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A B S T R A C T   

Background: The disruption of the neurovascular unit (NVU), which maintains the integrity of the blood brain 
barrier (BBB), has been identified as a critical mechanism in the development of cerebrovascular and neuro-
degenerative disorders. However, the understanding of the pathophysiological mechanisms linking NVU 
dysfunction to the disorders is incomplete, and reliable blood biomarkers to measure NVU dysfunction are yet to 
be established. This systematic review and meta-analysis aimed to identify biomarkers associated with BBB 
dysfunction in large vessel disease, small vessel disease (SVD) and vascular cognitive disorders (VCD). 
Methods: A literature search was conducted in PubMed, EMBASE, Scopus and PsychINFO to identify blood 
biomarkers related to dysfunction of the NVU in disorders with vascular pathologies published until 20 
November 2023. Studies that assayed one or more specific markers in human serum or plasma were included. 
Quality of studies was assessed using the Newcastle-Ottawa Quality Assessment Scale. Effects were pooled and 
methodological heterogeneity examined using the random effects model. 
Results: A total of 112 studies were included in this review. Where study numbers allowed, biomarkers were 
analysed using random effect meta-analysis for VCD (1 biomarker; 5 studies) and cerebrovascular disorders, 
including stroke and SVD (9 biomarkers; 29 studies) while all remaining biomarkers (n = 17 biomarkers; 78 
studies) were examined through qualitative analysis. Results of the meta-analysis revealed that cerebrospinal 
fluid/serum albumin quotient (Q-Alb) reliably differentiates VCD patients from healthy controls (MD = 2.77; 95 
% CI = 1.97–3.57; p < 0.0001) while commonly measured biomarkers of endothelial dysfunction (VEGF, VCAM- 
1, ICAM-1, vWF and E-selectin) and neuronal injury (NfL) were significantly elevated in vascular pathologies. A 
qualitative assessment of non-meta-analysed biomarkers revealed NSE, NfL, vWF, ICAM-1, VCAM-1, lipocalin-2, 
MMP-2 and MMP-9 levels to be upregulated in VCD, although these findings were not consistently replicated. 
Conclusions: This review identifies several promising biomarkers of NVU dysfunction which require further 
validation. A panel of biomarkers representing multiple pathophysiological pathways may offer greater 
discriminative power in distinguishing possible disease mechanisms of VCD.   

Introduction 

Vascular cognitive disorders (VCD), also referred to as vascular 
cognitive impairment (VCI) or sometimes vascular cognitive impairment 
and dementia (VCID), are the second most common cause of dementia 

after Alzheimer’s disease (AD), affecting at least 7.2 million people 
worldwide [1]. VCD represent a heterogeneous group of disorders with 
multiple pathogenetic mechanisms, with the fundamental characteristic 
attributable to brain injury arising from cerebrovascular disorders that 
affect the small and large vessels of the brain [2]. One important 
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mechanism is the breakdown of the blood brain barrier (BBB) owing to 
the disruption of the neurovascular unit (NVU), a mechanism shared 
between VCD and neurodegenerative disorders [3]. 

This paper focuses on the NVU as the basic structural and functional 
subunit of the BBB. At the cellular level, the NVU is the building block of 
the brain parenchyma and comprises a basement membrane, endothelial 
cells, pericytes, vascular smooth muscle cells, glial cells (astrocytes, 
microglia, oligodendrocytes) and neurons [3]. The NVU is responsible 
for the regulation of cerebral blood flow, protection of the brain from 
blood borne toxins, and delivery of nutrients to, and clearance of waste 
products from, the brain [4]. Dysfunction of the NVU has been attrib-
uted to the degradation of endothelial cells, pericytes and loss of tight 
junction proteins [4]. Even though some BBB breakdown occurs with 
normal ageing [5], it has been found to be more pronounced in in-
dividuals with mild cognitive impairment, suggesting its association 
with early cognitive impairment [6]. Disruption of the NVU occurs in 
small and large cerebral vessel disease, following stroke [7], and in 
neurodegenerative disease [2], making it a key area of interest in the 
pathogenesis of VCD and neurodegenerative dementias. 

