the largest rate increase is for de-
letions at non-iterated template sequences (6.6-fold, Table
3). Based on extensive previous data [reviewed in (40)],
this specificity suggests that the majority of these single
nucleotide deletions may have been initiated by nucleotide
misinsertion followed by primer relocation to generate a
deletion intermediate with an unpaired template nucleo-
tide and a correct terminal base pair that facilitates exten-
sion. Pol � DL also generates more complex, closely
spaced substitution, substitution-deletion and
substitution-addition errors at an increased frequency
compared with wt pol � (last line in Table 2). Finally
and perhaps most tellingly, the largest effect of changing
loop 1 in pol � is the increase in the rates of single-base
substitutions, by 13-fold overall, and by 7- to 31-fold for

Figure 4. Repair joints formed in extracts depleted of pol � and supplemented with pol � DL. (A) Initial substrate. (B) Joints containing deletions
(top strand) that were recovered in multiple clones. Bottom strand shows the initial overhangs. Bold letters indicate inferred gap filling. Dashes
indicate bases that are present in the initial overhangs but missing in the repair product. Underlines indicate a 4-base microhomology. (C) Joints
involving apparent ligation of heteroduplexes. At left, bottom strand shows overhangs of the initial substrate. Above it are two sequences that were
recovered in a single clone, distinguishable by their abundance. Lower-case letters indicate apparent misinsertions. Diamond indicates apparent gap
filling across the discontinuity in the template. Inferred ligated heteroduplexes are shown at right. (D) Additional sequences, each recovered in a
single clone, including two with apparent untemplated insertions (overlines).
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different base substitutions (Table 4). To confirm that the
observed elevated substitution error rates of pol � DL are
independent of the nature of the DNA substrate (long
versus short gap), we also measured single nucleotide

misinsertion into a 1-nt gap DNA. For misinsertion of
dGTP opposite template T, the catalytic efficiency of pol
� DL was 12-fold higher than that of wt pol �, an increase
that was due to a 46-fold higher kcat (Table 1).
Collectively, these data demonstrate that deletion of
loop 1 strongly increases the ability of pol � to
misincorporate nucleotides during DNA synthesis.

X-ray crystal structures of pol j DL

With the goal of understanding why the deletion of a loop
positioned between the second and third template nucleo-
tides upstream of the active site results in normal catalytic
efficiency for correct incorporation, but reduces fidelity,
we determined two crystal structures of pol � DL. One
was a ternary complex of pol � DL bound to a 1-nt
gapped DNA substrate and an incoming correct ddTTP
(2.6 Å resolution; see ‘Materials and Methods’ section and
Table 5). The single nucleotide gap substrate used here
may be most relevant to pol �’s role in BER. The sub-
strates encountered by the enzyme during NHEJ may be
more complex. The ternary complex structure is remark-
ably similar to that of the equivalent wt pol � ternary
complex (PDBID 1XSN; root mean square deviation
(RMSD) 0.615 Å for 270Ca atoms; Figure 5A and B),
of course, with the exception of the loop 1 region. While
b-strands 3 and 4 adopt a conformation similar to that
observed in pol � wt (22), the loop that connects them in
the wt polymerase is absent (magenta in Figure 5A). This
occurs without any structural perturbation of the DNA or
any of the polymerase active site atoms, including the

Table 5. Summary of crystallographic data

PDB ID 3MGH
(binary complex)

3MG1
(ternary complex)

Unit cell dimensions (Å) 95.529�
190.931�
58.724

56.188�
63.315�
140.477

Space group P21212 P212121
Number of observations 327 225 122 110
Unique reflections 41 236 29 412
Rsym (%) (last shell) 14.7 (63.8) 11.6 (64.6)
I/sI (last shell) 10.1 (2.4) 14.0 (2.4)
Completeness (%)

(last shell)
95.6 (88.8) 99.8 (99.7)

Refinement statistics
Resolution (Å) 2.40 2.60
Rcryst (%) 20.82 20.14
Rfree (%) 26.01 27.06
Number of complexes in
asymmetric unit

2 1

No. of atoms
Protein atoms 4972 2440

Water 358 158
Ions 4 2
Heteroatoms 853 453

Mean B value (Å2) 45.05 39.83
RMS deviation from ideal values

Bond length (Å) 0.007 0.003
Bond angle (�) 1.192 0.736

Ramachandran statistics Residues in
Favored regions (%) 96.20 96.85
Allowed regions (%) 99.84 99.68

Table 2. Fidelity of pol � DL in the forward assay

Pol � DL Pol � wt

Mutant frequency � 10�2 54a 21b

Mutants sequenced 50 103
Nucleotides sequenced 20 350 41 921
Total changes 618 253

