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Abstract: Recent high-throughput sequencing revealed that only 2% of the transcribed human genome
codes for proteins, while the majority of transcriptional products are non-coding RNAs (ncRNAs).
Herein, we review the current knowledge regarding ncRNAs, both host- and virus-derived, and their
role in respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. RSV is
known as the most common cause of lower respiratory tract infection (LRTI) in children, while hMPV
is also a significant contributor to LRTI in the pediatrics population. Although RSV and hMPV are
close members, belonging to the Pneumoviridae family, they induce distinct changes in the ncRNA
profile. Several types of host ncRNAs, including long ncRNA (lncRNA), microRNAs (miRNAs), and
transfer RNA (tRNA)-derived RNA fragments (tRFs), are involved as playing roles in RSV and/or
hMPV infection. Given the importance of ncRNAs in regulating the expression and functions of
genes and proteins, comprehensively understanding the roles of ncRNAs in RSV/hMPV infection
could shed light upon the disease mechanisms of RSV and hMPV, potentially providing insights into
the development of prevention strategies and antiviral therapy. The presence of viral-derived RNAs
and the potential of using ncRNAs as diagnostic biomarkers are also discussed in this review.
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1. Introduction

Respiratory syncytial virus (RSV) is the most common viral pathogen causing lower respiratory
tract infection (LRTI) in young children, the elderly, and immune-compromised patients. Globally,
RSV is estimated to cause 24.8 million cases and about 70–80 K LRTI deaths annually, and 54% of these
deaths occur in children younger than 5 years [1]. Of the pathogens responsible for LRTI, RSV infection
accounts for 85% of bronchiolitis and 20% of pneumonia, and is the major reason for hospitalization in
infants [2]. Severe RSV infection is also associated with increased incidences of persistent wheezing,
decreased lung function, asthma, and possibly allergic sensitization later in life [3–7]. To date, there are
no effective vaccines or specific drugs against RSV. Palivizumab, a humanized monoclonal antibody, is
the only Food and Drug Administration (FDA)-approved measure for preventing severe RSV-associated
respiratory illness. However, RSV prophylaxis with palivizumab is only recommended for infants that
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are at high risk because of prematurity or other medical problems, such as congenital heart disease [8].
Human metapneumovirus (hMPV) is another major cause of bronchiolitis in early childhood. In
some reports, it is claimed to be second only to RSV [9]. hMPV is responsible for ~10% of LRTI
requiring hospitalization in children [10]. Seroepidemiology studies indicate that >90% of children
have been infected with hMPV by 5 years of age [11]. Clinical studies indicate that hMPV infection
is also linked to wheezing and asthma exacerbations in children and adults [12–15]. Other than the
pediatrics population, patients with immunologic disorders, defects of the heart and/or lung structures,
and organ transplantation are also high-risk groups to develop severe diseases following RSV or hMPV
infection [16,17]. Currently, there are no licensed vaccines or antiviral therapies for hMPV, and the
treatment is only supportive.

There are many differences between the RSV and hMPV, although their clinical manifestations,
including rhinorrhea, cough, fever, and respiratory distress, are often indistinguishable in patients [18].
For example, the peak age of hMPV-infected children is about 13–24 months old, while the peak age of
RSV is 0–3 months old [19]. The incidence peak of RSV is in winter, while hMPV peaks in spring [16].
The blood eosinophil level in RSV patients is higher than that in hMPV patients [20]. Moreover, RSV
and hMPV trigger different host immune responses [21–24].

The majority (98%) of the mammalian genome is transcribed to RNAs without coding potential,
known as non-coding RNAs (ncRNAs) [25]. ncRNAs can function as regulators of translation,
RNA splicing, and gene expression by participating in transcriptional and post-transcriptional gene
regulation, heterochromatin formation, histone modification, and DNA methylation [26–28]. In the last
two decades, extensive studies have provided numerous evidence for the involvement of ncRNAs in
virtually all biological pathways [29,30], including proliferation, differentiation, apoptosis, autophagy,
tissue repair and remodeling, and immune responses.

According to the length, ncRNAs could be classified into small ncRNAs (sncRNAs, <200 nt)
and long ncRNAs (lncRNAs, > 200 nt). MicroRNAs (miRNAs), Piwi-interacting RNAs (piRNAs),
small nucleolar RNAs (snoRNAs), and recently discovered tRNA-derived RNA fragments (tRFs) all
belong to sncRNAs. The infection of RSV or hMPV can significantly alter the expression profile of host
ncRNAs and some impacted ncRNAs have been shown to play significant roles in viral replication
and/or host responses. In this review, we provide an overview of the latest knowledge and summarize
existing data on ncRNAs involved in RSV and hMPV infections.