Activation or disruption of the NVU induces release of molecules, 
such as soluble platelet derived growth factor receptor β (sPDGFRβ) [8], 
occludin and claudin-5 [9] into the circulation, characteristic for specific 
cellular components [10]. The detection of these molecules as potential 
biomarkers in both CSF and blood could therefore serve as an indicator 
of the integrity of the NVU, and thereby the maintenance of the 
blood-brain barrier (BBB), cerebral homeostasis and cerebral blood flow 
[11]. While there are a number of reviews on biomarkers associated 
with VCD in general [2,12-14], none has solely categorised them as 
activated components of the NVU. The focal points of this review, aim to 
address gaps in the literature, and include; (1) a focus on blood and 
other fluid biomarkers, since the literature has mainly been on CSF, (2) a 
focus on blood testing would provide for an economical, minimally 
invasive, and accessible alternative that would allow clinicians to screen 
for VCD readily, (3) to date there has been no meta-analysis of NVU 
biomarkers in blood. This review provides an updated summary of 
existing blood biomarkers related to NVU pathology in large vessel 
disease, SVD and VCD. Though the primary focus of the biomarkers was 
to assist with diagnosis and mechanistic understanding of VCD, data 
were incorporated from the stroke literature as stroke is closely related 
to VCD and has been the subject of significant investigation in this re-
gard. We examined all published literature on blood biomarkers of the 
NVU and performed meta-analyses on those with three or more pub-
lished studies with relevant data format. 

Methods 

This systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines (Supplementary Table S1) [15]. A protocol was 
registered with PROSPERO (ID: CRD42023389103). 

Database search strategy 

A systematic search was conducted to identify blood-based bio-
markers along the spectrum of VCD and cerebrovascular pathologies. 
The search was conducted in PubMed, Scopus, Embase (via Ovid) and 
PsychINFO (via ProQuest) for studies from inception until 20 November 
2023. Search terms included combinations of the Medical Subject 
Headings and keywords for three themes: VCD, NVU and blood bio-
markers (Supplementary Table S2). No restriction for publication period 
was set. Filters were applied for language and to exclude non-journal 
publications. Two authors (G.K.H. and T.J.) independently performed 
a search of the terms and evaluated all titles and abstracts using the 
prespecified eligibility criteria (see section below). Removal of dupli-
cates and screening was performed via Rayyan software [16]. During the 
screening phase, bibliography lists of nine review articles were checked 

for additional primary studies using the snowball sampling design. In 
the event of any disagreement, a third author (S.H.) was consulted to 
reach a consensus. 

Inclusion and exclusion criteria 

Eligible studies met the following inclusion criteria: (1) conducted in 
individuals with vascular neurocognitive disorders (VCD) or cerebro-
vascular disorders (large vessel stroke or small vessel disease); (2) 
conducted in humans; (3) assayed one or more specific markers in serum 
or plasma; (4) assessed a biomarker relevant to a component of the NVU 
(extracellular matrix, tight junctions, pericytes, neuroglia and endo-
thelial cells); (5) English language only and (6) original, primary man-
uscripts. In addition to the mentioned inclusion criteria, studies 
shortlisted for the meta-analysis had to have a case-control study design 
and include a healthy control group. 

Studies were excluded from both the meta-analysis and systematic 
review if they belonged to any of the following categories: (1) animal 
studies; (2) non-cerebrovascular based studies, (3) studies involving 
vascular surgery or aneurysms, (4) studies conducted on other neuro-
logical diseases that may cause cognitive impairment such as Alz-
heimer’s disease, Parkinson’s disease, encephalopathy, traumatic brain 
injury and depression, (5) studies on biomarkers not related to a NVU 
component, (6) studies which only analysed biomarkers in tissues other 
than blood or CSF (e.g. Urine and saliva); and (7) other publication types 
(reviews, editorials, comments etc.). Full text of shortlisted studies was 
obtained for further review and data extraction. 

Data extraction 

Data extraction was performed by two authors (G.K.H. and T.J.). 
Data indices included the primary author’s name, year of publication, 
mean age of subjects, sample size for cases and/or controls, number (or 
%) of female subjects, specimen type (serum or plasma), method of 
measurement, name of study or country or place of recruitment (where 
applicable), assessed blood biomarker(s), association measure and out-
comes pertaining to the biomarker of interest. In case of missing or 
unclear data, authors were contacted by email. Meta-analyses were 
performed when data (expressed as mean ± SD) were available for a 
minimum of three studies per biomarker to obtain reliable estimates. 
Studies without a healthy control group were excluded from the meta- 
analysis. Extracted values for stroke case groups were from baseline 
scores and if not provided, values close to the onset of stroke were 
extracted. 

Qualitative analysis 

To perform a comprehensive review of the topic, shortlisted studies 
that met the general inclusion criteria for the review but not the meta- 
analysis were summarised qualitatively. This was the case for most 
studies on VCD as there were insufficient articles on biomarker mea-
surements related to the NVU. Studies on cerebrovascular disorders 
lacking the statistical reporting values of interest, healthy controls or if 
they were present in a count of less than 3 for a biomarker, were also 
summarised qualitatively. 