Classes Error rate � 10�4

Base substitutions 120 (252) 9 (38)
1-nt deletions 120 (239) 45 (190)
2-nt deletions 5.9 (12) 2.1 (9)
1-nt additions 3.4 (7) 1.6 (7)
Other changesc (108) (9)

The number of occurrences is given in parenthesis.
aThe mutant frequency of pol � DL represents one of seven independ-
ent determinations. The other six mutant frequencies were 43� 10�2,
48� 10�2 and 37� 10�2 (reactions with 150 nM pol � DL at pH 7.5),
39� 10�2 and 50� 10�2 (reactions with 50 nM pol � DL at pH 8.5),
54� 10�2 (reaction with 150 nM pol � DL at pH 8.5).
bThe stated mutant frequency of pol � wt, determined at the same time
as the mutant frequency of pol � DL, is identical to that reported
earlier (39). The specificity of pol � wt is from (39).
cClassified as ‘other changes’ are large deletions and complex errors
involving substitution-deletion and substitution-addition errors.

Table 4. Base substitution specificity of pol � DL

Base (n) Mutation Mispair Number of
occurrences

Error rate � 10�3

Pol � DL Pol � wt

A (99) A ! G A�dCMP 51 10.3 0.69
A ! T A�dAMP 36 7.2 0.49
A ! C A�dGMP 26 5.2 0.59

T (91) T ! C T�dGMP 42 9.2 1.40
T ! G T�dCMP 10 2.2 �0.10
T ! A T�dTMP 5 1.0 �0.10

G (95) G ! A G�dTMP 35 7.4 0.30
G ! C G�dGMP 15 3.2 0.40
G ! T G�dAMP 7 1.5 �0.10

C (122) C ! T C�dAMP 15 2.5 �0.08
C ! A C�dTMP 6 1.0 �0.08
C ! G C�dCMP 4 0.7 �0.08

Rates for wt pol � wt are from (39).

Table 3. Single nucleotide deletion error rates and the run length

Runs Length
(nucleotide)

Pol � DLa Pol � wtb

Error rate � 10�4

Observed Error rate � 10�4

One 206 89 86 13
Two 114 91 160 77
Three 57 40 140 82
Four/Five 30 19 127 81

aThe error rates were calculated by dividing the number of observed
deletions in the given category by the total number of template nucleo-
tides present in runs of the listed lengths, among the 50 pol � DL
mutants sequenced [e.g. 89/(206� 50) = 1-nt deletion rate at non-run
sequences].
bRates for pol � wt are from (39).
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dNTP-binding Mg2+ion observed in the wt structure. This
is consistent with the nearly normal catalytic efficiency of
pol � DL.

The catalytic cycle for correct incorporation by pol �
involves dNTP-induced repositioning of the DNA
template strand, and changes in the positions of several
amino acids that result in assembly of the polymerase
active site (21). These changes are also believed to play
an important role in ensuring the fidelity of synthesis
(41). For these reasons, we attempted to understand why
pol � DL has reduced fidelity by solving a second struc-
ture, in this case a binary complex of pol � DL bound to a
1-nt gapped DNA substrate but without a dNTP present
(2.4 Å resolution; see Table 5). When the wt (1XSL) and
pol � DL mutant binary complex structures were overlaid
(Figure 6A), there was good overall agreement between
the two (RMSD 0.814 Å for 267Ca atoms). Strikingly
however, starting at the �1 nt in the template strand,
and even more significantly for nucleotides �2 to �6,
the template strand of pol � DL upstream of the active
site (green in Figure 6A) adopts a novel conformation that

is intermediate between those observed in the wt ternary
complex (magenta) and the wt binary complex (blue). In
wt pol �, the location of loop 1 in a binary complex
prevents the template strand from assuming a catalytically
competent position. Loop 1 and b strands 3 and 4 need to
relocate to allow the template strand to occupy the
position observed in the ternary complex (Figure 6A). In
pol � DL, the absence of loop 1, and perhaps more spe-
cifically the absence of N467 that is in loop 1 (Figure 6B),
appears to allow the template to migrate toward the active
conformation even in the absence of an incoming dNTP
(Figure 6A and B). In addition, a comparison of the
binary complexes of wt pol � and pol � DL reveals
changes in K472 (Figure 6C) that could possibly be func-
tionally significant. Based on the wt pol � binary complex
structure (1XSL, 34), K472 may contribute to maintaining
an inactive conformation of the enzyme in the absence of a
dNTP by forming a hydrogen bond with the 30-O of the 30

nucleotide of the primer (the distance between the NZ of
K472 and the 30-O is 2.8 Å). This may be less likely in pol �
DL because in the binary complex the NZ of K472 is 3.6 Å