2. miRNAs in RSV and hMPV Infections

miRNAs, the most widely studied sncRNAs, are endogenous, single-stranded ncRNAs of
18–24 nt in length. They are usually guided by Dicer to be loaded into the Argonaute protein
complex termed RNA-induced silencing complex (RISC) to carry out their function [31]. The loaded
miRNAs then use their “seed sequence”, a conserved six-eight base sequence which is mostly
situated at the 5′-end of the miRNA, to recognize and bind to special sequences within the 3′ or
5′ untranslated or coding region of messenger RNA (mRNA) targets via partial complementary or
complementary base-pairing [32]. miRNA/RISC-mRNA interactions lead to post-transcriptional gene
silencing, including mRNA degradation/cleavage or preventing mRNA from being translated [33].
Single miRNAs can potentially target over 300 different transcripts [34]. Additionally, novel and
unconventional functions of miRNAs keep emerging, such as epigenetic modification, the promotion
of efficient splicing of nascent mRNA, and their regulation on the expression/functions of other
ncRNAs [35]. Numerous pieces of evidence demonstrate that miRNAs impinge on nearly all biological
processes in mammals. Indeed, approximately 60% of protein-coding genes in the human genome
are more or less controlled by miRNAs, and the altered expression of miRNAs has been observed in
various diseases, such as cancer, cardiac pathologies, airway diseases, and viral infections [36–39].
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2.1. Both RSV and hMPV Alter Global miRNAs Expression Profile

Both microarrays and high-throughput sequencing techniques have been used to identify the
changes in miRNA expression in response to RSV/hMPV infection. Altered miRNAs by RSV and
hMPV are listed in Tables S1 and S2, respectively. Changes of miRNA expression by RSV infection have
been demonstrated in a variety of cell types, including cell lines, such as A549, Hep2, and polarized
Calu-3 cells, and primary cultured cells, such as normal human bronchial epithelial cells (NHBEs),
small alveolar epithelial cells (SAECs), and monocyte-derived dendritic cells (moDCs) from normal
human peripheral blood mononuclear cells (PBMCs) [40–46]. Clinical patient samples, including those
from nasal mucosa, peripheral blood, and PBMCs specimens, were also used to study the miRNA
changes in response to RSV infection [47–50].

Changes of miRNA in airway epithelial cells (AECs) by RSV. AECs are the primary targets of
RSV [51]. They sense the infection through pattern-recognition receptors (PRRs), including cytosolic
RIG-I-like receptors and Toll-like receptors (TLRs) on the surface of cells, and then activate innate host
responses, which can induce a cascade of chemotactic factors for the recruitment of a series of innate
immune cells to infected sites [52–54]. Therefore, studying the changes in miRNAs and the function of
miRNAs in ACEs is significantly important in understudying the disease mechanisms of RSV.

The impact of RSV on miRNA expression was first investigated in a miRNA microarray platform.
Bakre et al. used a miRNA microarray to compare the miRNAs expression in mock- and RSV-infected
A549 cells [42]. A549 cells are a commonly accepted cell model for respiratory virus infections. They
found nine miRNAs with increased expression (fold≥ 1.5) and four miRNAs with decreased expression
(fold≥ 1.5). qPCR confirmed the increase of let-7f, miR-24, miR-337-3p, miR-26b and miR-520a and the
suppression of miR-198 and miR-595 by RSV. Several other studies using qPCR also revealed that RSV
induces miR-24, miR-29a, and miR-6087 in A549 cells [43,44,55]. The changes in miRNA expression
were also studied in Hep2 cells by Eilam-Frenkel et al., who discovered miR-146a-5p to be up-regulated
by prolonged RSV infection. Compared with control Hep2 cells, let-7c, miR-345-5p, and miR-221 are
downregulated by prolonged RSV infection [46].

Changes in the miRNA expression by RSV were also investigated in NHBEs by a multiplex qPCR
array. 24 miRNAs including miR-221 are downregulated and 2 miRNAs are significantly upregulated
by RSV [41]. These results are consistent with the discovery from Thornburg et al. who found altered
miRNAs in RSV-infected NHBEs by microarray and qPCR [40]. Thornburg et al. also revealed that
RSV modifies miRNA expression in a cell-type-specific manner and the induction of some miRNAs,
such as let-7i and miR-30b, by RSV is dose-, time-, and replication-dependent [40].

miRNAs in AEC exosomes. Exosomes, nanovesicles derived from endosomes, are important for
mediating proximal and distal cell-to-cell communication via the horizontal transfer of bioactive cargos,
affecting the gene expression, metabolism and cellular functions of recipient cells [56]. Exosomes are
involved in viral transmission and modulation of immune responses [57,58]. miRNAs can also be
packaged into exosomes, and then be delivered to target cells [59]. Using next-generation sequencing,
Chahar et al. characterized exosomes released from RSV-infected A549 and found that RSV induces
significant changes in exosomal RNA composition [55]. There is a significant miRNA increase in
exosomes derived from RSV-infected cells. miRNAs account for ~1.5% of total sncRNA reads in mock
exosomes, whereas the miRNA percentage increases to ~14.3% in RSV exosomes [55]. By analyzing
the miRNAs with >10 reads in exosomes derived from mock or RSV-infected cells, 66 miRNAs are
commonly present in mock and RSV exosomes. Among these 66 miRNAs, 56 and 10 miRNAs are
significantly upregulated and downregulated respectively by RSV. There are also 25 miRNAs, which
are only detectable in RSV exosomes, and 9 miRNAs, which are only present in mock exosomes.
The potential targets of altered miRNAs were subjected to Gene Ontology (GO) functional classification
analysis, and the most significant target groups are related to DNA binding, transcriptional and
post-transcriptional regulation, alternative splicing, and chromatin modification [55].