Quantitative analysis 

The test for skewness was performed using the method described in 
Wan et al. [17] as implemented in the R package ‘metamedian’ for 
studies reporting median, first and third quartiles. Means and SDs were 
estimated based on quartiles, minimum, maximum and sample sizes 
using two methods [17] (1) under the normality assumption for the 
biomarkers by Wan et al. [17,18] (2) under non-normal distributions for 
the biomarkers by McGrath et al. [19], as implemented in the R package 
‘estmeansd’. 
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Meta-analysis was performed using raw mean difference (MD) be-
tween cases and controls. Due to differences in biomarker measures and 
large variability across studies, studies were removed from the meta- 
analysis if their 95 % confidence intervals (CI) do not overlap with the 
CI of the pooled effect size (outliers). Random effects model was selected 
to address known methodological and analytical heterogeneity. Statis-
tical heterogeneity was assessed using the I2 statistic (values of 25 %, 50 
% and 75 % indicate small, moderate and large heterogeneity, 
respectively). 

Considering the large variations in estimated and reported means, 
SDs and MDs within each biomarker, the meta-analysis was repeated 
using the unit-free standardised mean difference (SMD), effect size 
measure and sensitivity of statistical inference on the pooled results 
were assessed. 

Publication bias within the meta-analysed studies was examined 
using the Egger’s regression test for funnel plot asymmetry as imple-
mented in R package ‘metafor’. The effect size calculations, meta- 
analyses and forest plots were done using the appropriate functions in 
the R packages ‘metafor’ [20] and ‘dmetar’ [21]. 

Quality evaluation 

The quality of studies was assessed using a modified version of the 
Newcastle-Ottawa Quality Assessment Scale (NOS) (Supplementary 
Table S6–7). The adaptation of questions was validated by consultation 
with senior authors (P.S. and A.P.). Two authors (G.K.H. and T.J.) 
independently appraised three aspects of the scale: selection of study 
groups, comparability of the groups and the outcome of interest. The 
maximum number of points awarded to each section was three, one and 
two for case-control studies respectively and two for each section for all 
other study types. Final NOS score for each study ranged from 0 (lowest 
quality) to 6 (highest quality). Studies with a score of 0–2 were identi-
fied as low quality, 3–4 as medium quality and those between 5 and 6 
considered to be of high quality. Discrepancies in the quality assessment 
were resolved by consensus. 

Fig. 1. PRISMA flowchart of Identification and Selection of studies based on the eligibility criteria.  
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Results 

Search results and study characteristics 

The search strategy from four databases yielded 2796 results (Fig. 1). 
An additional 10 studies were included from reviews and manual 
searching. We screened 2806 titles and abstracts and reviewed 359 full- 
text articles, finally including 112 studies. In total, 27 biomarkers were 
identified as indicators of NVU dysfunction (Table 1). Five out of the 26 
studies met the inclusion criteria for VCD and were included in the meta- 
analysis (Fig. 1& 2), while the remaining 21 were included in the 
qualitative synthesis (Fig. 1& Supplementary Table S3). Eighty-six 
studies on cerebrovascular disorders were shortlisted out of which, 29 
were meta-analysed and 57 summarised qualitatively (Fig. 1). A list of 

all included studies is provided in the Supplementary section (Supple-
mentary Tables S3–5, S8). 

Quality assessment and publication bias 

Assessment of technical aspects of the available data, such as quality 
of individual manuscripts, publication bias and qualitative analyses are 
provided in Supplementary Tables S6–7. 

Quantitative analysis 

For those studies reporting quartiles, means and SDs were estimated 
assuming both normally and non-normally distributed outcome vari-
ables. Some biomarkers were found to have skewed distributions 

Table 1 
Classification of identified blood fluid biomarkers based on NVU component.  

NVU Component Blood Biomarker Number of VCD Studies Number of Cerebrovascular Studies   

Plasma Serum Plasma Serum 

BBB Permeability Q-Alb* CSF/Plasma: 2 
[22,24] 

CSF/Serum: 4 [23,25, 
26,87]  

CSF/Serum:1 [55] 

Endothelial 
Dysfunction 

vWF 4 [67,72-74] – 14 [27-30,36,110-118] – 
PECAM-1 – – 1 [116] 1 [119] 
Endothelin-1 – – 1 [76] – 
ICAM-1 2 [67,68] 1 [120] 12 [36,38,41,43,113,116,117,121-125] 5 [39,42,64,126,127] 
VCAM-1 2 [37,67] 1 [66] 11 [36,38,40,41,46,113,122-125,128] 6 [37,39,42,64,126,129] 
E-selectin 2 [37,67] – 15 [27,28,36,38,40,41,45-47,65,86, 