Figure 5. Superposition of pol � wt and pol � DL ternary complexes. (A) The structure of the pol � DL ternary complex is shown (solid colors) in
an overlay with the wt pol � ternary complex [1XSN: transparent; (22)]. The three catalytic residues (D427, D429 and D490), R514 and R517 are
shown in green, the magnesium atom is colored gold, the template strand is orange, the primer strand is yellow and the incoming nucleotide is
magenta. Loop 1 in wt pol � is shown in pink and the corresponding region in pol � DL is shown in magenta. (B) Active site of pol � DL showing
density for the incoming dNTP and Mg2+ ion. A simulated annealing Fo-Fc omit density map is shown in blue, contoured at 3s.
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from the 30-O, it is pointing away from the 30-O and it is
hydrogen bonding to a water molecule.

DISCUSSION

The focus of this study, on the importance of loop 1 on
pol �’s substrate specificity, largely derives from previous
studies indicating that loop 1 in the palm subdomain
of TdT and pol m is an important determinant of DNA
substrate specificity during NHEJ of double-strand
breaks in DNA. Loop 1 in TdT is long (20 residues) and
has been suggested to preclude binding of the tem-
plate strand and thereby contribute to its template-
independent polymerization activity (19,20). Pol m also
contains a long loop 1, deletion of which abrogates its
ability to catalyze template-independent synthesis as well

as template-dependent extension of a primer terminus
lacking its template partner during a reconstituted
NHEJ reaction (13). Nonetheless, polm lacking loop 1
still retains the ability to perform more standard
template-dependent gap-filling synthesis (e.g. when the
primer is paired with its complementary template base),
either alone or with its partners in NHEJ (13,21). Thus,
loop 1 is not required for all template-dependent synthesis
activity by pol m, but it is an important determinant of the
substrate specificity of pol m. The present study leads to a
similar general interpretation on the role of loop 1 in
human pol �, namely that loop 1 is not required for
template-dependent synthesis, but it does have an import-
ant role in defining substrate specificity. Thus, wt pol �
and its loop 1 deletion derivative have similar kinetic con-
stants for correct dNTP insertion (Table 1), similar

Figure 6. The position of the template strand and K472 is altered in pol � DL. (A) Overlay of a binary wt complex (1XSL, blue) with the binary pol
� DL structure (green) focusing on the DNA duplex around the active site. The template strand in the mutant adopts a conformation that is
intermediate between the wt binary and ternary (1XSN, the template backbone is overlaid in magenta). The primer strands are shown in yellow (pol
� DL and wt are light and dark yellow, respectively). (B) The absence of N467 allows the template strand (green) to adopt the observed conform-
ation. In the wt structure (blue), N467 hydrogen bonds with H530 (dotted line) and adopts a conformation that would clash with the conformation
of the phosphate (green surface) bridging the �2 and �3 nt of the template strand observed in the mutant structure. The structure of the wt binary
complex (blue) is overlaid for comparison.(C) Overlay of the wt (1XSL) and mutant binary complexes focusing on the position of K472. In the wt
structure, this residue is hydrogen boding (black dashed line) to the 30-O of the primer-terminal nucleotide (cyan), while in the mutant it appears to
adopt a conformation in which it hydrogen bonds (cyan dashed line) to a water molecule (red).
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specific activity with activated DNA, similar ability to
extend a simple primer-template (Figure 2), and similar
abilities to participate in NHEJ (Figure 3). If anything,
the loop 1 deletion derivative performs slightly better
than wt pol � in the latter three assays. This may partly
be a consequence of its slightly higher processivity (Figure
2B), a property suggesting that loop 1 may modulate
movement of the template strand during catalytic cycling
(see below), thus affecting translocation. However, in a
manner generally akin to loop 1 in polm, loop 1 in pol �
also appears to have an important role in determining
substrate specificity. This is because the loop 1 deletion
enzyme is considerably less accurate than wt pol �, as
evidenced by the increased diversity of DNA products
generated during NHEJ (Figures 3 and 4), by the
increased rate of misinsertion of dGTP opposite
template T (Table 1), and by the increased error rates
for a variety of errors (Tables 3), especially all 12-single
base–base mismatches (Table 4). The rate at which pol �
DL stably incorporates certain of these single base–base
mismatches into duplex DNA approaches 1%. This rate is
similar to the rate at which wt pol � generates certain
single-base deletions (39), an observation that motivated
successful efforts to obtain crystal structures of pol �
bound in a catalytically competent conformation to mis-
aligned template-primers (42). Thus, the high error rates in
Table 4 suggest that it might be possible to obtain crystal
structures of ternary complexes of pol � DL protein con-
taining mismatches in the nascent base pair binding
pocket and/or at the primer terminus.