In summary, the AEC data demonstrated that RSV infection dramatically alters the expression
profile of miRNA in AEC. Some RSV-altered miRNAs are common among cells. For example, let-7f is
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commonly induced by RSV in A549, polarized Calu-3, and SAECs [42,45,55]. miR-221 is decreased in
RSV-infected NHBEs and Hep2 cells [41,46]. Some changes in miRNA seem to be time-dependent. For
example, let-7c is elevated at 48 h post-infection in NHBEs [40], but is suppressed in Hep2 cells with
prolonged RSV infection [46]. The mechanism underlying the time-dependent miRNA regulation by
RSV is largely unknown.

RSV-changed miRNAs in patient samples. miRNAs are emerging as potential biomarkers and
prognosis factors for diseases [60]. An investigation of the miRNA profile in RSV patients was
recently carried out, to facilitate the discovery of novel biomarkers for RSV infection and to better
understand the interplay between RSV and host responses. Inchley et al. profiled miRNAs expression in
nasopharyngeal aspirate (NPA) samples from infants less than 12 months of age with acute RSV disease
in Akershus, Norway [48]. Several cell types are present in NPA samples: granulocytes, squamous
epithelial cells, and ciliary epithelial cells. Fourteen samples from severe RSV patients, thirteen mild
RSV samples, and another thirteen samples from healthy clinical controls were analyzed by a miRNA
microarray. Compared with the control group, there are eight upregulated and three downregulated
miRNAs in RSV samples with mild or severe diseases. There is one miRNA, which is upregulated
only by severe RSV infection but downregulated in mild disease samples. Fourteen miRNAs are
significantly downregulated only in the mild RSV group (experimentally confirmed ones are listed in
the Table S1). Notably, some RSV-regulated miRNAs, such as miR-203a, miR-27b, miR-29c, miR-34b,
and miR-34c, are also impacted by asthma in adults [61,62]. Whether this serves as a mechanism
contributing to the association of early-life RSV infection with later development of asthma needs to
be investigated. Another interesting observation in this study is that miR-125 is downregulated in
mild and moderate RSV disease groups, but not in the severe group. The downregulation of miR-125
may protect mild or moderate disease patients from an excessive innate immune response with a more
severe disease phenotype, as miR-125a can function as a positive regulator of NF-κB and macrophage
activation [63,64].

A study describing miRNAs fingerprint in the whole blood of RSV patients was done by a miRNA
microarray in 2017, Age-matched healthy infants were recruited to form a control group [47]. The qPCR
validated that miR-106b-5p, miR-20b-5p, and miR-342-3p are upregulated, while miR-320e, miR-320d,
miR-877-5p, miR-122-5p, and miR-92b-5p are downregulated by RSV. Bioinformatics analysis also
demonstrated that genes, potentially targeted by RSV-affected miRNAs, are enriched in a large number
of pathways associated with inflammatory and immune processes, such as insulin signaling, TGF-β
signaling, Wnt signaling, T and B cell receptor signaling, and Fc epsilon RI signaling pathways.

In another study, Zhang et al. used qPCR to study RSV-regulated miRNAs using RNA samples
from the peripheral blood and NPA. The samples were collected from bronchiolitis children with RSV
infection (6.8 ± 3.9 years, n = 104; 45% male) or healthy controls (6.5 ± 4.1 years, n = 40; 55% male) [49].
miR-140-5p is downregulated in both NPAs and peripheral blood samples of RSV patients and the
downregulation of miR-140-5p appears to correlate with the severity of RSV disease.

miRNAs expression in PBMC samples of RSV patients were also recently explored. Liu et al.
collected PBMCs from 20 bronchiolitis children infected with RSV and 20 healthy children. The group
found that miR-26b is significantly induced in RSV patient samples [50]. This result is consistent
with the finding of miR-26b in RSV-infected A549 [42]. In clinical NPA samples, microarray results
demonstrated miR-26b to be significantly enhanced in severe RSV group. However, the qPCR validation
failed [48]. Despite qPCR results, these independent studies highlighted the importance of miR-26 in
RSV infection.