116,122,124,125] 
6 [37,39,42,44,64,129] 

P-selectin 1 [68] – 9 [28,40,45,47,86,111,114,116,128] 2 [42,64] 
VEGF – 1 [70] 6 [31,86,113,130-132] 12 [32-35,51,64,133-138] 

Tight junction 
proteins 

VE-Cadherin – – – 1 [139] 
Claudin-5 – – – 4 [9,138,140,141] 
Occludin – – – 7 [9,79,138,140-143] 
ZO-1 – – – 3 [9,79,140] 

Neuronal Injury NSE – 2 [91,144] 3 [54,112,114] 8 [32,52,53,138,145-148] 
NfL – 3 [105–107] 4 [46,149-151] 7 [11,48,49,152-155] 
NFH – – – 2 [156,157] 
Total Tau – – 1 [158] 1 [147] 
Neurogranin – – 1 [158] – 
Neuronal 
Pentraxin 2 

– 1 [159] – – 

Neuroglial Injury Lipocalin 2 2 [94,95] – – – 
GFAP – 1 [106] – 2 [93,134] 
S100β – 2 [91,108] 2 [46,112] 12 [32,33,50,51,129,134,138,145, 

147,156,160,161] 
Galectin-3 – 1 [162] – – 
MgAb – 1 [163] – – 

Extracellular Matrix MMP-2 – 1 [109] 2 [86,123] – 
MMP-3 – – 1 [123] 1 [135] 
MMP-9 1 [85] – 8 [55,86,112,122-124,164,165] 5 [64,79,134,135,138]  

* Both CSF and plasma samples are required for the measurement of the CSF/Plasma albumin quotient. The numbers represent the quantity of studies, with the 
respective references in superscript. 

Fig. 2. Meta-analysis plot for CSF-Serum albumin quotient (Q-Alb) in vascular neurocognitive disorders (VCD). 
Abbreviations - N1: Number of case subjects; N2: Number of control subjects; Mean 1: Mean of case subjects; SD 1: Standard deviation of case subjects; Mean 2: Mean 
difference of controls; SD 2: Standard deviation of controls. 
The summary results within parentheses followed by the RE model correspond to the test of heterogeneity among the studies. P-value for significance of the MD is 
shown in supplementary table S9. 
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(Supplementary Table S8). Both MD and SMD measures were meta- 
analysed, with comprehensive results including p values reported 
within the text shown in supplementary tables S9-S10. The meta- 
analysis of MD with means and SDs estimated assuming non-normal 
distribution are shown in Forest plots (Figs. 2 and 3). 

Meta-analysis of VCD biomarkers of BBB integrity 

The Q-Alb quotient was the only biomarker of VCD with sufficient 
replicate studies (n = 5) that it could be meta-analysed (Supplementary 
Table S9 and Fig. 2). Q-Alb quotient was upregulated in VCD patients (n 
= 405) relative to healthy controls (n = 509) [22–26] (MD = 2.77; 95 % 
CI = 1.97–3.57; p < 0.0001, moderate heterogeneity across studies; I2 =

50.0 %). 

Meta- analysis of NVU component biomarkers in cerebrovascular disorders 

Endothelial dysfunction 
Four of 14 studies on von Willebrand factor (vWF), a glycoprotein 

crucial to hemostasis, involving stroke and healthy controls were meta- 
analysed (Fig. 3.1A). The vWF levels were significantly upregulated in 
people with cerebrovascular disease compared to healthy controls (370 
stroke and 3513 controls; MD = 21.77; 95% CI = 12.07 to 31.48; p =
<0.001, with moderate heterogeneity across studies; I2 = 58.0%) 
[27–30]. Five of 18 studies on vascular endothelial growth factor 
(VEGF), a master regulator of angiogenesis, were meta-analysed 
(Fig. 3.1B), with VEGF elevated in stroke patients (n = 365) relative 
to healthy controls (n = 315) (MD = 132.08; 95 % CI = 47.75–216.41; p 
= 0.002, I2 = 99.4 %) [31–35]. 