A previous study (43) showed that, when bound to
Bacillus stearothermophilus DNA polymerase I large
fragment (family A), the 12 single base–base mismatches
are structurally diverse. It is therefore somewhat
surprising that pol � DL has increased error rates for all
12-single base–base mismatches (Table 4), which indicates
that pol � DL can accommodate, and relatively efficiently
extend from, all 12 mispairs. Furthermore, the fact that
modulation of base substitution fidelity by pol � DL is not
mispair specific is consistent with the idea that truncation
of loop 1 likely does not alter the shape of the nascent base
pair binding pocket [as, for example, is the case
with mutator pol b R283K (44) or R517K pol �
(Bebenek,K., Garcia-Diaz,M. and Kunkel,T.A., unpub-
lished data)]. Instead removal of loop 1 may allow the
enzyme to more readily achieve the active conformation
under less than ideal conditions, thus increasing a chance
of misincorporation.

Clues to how the loop 1 deletion results in such a
general loss of discrimination come from considering
loop 1 interactions during the pol � catalytic cycle. In a
binary complex of wt pol � bound to a gapped
primer-template (1XSL), prior to binding of a correct
dNTP (22), b3, b4 and the hairpin are stabilized by a
network of hydrogen bonds. These include interactions
between two residues of the hairpin: N467 and Q470
and H530 (2.6 Å) and E498 (2.9 Å), respectively. In
addition b3, which is positioned parallel to the template
strand, makes van der Waals contacts with the backbone
of the template upstream of the primer terminal base pair.
Upon dNTP binding, however, the switch from an

inactive to active conformation involves partial unraveling
of the b strands and displacement of the loop to permit the
template strand to adopt its catalytic conformation. It is
tempting to speculate that this loop is part of a system of
checks and balances that controls insertion fidelity. The
energetic penalty of relocating the loop would serve to
preserve an inactive conformation, and would be generally
only overcome upon binding of a correct nucleotide. Thus,
the loop deletion, by lowering the energetic penalty of
adopting an active conformation, eliminates one of
the checks and facilitates the adoption of an active con-
formation, thus reducing the discrimination between
correct/incorrect insertions. This would explain the
general increase in base substitution mutagenesis, and
would constitute a clear example of how actions ‘at a
distance’ (i.e. modifications distant from the active site
that influence active site function) can affect the fidelity
of a polymerase.
The differences observed for K472 between the binary

complexes of wt pol � and pol � DL described in ‘Results’
section are consistent with the possibility that K472 may
be involved in modulating the activity and the fidelity of
DNA synthesis by pol �. K472 is conserved in family X
polymerases (Figure 1), as a lysine in TdT and pol b, and
as an arginine in pol m (Arg387). Recently Andrade et al.
(45) reported that substituting Arg387 with Ala resulted in
a loss of template-independent synthesis, whereas a
change to Lys increased this activity. Thus, Arg387 plays
a key role in modulating template-independent synthesis
by pol m. Substituting the homologous lysine in TdT with
arginine or alanine (20) also results in loss of
template-independent activity, although the properties of
the two TdT mutants are not identical. These results and
the structures of TdT and pol m led Andrade et al. (45) to
propose that Arg387 stabilizes the position of the primer
terminus and, through its interaction with the primer
strand, controls the repositioning of the primer terminus
upon dNTP incorporation to allow binding and incorpo-
ration of the subsequent dNTP during template-
independent synthesis. According to their model, the re-
positioning of the primer is rate limiting for
template-independent synthesis. Substituting Arg387
with Lys may allow the primer terminus to more readily
adopt the catalytically active conformation. Our results
suggest that K472 may help to modulate template-
dependent synthesis. In the wt pol � binary complex
(1XSL), K472 is within H-bonding distance of the 30-O
of the primer terminal nucleotide. A hydrogen bond
between K472 and the primer terminus that could stabilize
the inactive conformation would need to be disrupted in
order for the 30-O to assume its catalytically competent
position. A weakened interaction between K472 and the
primer terminus, as might be the case in pol � DL, would
allow the 30-O to more easily adopt a conformation that
would support catalysis with an incorrect nucleotide
bound, reducing the discrimination between correct and
incorrect incorporation, as observed. Finally, the possible
role of K472 is consistent with a quantum mechanical/
molecular mechanical study of the catalytical mechanism
of pol �, indicating this lysine as one of the residues im-
portant for catalysis (46).
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