Summary of RSV-regulated miRNA. A miRNA family is a group of miRNAs that have a close
sequence or common structure configuration. Normally, members from the same miRNA family have
similar physiological functions. Many independent studies demonstrate that RSV infection induces
the changes in miRNA members belonging to the let-7, miR-30, and miR-320 families. For example,
let-7 family members are upregulated by RSV in clinical samples. Let-7d is enhanced in NPA samples
of RSV patients [48]. Let-7f is induced by RSV in A549 cells and Calu-3 cells [42,45,55]. let-7c and
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let-7i are enhanced by RSV infection in NHBEs [40]. Let-7b is greatly more in RSV infected moDCs
than uninfected cells [40]. In exosomes from RSV-infected A549 cells and SAECs, let-7a, let-7e, let-7f,
and let-7i are also significantly higher than control cells [55].

Similar to the effect of RSV on the expression of the let-7 family, miRNAs of the miR-30
family are also commonly impacted by RSV infection. miR-30a, -30b, and -30c are significantly and
respectively enhanced by RSV in normal NHBEs, moDCs, and A549 cells-derived exosomes [40,55,65].
The expression of three members of the miR-320 family (miR-320a, miR-320b, and miR-320c) is
increased by RSV in A549 and exosomes derived from A549 [55], whereas the other two miRNAs of
this family (miR-320d and miR-320e) are decreased in peripheral blood of RSV patients [47]. These
findings suggest the key miRNA families in RSV infection and their potential as diagnostic markers
and therapeutic targets.

miRNAs and their changes in AEC by hMPV infection. We recently discovered that
hMPV-controlled miRNA expression is also cell-type-specific. In hMPV-infected A549, 201
upregulated miRNAs (by ≥1.5-fold) and 72 downregulated miRNAs (by ≤0.7-fold) were revealed
by an ultra-high-throughput sequencing study [66]. The qPCR assays validated the induction of
let-7f and miR-452 and the downregulation of miR-374a* and miR-192. We also found that the M2-2
protein of hMPV plays a significant role in the expression of miR-30a and miR-16. Although wild
type hMPV(hMPV-WT) infection does not affect miR-30a and miR-16 expression, the virus lacking
the M2-2 gene (hMPV-∆M2-2) significantly increases miR-16 and miR-30a and the overexpression
of M2-2 in hMPV-∆M2-2-infected cells reverses the increase of miR-16 and miR-30a [66]. Further
experiments indicated that the induction of miR-16 depends on type I IFN signaling, as the inhibition
of M2-2 on miR-16 induction is impaired in U4A cells, a cell line lacking IFN signaling because of JAK-1
deficiency [66]. Comparable miR-16 expression in WT- and ∆M2-2-infected U4A cells also suggested
that IRF-3 and NF-κB are not important for miR-16 induction, although M2-2 deletion resulted in
more activated IRF-3 and NF-κB in U4A cells [67]. In contrast to miR-16, M2-2-controlled miR-30a
expression seems to be IFN signaling independent. In the absence of JAK-1, hMPV-∆M2-2 still induces
more miR-30a than the WT virus in U4A cells.

Changes of miRNAs in immune cells by hMPV. The induction of miR-182-5p and miR-4634 by
hMPV in human moDCs cells was reported recently [65]. Moreover, the miRNA profile of RSV-infected
moDCs was also compared with that of hMPV-infected moDCs cells [65]. The induction of some
miRNAs seems virus-specific. For example, RSV infection induces miR-30a, miR-4448, and miR-4634,
without impacting miR-182-5p expression, while miR-4448 or miR-30a are not influenced by hMPV
infection. The distinguished miRNAs patterns suggest that RSV and hMPV may use these miRNAs to
develop virus-specific strategies to regulate cellular responses. In addition to virus-specific induction
of miRNAs, some miRNAs are commonly inducible by both viruses. Among those, the predominant
miRNA induced by both viruses is miR-4634.

2.2. Antiviral and Host Responses Controlled by miRNAs

Many RSV- and hMPV-regulated miRNAs are critical for the host responses to viral infections.
For example, miR-140-5p, whose expression in NPA and peripheral blood samples are much lower in
RSV patients, is critical for the regulation of pro-inflammatory responses in NHBEs because inhibiting
miR-140-5p enhances pro-inflammatory responses [49]. The cells transfected with miR-140-5p inhibitor
produce more TNF-α, IL-1β, IL-6, and IL-8 compared with those transfected with negative control
miRNAs. Luciferase-UTR assays confirmed that TLR4, a sensor for RSV to initialize antiviral cascade,
is the target gene of miR-140-5p, suggesting that the host uses downregulated miR-140-5p to enhance
TLR4 expression and its antiviral signaling. miR-140-5p is also found to be inducible by IFN- α

treatment [49], likely contributing to the prevention of RSV-induced IFN storm.
Let-7f, an hMPV-induced miRNA in A549 cells, is functionally important for viral replication