Fig. 3.1. Meta-analyses of biomarkers in cerebrovascular disorders. 
Abbreviations – N1: Number of case subjects; N2: Number of control subjects; Mean 1: Mean of case subjects; SD 1: Standard deviation of case subjects; Mean 2: Mean 
difference of controls; SD 2: Standard deviation of controls. 
The summary results within parentheses followed by the RE model correspond to the test of heterogeneity among the studies. P-value for significance of the MD is 
shown in supplementary table S9. 
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Neuroglial and neuronal injury 
Patients with cerebrovascular diseases showed increased levels of 

vascular cellular adhesion molecule-1 (VCAM-1) (7 studies; 308 stroke 
patients and 388 neurologically normal controls; MD = 90.98; 95 % CI =
24.64 to 157.31; p = 0.007; I2 = 89.8 %) (Fig. 3.1C) [36–42] as well as 
upregulated intercellular adhesion molecule-1 (ICAM-1) levels (427 
subjects and 460 controls; MD = 34.54; 95 % CI = 12.29–56.78; p =
0.002; I2 = 82.1 %) (Fig. 3.1D) [36,38-40,42-44]. Blood levels of 
E-selectin (10 studies; 505 subjects with stroke and 724 controls; MD =
9.20; 95 % CI = 4.62–13.79; p < 0.001, I2 = 89.3 %) (Fig. 3.2A) [28,36, 
37,39-42,44-46] and P-selectin (5 studies; 560 subjects with stroke or 
SVD and 2787 controls; MD = 17.4; 95 % CI = 2.67–32.12; p = 0.02, I2 =

94.4 %) were increased in cerebrovascular diseases compared to healthy 
controls [28,40,42,45,47] (Fig. 3.2B). 

NfL, a major component of the neuronal cytoskeleton, was signifi-
cantly higher in subjects with stroke or SVD (3 studies; 125 subjects) 
compared to 90 healthy controls (MD = 46.33; 95 % CI = 22.97–69.69; p 
= 0.0001; I2 = 30.5 %) [46,48,49](Fig. 3.2C). 

Four studies analysed differences in S100 calcium-binding protein B 
(S100B), a commonly used astrocyte marker, levels between 134 pa-
tients with stroke and 99 healthy controls. S100B levels were elevated in 
stroke patients relative to controls (MD = 0.03; 95 % CI = 0.01–0.06; p =

0.02, I2 = 99.7 %) (Fig. 3.2D) [33,46,50,51]. Three studies comparing 
circulating neuron specific enolase (NSE) concentrations, an enzyme 
released from neurons during injury, between 272 stroke patients and 
132 controls, and reported significantly upregulated levels in stroke 
subjects (MD =11.89; 95 % CI = 7.23–16.54; p < 0.001, I2 = 96.2 %) 
(Fig. 3.2E) [52–54]. 

Publication bias 

Statistical examination using the Egger’s regression test revealed no 
publication bias for the list of studies included in the final meta-analysis 
(Supplementary Table S9, column 0). 

Discussion 

This review summarises the evidence on biomarkers associated with 
NVU pathology and identifies altered markers in patients with VCD or 
cerebrovascular disorders such as stroke. The data indicates a diversity 
of blood biomarkers associated with cerebrovascular disease with or 
without cognitive impairment. The biomarkers can be theoretically 
linked to multiple disease mechanisms, including increased BBB 
permeability caused by endothelial dysfunction or disruption of tight 

Fig. 3.2. Meta-analyses of biomarkers in cerebrovascular disorders. 
Abbreviations – N1: Number of case subjects; N2: Number of control subjects; Mean 1: Mean of case subjects; SD 1: Standard deviation of case subjects; Mean 2: Mean 
difference of controls; SD 2: Standard deviation of controls. 
The summary results within parentheses followed by the RE model correspond to the test of heterogeneity among the studies. P-value for significance of the MD is 
shown in supplementary table S9. 

G.K. Hansra et al.                                                                                                                                                                                                                              



Cerebral Circulation - Cognition and Behavior 6 (2024) 100216

7

and adherens junctions, as well as injury to neurons, neuroglia and the 
interstitial matrix (Table 1, Fig. 4). 

BBB integrity 

The meta-analysis of plasma Q-Alb levels, as a marker of increased 
BBB permeability, showed an increase in VaD, subcortical small vessel 
disease and CADASIL patients when compared to healthy individuals 
[22–26] and were found to correlate with poor neurological outcomes in 
stroke [55]. Q-Alb levels were also elevated in other neurodegenerative 
disorders such as AD, Parkinson’s disease dementia and frontotemporal 
dementia [24], but one study found that Q-Alb levels were highest in 
participants with VaD and mixed dementia compared to those with AD 
[25]. Furthermore, this association was not observed in AD cohorts 
without vascular risk factors [56,57]. Q-Alb may therefore be a useful 
biomarker of a compromised BBB and, by inference, NVU integrity, but 
more research is needed to determine its efficacy as a marker for dif-
ferential diagnosis. Even though, it is the most widely used biomarker 
for BBB permeability, it is important to note that the calculation of Q-Alb 
levels requires the analysis of both serum and CSF samples. 