control. Let-7f inhibitor significantly enhances hMPV replication and progeny virus production, while
let-7f overexpression leads to an opposite effect [66].
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Neurotrophic factors and their receptors contribute significantly to the pathophysiology of
airway inflammation and hyperreactivity in response to RSV infection [68,69]. RSV infection
has been shown to upregulate nerve growth factor (NGF) and its cognate high-affinity receptor
tropomyosin-related kinase A (TrKA) and NGF-TrKA axis contributes to prolonged RSV infection and
associated pathogenesis [70,71]. Othumpangat et al. found that RSV suppresses miR-221 to enhance
the expression of NGF and TrKA, both at mRNA and protein levels. The overexpression miR-221,
compared with negative control miRNA, prevents the increase in NGF and apoptosis in cells. In addition,
the numbers of RSV-infected cells and progeny viruses are reduced by miR-221 overexpression [41],
demonstrating the role of miRNAs in controlling the RSV-associated pathophysiology. Other miRNAs
contributing to the pathogenesis mechanisms of RSV include miR-146a-5p and miR-345-5p, which
are induced and suppressed by RSV infection, respectively [46]. The mechanism underlying the
pathogenesis effect of miR-146a-5p is not clear. However, RSV-suppressed miR-345-5p might increase
the p21 protein level to promote cell cycle arrest and prolong the RSV infection [46].

The role of RSV G protein in miRNA induction and associated host responses. In contract to
the antiviral role of let-7f in hMPV infection, let-7f favors RSV infection [42]. The protein G of RSV
seems important in the let-7f induction, as A549 cells infected by recombinant RSV lacking the G gene
(RSV-∆G) have less let-7f than those infected by wild type RSV. In addition, purified RSV G protein
remarkably triggers the induction of let-7f in A549 [42]. These results suggest that RSV G induces more
let-7f to promote RSV replication. Let-7f has been reported to directly target genes associated with
cell proliferation, survival, and immune cell recruitment, such as cyclin D1 (CCND1), dual-specificity
tyrosine phosphorylation regulated kinase 2 (DYRK2), E74-like factor 4 (ELF4) C-C motif chemokine
ligand 7 (CCL7), and suppressor of cytokine signaling 3 (SOCS3) [72–74]. The deregulation of
CCND1, DYRK2, and ELF4 may result in aberrant cell cycle progression, leading to RSV-induced G1
arrest [75]. In addition, ELF4 is critical for host antiviral response, which can be induced by IFN-β and
upregulates IFN-β expression in a feed-forward loop [76]. The chemoattractant CCL7 is important
for the recruitment of monocyte-derived cells to inflamed lung early after RSV infection [77]. SOCS
proteins have been identified as inducible feedback inhibitors of cytokine receptors [78]. Therefore, it
is likely that RSV uses G to induce let-7f to inhibit the expression of CCND1, DYRK2, ELF4, CCL7 and
SOCS3 to favor RSV infection. Although Moore et al. showed SOCS3 protein expression is suppressed
by RSV G protein in mouse lung epithelial (MLE)-15 cells [79], while purified RSV G protein induces
SOCS3 protein expression in NHBEs in another study [80]. These seemingly contrary findings hint at
the complicated multifaceted functions of G in modifying host antiviral responses.

Similar to let-7f, miR-24 also favors RSV replication as the inhibition of miR-24 impairs RSV
replication. miR-24 facilitates RSV replication possibly through its complementary binding to the
3′ UTR of DYRK2 directly, leading to the suppression of DYRK2 in A549, and miR-24 could work
cooperatively with let-7f to affect DYRK2 expression and viral replication [42]. Furthermore, miR-24
has been considered to directly target IFN-γ in CD4+ T cells [81]. It seems that the CX3C motif in
G protein was reported to contribute to the induction of let-7f and miR-24 [45]. In polarized Calu-3
cells grown at the air-liquid interface (ALI), recombinant WT RSV induces more let-7 and miR-24
than rA2-GC4, a recombinant RSV containing a point mutation in the CX3C motif at Cys186 (C186S),
demonstrating the importance of CX3C motif of G protein in the induction of let-7f and miR-24. Since
rA2-GC4 induces less miR-24 than WT, rA2-GC4 is more capable in inducing IFN-γ than WT RSV,
further supporting the importance of the CX3C motif of G protein in mediating miR-24-mediated
host responses.

Recently, the G protein has also been shown to regulate the induction of miR-26b by RSV. The
expression of miR-26b in WT-infected PBMCs is significantly higher than that in cells infected with
RSV-∆G [50]. PMBC samples from RSV children exhibit more miR-26b and less TLR4 than those from
healthy children, and the miR-26b level is negatively correlated with the TLR4 mRNA level (R2 =

0.5169). Luciferase-UTR assays confirmed that TLR4 is targeted by miR-26b in PBMCs and the TLR4
mRNA level is higher in RSV-∆G-infected cells compared with WT. All these results demonstrate that
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the G protein induces miR-26b to suppress TLR-4 as one of the mechanisms to favor RSV infection.
Furthermore, the induction of CCL5 and IFN-β, two key downstream products of TLR4, is significantly
enhanced by miR-26b inhibitor in RSV-infected cells and RSV-∆G induces more CCL5 and IFN-β than
WT. In clinical samples, the negative correlation between miR-26b and plasma IFN-β (R2 = 0.4777) and
CCL5 (R2 = 0.5023) concentrations were also observed, supporting that the G protein likely decreases
the induction of CCL5 and IFN-β by inducing miR-26b to target TLR-4-mediated signaling.

The importance of NS1/NS2 in miRNA induction/function. Other than RSV G protein, RSV NS1
and NS2 proteins are also involved in regulating host miRNA expression. Both NS1 and NS2 impair
let-7i and miR-30b induction by RSV in NHBEs [40]. Mutant RSV lacking NS1 (RSV-∆NS1) or NS2
(RSV-∆NS2) induces more let-7i and miR-30b than WT. Moreover, the induction of let-7i by RSV seems
augmented by IFN-β. Combined with previous studies demonstrating the inhibitory roles of NS1
and NS2 in RSV-induced type I IFN signaling [82–84], these results suggest that NS1 and NS2 may
suppress let-7i induction via inhibition of type I IFN signaling.

NS1 also suppresses miR-24 expression to regulate the expression of its target Kruppel like
factor 6 (KLF6). RSV-∆NS1 induces more miR-24 and less KLF6 in A549 than WT, while the NS1
overexpression suppresses the miR-24 expression [43]. The interaction between miR-24 and its target
KLF6 seems bidirectional [43], as silencing KLF6 by siRNA significantly increases miR-24 and decreases
its downstream effector TGF-β and viral replication, suggesting that NS1 induces KLF6 to suppress
miR-24 expression and enhance TGF-β. Interestingly, TGF-β1 stimulation leads to the induction of both
KLF6 and miR-24, suggesting the complicated interplay among RSV, miR-24, KLF6, TGF-β, and also
other possible unidentified molecules in the network.

RSV NS1 also regulates miR-29a [44]. RSV infection significantly increases miR-29a expression
in A549, but RSV-∆NS1 fails to do so, suggesting that NS1 is responsible for the miR-29a induction.
Induced miR-29 seems to target IFNAR1, a key molecule serving as one of two chains of a receptor
for IFN-α/β to mediate the type I IFN signaling, because the overexpression of NS1 impairs IFNAR1
expression while the miR-29a inhibitor abolishes NS1-mediated IFNAR1 downregulation. miR-29a
suppression also leads to attenuated RSV replication. All these results support that RSV uses its NS1 to
induce miR-29, which targets IFNAR1 to enhance RSV replication.

In summary, all studies described above have demonstrated that many RSV- and hMPV-regulated
miRNAs are critical for modifying host responses. In Figures 1 and 2, some affected cellular signaling
and survival-related paths are respectively summarized, together with the information on how viral
proteins contribute to miRNA-mediated pathways.
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3. tRFs and Their Roles in RSV Infection

tRFs are an emerging family of sncRNAs that are critically involved in many biological processes.
They derive from either pre-tRNA or mature tRNAs. As shown in Figure 3, the tRFs are generally
classified into tRF-1 series, tRF-3 series, and tRF-5 series [85].
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tRFs exhibits multiple biological roles with underlying molecular mechanisms largely unknown.
A subset of tRFs has been shown to have a gene trans-silencing function using AGOs [86]. Since AGOs
are a common platform to some miRNAs and tRFs, tRFs have been reported to affect miRNA-mediated
gene silencing by competitively binding to Ago proteins [87]. tRFs also have been found to suppress
the stability of multiple mRNA transcripts in breast cancer cells by displacing the 3’ untranslated
regions (UTRs) of targets from the RNA-binding protein called Y box binding protein 1 (YBX1) [88].
Besides the effect on mRNAs stability, tRFs also participate in the modulation of translation initiation
and elongation [89–92], and function like piRNAs to interact with Piwi proteins and emerge as a novel
apoptosis suppressor [93,94].

RSV infection leads to considerable changes in sncRNA profiles in A549 [95]. In mock cells,
the majority of sncRNAs belong to miRNAs (65.4% of total reads), tRFs only account for 1.5% of total
reads. In response to RSV infection, tRFs become the most abundant type of sncRNAs (34.1% of
total reads) and miRNAs are only 6.4%. Among increased tRFs, most of them derived from 5′-end
of mature tRNAs, i.e., tRF5s [95]. Three tRFs derived from the 5′end of tRNAs GluCTC, GlyGCC,
and LysCTT (namely, tRF5′-GluCTC, tRF5-GlyGCC, and tRF5-LysCTT, respectively) have been shown
to have a gene trans-silencing function like miRNAs, but with different regulatory mechanisms. It is
commonly known that the 5′-portion of miRNAs are generally important in gene suppression. Unlike
miRNAs, the 5′- portion of tRFs seems not so important [95,96]. Another significant difference between
tRFs and miRNAs is their biogenesis mechanism. miRNAs production is known to be regulated by
Drosha/Dicer dominantly, while the induction of tRF5-GluCTC, -GlyGCC, and -LysCTT by RSV is
dependent on a ribonuclease called angiogenin (ANG) [95,96]. It is also interesting that the effect of
ANG on tRNA cleavage is tRNA structure-dependent as the cleavage happens often in the anticodon
loop of tRNAs, producing about 30 nt-long tRFs. In contrast to RSV, hMPV does not induce these
tRF5s [95,96], suggesting the induction of tRFs is virus-specific.