Interestingly, Q-Alb has been found to correlate with sPDGFRβ levels 
[58,59]. Shed by pericytes, sPDGFRβ is another valuable biomarker of 

NVU disruption given its association with cognitive dysfunction in the 
CSF and serum of AD subjects [60,61]. 

The review also identified blood biomarkers of endothelial cells, 
junction proteins and neuronal injury, all key components of the NVU. 
While the evidence for most of these markers is limited, they may serve 
as potential avenues for future work to establish blood biomarkers for 
VCD in relation to other brain diseases. 

Endothelial dysfunction 

Significant elevation of all cell adhesion molecules (CAMs) in cere-
brovascular disorders, (Fig. 3.1, Supplementary Table S8) were observed 
in the meta-analyses when MD was analysed. CAMs are essential for 
mediating leukocyte recruitment to sites of tissue damage across the 
vascular endothelium and can be released as soluble forms into the 
bloodstream as part of a feedback mechanism [62]. Studies that 
measured multiple CAMs found only one protein family, either VCAM-1, 
ICAM-1 or E-selectin to be associated with severity of SVD or lower 
cognitive scores (Supplementary Table S5). The association between 
ICAM-1 and poor cognition was particularly noteworthy being observed 
in a longitudinal study that followed up with participants for 16 years 
[63]. Furthermore, increased expression of CAMs in cerebrovascular 

Fig. 4. Overview of the NVU and its associated blood biomarkers. 
The NVU is comprised of endothelial cells, a basement membrane, pericytes, glial cells and neurons. It is postulated that hypoperfusion and reduced cerebral blood 
flow arising from vascular pathologies trigger a sequence of events, such as the release of ROS which can activate pericytes and astrocytes to secrete MMPs as well as 
other cellular components. MMPs have been linked to the degradation of the basement membrane and junction proteins, which can be detected in the brain tissue or 
peripheral circulation. Additionally, ischemic conditions can disrupt pericyte-endothelium interaction causing the release of soluble PDGFRβ and disruption of 
junction proteins. Activated pericytes release MMP-9 further contributing to the breakdown of the BBB. Increase in activated MMPs, ROS and cytokines can 
potentially induce neuronal dysfunction and damage. With the disruption of the BBB, blood proteins such as albumin enter the brain tissue and CSF. Additionally, 
proteins indicative of neuronal injury (NfL, NfH, NSE), synaptic dysfunction (neurogranin, neuronal pentraxin-2), astrocyte injury (S100B, GFAP and lipocalin-2) and 
pericyte dysfunction (sPDGFRβ) may enter the bloodstream. In response to inflammation, endothelial cells release various molecules such as VCAM-1, ICAM-1, P- 
selectin, E-selectin, endothelin, VEGF and vWF into the blood. Most of the derived biomarkers apart from Tau, microglial antibodies and galectin-3 are included here. 
Image created by first author GKH using the program BioRender.com. 
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pathologies correlate with imaging markers such as lacunes (small areas 
of brain tissue damage/small subcortical infarcts), white matter hyper-
intensities (WMH) [64] and cerebral microbleeds suggesting potential 
use of these markers as indicators of cognitive impairment [65]. How-
ever, levels of these proteins in the blood of VCD and cerebrovascular 
disorders have been inconsistent. For example, VCAM-1 and E-selectin 
have been linked to poorer cognition and VCD in some studies [66,67] 
but the association with ICAM-1 and P-selectin is conflicting [68] 
(Supplementary Table S3). 

Our meta-analysis also found upregulated blood vWF and VEGF 
levels in cerebrovascular disorders compared to healthy controls, with a 
large effect size for VEGF (Fig. 3.1). VEGF is a protein produced by 
vascular cells and neurons and is known to be a master regulator of 
angiogenesis involved in growth, maintenance and vascular repair; 
furthermore, VEGF mediates neuronal survival [31,69],. One study 
found blood VEGF to be associated with VaD incidence [70] however, 
increased levels of circulating VEGF could also be a reflection of ageing 
[71]. Similarly, vWF levels were able to distinguish VCD subjects from 
healthy controls [72,73] and positively correlated with poor cognition 
and WMH [74]. Plasma vWF is derived mainly from endothelial cells 
rather than platelets; therefore, vWF is a gold standard measurement of 
endothelial damage [45]. Other less commonly studied proteins, such as 
PECAM-1 (CD31), which has been linked to worsening neurological 
outcome and endothelin-1, a predictor of VaD in cognitively intact 
adults [75], were also upregulated in the serum of stroke patients [76]. 