The induction of tRFs is also replication-dependent, as UV-inactivated RSV fails to induce
tRFs. Northern blot assays of RNA samples from the nuclear and cytosolic fractions demonstrated
that RSV-induced tRFs exist exclusively in the cytoplasm [95]. An antisense oligonucleotide
against tRF5-GluCTC leads to decreased RSV yield and suppressed induction of IL-8, RANTES
and IFN-β [95,97], confirming the biological roles of tRF5-GluCTC in RSV infection. By sequencing
tRF5-GluCTC-associated RNAs, several potential targets of tRF5-GluCTC are identified. Since
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tRF5-GluCTC has a gene trans-silencing function, previous RSV microarray data was incorporated into
the analysis, generating a new set of targets that are commonly present in tRF5-GluCTC-complex and
RSV-downregulated mRNA dataset. These targets were then ranked in favor of the interaction energy
between the target and tRF5-GluCTC and apolipoprotein E receptor 2 (APOER2) was chosen for the
verification [97]. The assay using a luciferase reporter containing the sequence complementary to the
predicted target region of APOER2 revealed the luciferase expression to be sensitive to tRF5-GluCTC.
The mutagenesis study confirmed the targeting specificity of tRF5-GluCTC. To assess the consequence
of the interaction between APOER2 and tRF5-GluCTC, the function of APOER2 was investigated and
APOER2 was discovered to interact with RSV P protein, leading to the sequestration of the P protein
away from the formation of the RNA-dependent RNA polymerase (RdRp) complex and subsequent
suppression of RSV replication. In summary, RSV uses induced tRF5-GluCTC to suppress the APOER2
expression, allowing more P proteins available for the RdRp formation to promote RSV replication
(Figure 4) [97]. Similar to tRF5-GluCTC, both tRF5-GlyGCC and tRF5-LysCTT also favor the RSV
replication and contribute to RSV-induced inflammation. Their induction is also ANG-dependent and
exclusively happens in the cytoplasmic compartment [96].
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Figure 4. Model on the molecular mechanism used by tRF5-GluCTC to promote RSV replication. RSV
infection induces tRF5-GluCTC, which targets APOER2 and suppresses its expression. APOER2 is
an antiviral protein carrying out its antiviral role via its sequestration of the P protein of RSV. Therefore,
the decreased expression of APOER2 frees more P proteins and makes them more available to form
RdRp with other viral proteins.

Other than these three tRFs, our recent unpublished data also confirm the role of tRF5-GlnCTG
in RSV replication. Surprisingly, its induction was not ANG-dependent but relied on ELAC2.
The mechanism by which ELAC2 uses to generate tRF5-GlnCTG is currently under the investigation.

4. Other ncRNAs in RSV Infection

4.1. RSV Alters Exosomal piRNAs

piRNAs are single-stranded sncRNAs of 24–32 nts. They interact with Piwi proteins, which
belong to the Argonaute/Piwi family, to form the piRISC complex [98]. piRNAs are involved in
the silencing of retrotransposons, both at the post-transcriptional and epigenetic levels [99]. In
addition, piRNAs also have been shown to regulate genes via DNA methylation modification and
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mRNA deadenylation [100,101]. Besides miRNAs, the piRNAs in AEC-derived exosomes are also
significantly affected by RSV infection [55]. Among exosomal sncRNAs, there are 3.9% and 34.7%
piRNAs respectively in control and RSV exosomes. The next-generation sequencing revealed that 52
piRNAs (>10 reads) are commonly present in both mock and RSV exosomes, with 28 upregulated
and 24 downregulated piRNAs in RSV exosomes, among which, piR-32678 and piR-59169 show the
greatest increase and decrease in expression respectively. Moreover, there are 3 and 19 piRNAs that are
uniquely present in mock and RSV exosomes, respectively. Whether and how these affected piRNAs
contribute to RSV disease are currently unknown.

4.2. Virus-Encoded sncRNAs

Several viruses, the majority of which are DNA viruses, produce virus-encoded sncRNAs to
promote their replication or latency [102]. It is commonly believed that negative-sense RNA viruses do
not produce viral sncRNAs, because their replication does not occur in the nuclear compartment. To
date, there is no report for the existence of RSV-encoded sncRNAs. However, our ultrahigh-throughput
sequencing data revealed that hMPV produces several hMPV-encoded sncRNAs. The induction of two
hMPV-encoded sncRNAs, respectively derived from the P and L gene, was confirmed by northern blot
assay [66]; respectively derived from the P and L gene, were confirmed by northern blot assay [66].
The transcription and replication of hMPV usually occur in the cytoplasm. Therefore, nuclear RNases,
such as Drosha and RNase P, cannot access to viral RNAs. Cytoplasmic RNase(s) may be involved in
the biogenesis of hMPV-derived sncRNAs. Recently, our group found that two cytoplasmic RNases
exoribonuclease 1 (XRN1) and Dicer play a role in generating hMPV-encoded sncRNAs [66,103].
However, whether these hMPV-encoded sncRNAs are functional is not known, as the functions of
hMPV-encoded sncRNAs are hard to be experimentally defined. A general method to study the
function of an interested ncRNA is to use the antisense oligonucleotides to change its expression or
activity, followed by function assays. As the antisense oligonucleotides against viral-derived sncRNAs
also can interact with viral genomes, potentially leading to changes in hMPV replication, the visible
effects of antisense oligonucleotide treatment do not necessarily result from inhibiting hMPV-derived
sncRNAs. Another way to examine the function of hMPV-encoded sncRNAs is to eliminate their
induction by mutating the corresponding sncRNA region in hMPV; however, given the importance
of L and P in hMPV viral RNA synthesis, it is highly possible that the recombinant mutants cannot
be recovered.

4.3. lncRNA Involved in RSV Infection

lncRNAs, whose length spans from 200 nt up to 100 kilobases, also emerged as gene regulators,
exhibiting multiple regulatory functions on chromatin-remodeling, epigenetic modification, RNA
transcription and processing, mRNA stability and translation, protein localization, and miRNAs
function [104]. Recently, a study, using NPAs samples from 104 RSV bronchiolitis patients (aged
6.5 ± 4.1) and 40 healthy controls (aged 6.1 ± 3.8), revealed that RSV samples have less maternally
expressed gene 3 (MEG3), a broadly studied lncRNA, and more TLR4 than control group samples [105].
Furthermore, it seems that the lncRNA MEG3 suppresses TLR4 expression and plays a partial role
in activating NF-κB and MAPK signaling, suggesting the nasal cells use MEG3 to enhance TLR4
expression to carry out antiviral or immune responses. [105].

5. Can ncRNAs Serve as Targets for Antiviral Therapeutics?

Conserved viral proteins often serve as antiviral therapeutic targets. Alternative antiviral drug
development is host molecule-based. For example, several groups reported that drugs targeting p38
MAPK (mitogen-activated protein kinase), such as berberine, NJK14047, and N-acetyl-l-cysteine (NAC),
significantly inhibit many respiratory viral infections including RSV replication [106–109].

Since many ncRNAs also control RSV replication and associated host responses, targeting these
ncRNAs can potentially serve as a therapeutic approach [110]. Right after the discovery of ncRNAs,
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many ncRNAs have been tested for their efficiency in antiviral control. Meanwhile, ncRNA-based
drug development was also carried out [111]. Some ncRNA-based drug development showed
promising antiviral effects. For example, miRavirsen, an experimental drug targeting miR-122 for HCV
infection, was developed and tested in Phase II clinical trials right after the discovery of the effect of
miR-122 on HCV replication [112]. The mimics of miR-124, miR-24, and miR-744 also exhibit notable
broad-spectrum antiviral activity against several respiratory virus, including influenza A/WSN/1933
(WSN) H1N1, A/Puerto Rico/8/1934 (PR8) and A/Udorn/307/1972 (Udorn) H3N2, RSV-A2, and RSV
BT2a, with unidentified underlying mechanism [113]. Whether targeting functional ncRNAs could be
a promising anti-RSV strategy that needs to be further experimentally validated.

6. Conclusions

RSV and hMPV closely resemble each other, and the clinical manifestations of these two viruses
are often indistinguishable. However, these two viruses have unique impacts on host ncRNAs
expression. RSV induces tRFs expression, but no viral sncRNAs are detectable by high-throughput
RNA sequencing. On the contrary, hMPV fails to induce tRFs, but produces viral sncRNAs. These
two viruses both induce let-7f expression. However, the effect of let-7f on RSV and hMPV replication
are opposite. These findings suggest that different infection strategies are used by these two respiratory
viruses. The studies in clinical samples reveal the potential of miRNAs to be used as diagnostic
markers. However, the overall knowledge of the functions of ncRNAs in RSV/hMPV infection is very
limited. For example, the molecular mechanisms underlying ncRNAs-associated host responses are
still largely unknown. The interaction among ncRNAs, RSV/hMPV, and other host factors are also
poorly understood, although the related information is important for target identification and the
development of antiviral therapeutics.
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