Tight and adherens junction proteins 

Interestingly, qualitative analysis of results from our search found 
less commonly studied blood biomarkers such as the tight junctions 
(TJs) and adherens junctions to be present in the peripheral circulation 
of humans (Supplementary Table S5). Functional characteristics of TJs 
are attributed to various proteins, namely the claudins, occludin and 
cytoplasmic zonula occludens (ZO), which are responsible for regulating 
the permeability of endothelial cells in the cerebrovasculature. Disrup-
tion of these junctions may contribute to increased BBB leakage [77]. 
Claudin-5, occludin and ZO-1 were each upregulated in stroke patients 
compared to healthy controls. Specifically, increased levels of claudin-5 
and ZO-1 were associated with worsening outcomes as a result of hae-
morrhagic transformation, while increased occludin levels were asso-
ciated with severe cognitive impairment (Supplementary Table S5). The 
strength of correlation analyses between some of these proteins and 
stroke outcomes have been inconsistent in other studies. VE-cadherin, 
an adherens junction protein involved in regulating the adhesion of 
brain endothelial cells [78], was significantly upregulated in the blood 
of stroke patients [79], congruent with a recent study, where 
VE-cadherin levels were seen to be reduced in the brain and increased in 
the CSF of preclinical AD patients [80]. Though there are currently no 
studies measuring the levels of junction proteins in the blood of humans 
with VCD, BBB impairment resulting from degradation of TJs has been 
reported in endothelial cell culture models [81] and animal models of 
hypoxia-ischemia [82]. Analysing these structural proteins may provide 
possible insights into the pathophysiology of cognitive impairment 
associated with vascular pathologies as their degradation is an early 
indication of NVU dysfunction. The anatomical location of TJs and 
adherens junctions between adjacent endothelial cells of the BBB, may 
pose a challenge for their measurement in the systemic circulation. 
However, with the utilization of sensitive and specific assays, they may 
provide a novel avenue for monitoring the prognosis of vascular con-
tributions to cognitive impairment. 

Extracellular matrix proteins 

Increased permeability of the BBB can be attributed to MMP related 
proteolytic degradation of the basal lamina and TJs [83]. MMP-9 is 
activated in hypoxic conditions [84], found to be elevated in VCD [85] 

and stroke patients [86] as well as associated with cognitive decline and 
worsening neurological outcomes. Though elevated blood MMP-2 levels 
have also been reported in VCD subjects with multiple infarcts and 
stroke [87], results for MMP-3 levels in cerebrovascular disorders were 
conflicting (Supplementary Table S5). 

Neuroglial and neuronal injury 

Findings from the meta-analysis revealed that subjects with cere-
brovascular disorders have higher levels of NfL and NSE in their blood 
than do healthy controls (Fig. 3.2). NfL levels also correlated with 
neuroimaging lesions such as lacunes, microbleeds as well as, cognitive 
function in VCD and SVD. Notably, serum NfL successfully predicted 7- 
year changes in cognition in patients with a pure form of VaD. Similarly, 
a recent meta-analysis of 19 studies in 4237 patients with cerebrovas-
cular events by Sanchez, Martirosian [88] found blood NfL levels to be a 
suitable diagnostic marker for distinguishing between cerebrovascular 
subtypes. 

Qualitative evidence suggests similar patterns with neurofilament 
heavy chain (NfH) levels as it differentiated patients with neurological 
disorders from controls and correlated with infarct volume (Supplemen-
tary Table S5). There are fewer studies on NfH levels in VCD, but elevated 
levels have been seen in the CSF of VaD and AD patients in comparison to 
controls [89]. Neurofilaments with light, intermediate, and heavy chains 
are important for the maintenance of the cytoskeleton and together with 
NSE, have been widely recognised as markers of neuronal injury. In the 
event of hypoxia-ischemia, these molecules leak out of neurons, pass 
through the BBB and enter the peripheral circulation [90]. A positive 
correlation between serum NSE and WMH with NSE blood levels is a 
predictive marker in the progression of cognitive impairment [91]. 

S100B, glial fibrillary acidic protein (GFAP) and lipocalin-2 are 
proteins expressed in astrocytes, the most abundant glial cell type, and is 
critical for a healthy NVU. Therefore, elevation of these proteins serve as 
possible indicators of astrocyte injury [92]. A meta-analysis of studies 
revealed that S100B is upregulated in cerebrovascular disorders 
compared to controls (Fig. 3.2). S100B is not normally present in the 
peripheral circulation but is released following stroke and has been 
commonly implicated in brain injury. Elevated levels of serum GFAP 
have been found in ischemic stroke [93] and intracranial haemorrhage e 

[65] with lipocalin-2 increased in the blood of VaD [94] and AD patients 
[95]. Though activated astrocytes have been reported to contribute to 
the breakdown of the BBB [96], the exact pathogenic mechanisms 
involving lipocalin-2 and its diagnostic capability in cognitive impair-
ment is unclear. 

Many of these biomarkers were analysed in relatively few studies and 
with small sample sizes. As biomarkers such as GFAP and NfL are 
elevated in various brain disorders, their specificity for neuro-
degeneration needs to be evaluated in greater detail. The issue of 
whether NfL can be considered a primary marker of NVU integrity re-
mains unresolved. As a major constituent of the neuro-axonal cyto-
skeleton, elevated NfL is typically reported in the CSF as a reflection of 
axonal damage, either primary or secondary to processes such as Wal-
lerian degeneration [97–99]. Presence of elevated levels of NfL in the 
blood may therefore be a downstream effect of compromised BBB 
integrity, as has been reported in several brain diseases [100–103]. By 
contrast, others have failed to identify an association between NfL and 
BBB permeability [104]. Therefore, altered fluid levels of NfL in VCD, as 
identified in this review, cannot be regarded as a specific marker of NVU 
integrity. Further studies are warranted to validate the efficacy of these 
proteins as useful markers of BBB-related pathology and cognitive 
decline in the periphery. 

Small vessel disease and cognitive impairment 

There are only a limited number of studies investigating biomarkers 
of SVD and cognitive impairment. Out of these studies, vWF [67,72-74], 
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NSE [105], NfL [88,105-107], S100β [91,108] and Lipocalin-2 [94,95] 
appeared to be the most robust biomarkers across studies . 

Strengths and limitations 

To our knowledge, this is the first systematic review and meta- 
analysis on blood biomarkers pertaining to NVU pathology in both 
VCD and cerebrovascular disease. This study accounted for selection 
bias by having two independent reviewers perform screening of initial 
results. In addition, the extraction of eligible studies from reference lists 
maximised the inclusion of relevant studies. Various statistical tests 
were conducted using both SMD and MD measures (Supplementary 
Tables S8–10) before results were described based on non-normal esti-
mation with MD measurements (Supplementary Table S9), therefore, 
allowing for the recognition of heterogeneity in biomarker levels. Also, 
there was limited disagreement (6%) among the three analysed domains 
when the quality of each study was assessed independently by two 
reviewers. 

Our review has several limitations. Due to the limited number of 
studies related to NVU components in VCD subjects, we were unable to 
perform quantitative analysis to conclude statistical significance. Most 
of our meta-analyses have low study numbers which could have 
contributed to low statistical power. Some studies with wide deviations 
in measurements were removed from the meta-analyses. Additionally, 
the use of mean and SD values could have limited the inherent variance 
and not taken into account the skewness of the data. Some of the bio-
markers were analysed in stroke cohorts but not in VCD patients. Hence, 
their actual potential as a diagnostic marker in VCD is not known. 
Despite exhaustive searches across four databases, we might have 
missed some eligible studies and data from a small number of studies 
had to be extrapolated from the bar graphs as there were no responses to 
requests for unprocessed data from authors. Apart from NfL and vWF, 
high heterogeneity was present in the analyses for all other biomarkers. 
This could have been attributed to a variety of factors including vari-
ability of fluid biomarkers, study subjects and sample size. It has also 
been argued that Egger’s test on MD can lead to an overestimation of 
false positive outcomes [21]. Finally, as the biomarkers were analysed 
separately, it is unclear to what extent they are correlated. 

Conclusion 

Multiple blood biomarkers were quantitatively altered in VCD and 
cerebrovascular disorders. However, only nine biomarkers for cerebro-
vascular disorders and one for VCD could be meta-analysed, high-
lighting the limited research in VCD. Tight and adherens junctions 
(Claudin-5, Occludin and VE-cadherin), which have only been studied in 
animals and in a small number of human participants with stroke, 
should be analysed for their potential diagnostic role in VCD alongside 
other markers such as VEGF, NfL, vWF, Q-Alb and MMP-2/9. The 
diagnosis of VCD is likely to require a diverse panel of markers consid-
ering the heterogeneous nature of this disorder with multiple pathogenic 
mechanisms and more importantly, for the identification of various 
subtypes. In fact, one study found a panel of biomarkers associated with 
increased BBB permeability such as albumin quotient and MMP-2 amidst 
other inflammatory biomarkers to be the most predictive model for the 
diagnosis of subcortical ischemic vascular dementia [109]. As NVU is a 
hallmark of many neurological diseases, measuring its function could 
aid not only differential diagnosis but also prognosis and disease 
monitoring. Blood biomarkers of BBB permeability, pericytes and the 
integrity of endothelial cells, junction proteins, neurons and glia there-
fore deserve much greater enquiry. 
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