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Abstract

The proinfammatory vasculotoxic effects of intravascular hemolysis are modulated by plasma 

hemoglobin and heme clearance via the haptoglobin/CD163 system and the hemopexin/CD91 

system, respectively, and detoxification through the heme oxygenase/ferritin system. However, 

sudden or excessive hemolysis can overwhelm these protective systems leading to heme 

interacting with cells of the vasculature. Heme presents a damage-associated molecular pattern to 

the innate immune system. Heme is an extracellular inflammatory signaling molecule with strict 

binding specificity for TLR4 on monocyte/macrophages, endothelial, and other cells. The 

resulting TLR4 signaling cascade rapidly leads to intracellular oxidative stress and an 

inflammatory response. Heme also induces a cytoprotective response that includes Nrf2 

responsive genes such as heme oxygenase-1, ferritin, haptoglobin, hemopexin, and other 

antioxidant response genes. It is the balance between the pro-inflammatory/vasculotoxic effects of 

plasma hemoglobin/heme and the cytoprotective responses that ultimately determines the 

pathophysiologic outcome in patients.

1. Introduction

When hemoglobin (Hb) is released from red blood cells (RBCs) into plasma, it has the 

potential to release free heme that can trigger severe oxidative, proinflammatory, and pro-

thrombotic injury. Heme has several proinflammatory activities, including leukocyte 

activation and migration, upregulation of adhesion molecules, reactive oxygen species 

(ROS) production, and induction of cytokine and chemokine expression [1–4]. Organisms 

have evolved intricate systems to defend against free heme. The term “free” heme will be 

used loosely in this review, as heme is amphipathic, mostly insoluble in aqueous solutions at 

neutral pH, and likely bound to proteins and/or lipids in vivo. This review will focus on the 

proinflammatory and anti-inflammatory molecular signaling events that are activated by 

cells in response to free heme.
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2. Hemolysis and Plasma Defenses

Intravascular hemolysis releases Hb from an antioxidant rich environment inside the RBC 

into the plasma. Once free in plasma the Hb tetramer is in equilibrium with the α/β Hb dimer 

favored at low plasma Hb concentrations. The Hb dimers bind to haptoglobin which can 

safely carry Hb to CD163 receptors on macrophages where the Hb is degraded [5–7]. 

However, during massive or chronic hemolysis, the haptoglobin/CD163 system can be 

overwhelmed, leaving free Hb in plasma. When not bound to haptoglobin, oxyHb in plasma 

can react rapidly with nitric oxide (NO) to form nitrate (NO3
−) and ferric Hb (metHb). To 

illustrate this point, steady state metHb levels can reach as high as 5% in humans inhaling 

80ppm NO for 4 hours [8]. However, steady-state metHb levels do not accurately reflect the 

kinetic throughput of metHb in plasma because metHb is unstable and releases ferric heme 

(hemin) from the globin chain [9]. The released hemin binds to plasma hemopexin (Kd < 

10−12 M), albumin (Kd ~ 10−8 M) or intercalates into plasma lipoproteins (Kd 10−10M to 

10−11M) or cell membranes because of its amphipathic structure [10, 11]. Because of its 

high binding affinity, hemopexin is the first line of defense against hemin released from 

metHb. Hemopexin delivers the bulk of hemin to CD91 receptors on hepatocytes where it is 

endocytosed and degraded [12].

3. Heme Stimulation of TLR4 Signaling Is Proinflammatory

Like haptoglobin/CD163, the hemopexin/CD91 system can be overwhelmed during periods 

of excessive hemolysis. In hemopexin null mice, there is enhanced clearance of heme by 

nonhepatic tissues including the vessel wall [13]. Recently, heme has been shown to be an 

extracellular inflammatory signaling molecule in macrophages with strict binding specificity 

for toll-like receptor-4 (TLR4) [4]. These findings imply that heme is a damage-associated 

molecular pattern (DAMP) molecule. Signaling of heme through TLR4 is distinct from the 

signaling of bacterial lipopolysaccharide (LPS) through TLR4 [4]. Heme activation of TLR4 

is remarkably stringent and requires the iron moiety [4, 14]. Unlike its analogs or precursors, 

heme induces macrophage tumor necrosis factor-alpha (TNF-α) secretion that is dependent 

on TLR4 and its adaptor molecules MYD88 and CD14 [4]. By binding hemin, hemopexin 

thwarts hemin-mediated TLR4 signaling and thereby prevents the proinflammatory effects 

of hemolysis [13, 14].

Endothelial cells also express TLR4 [15–18]. In endothelium, hemin-, or LPS-mediated 

TLR4 signaling stimulates two parallel proinflammatory/prothrombotic pathways: (1) 

Weibel-Palade Body (WPB) degranulation [14] and (2) nuclear factor-kappa B (NF-κB) 

activation [14, 19]. WPB degranulation occurs within 5 minutes of hemin (or LPS) 

stimulation of TLR4. WPB degranulation releases numerous vasoactive proteins including 

von Willebrand Factor, P-selectin, endothelin-1, endothelin-converting enzyme, 

interleukin-8, tissue-type plasminogen activator, eotaxin-3, angiopoietin-2, osteoprotegerin, 

and calcitonin gene-related peptide [20]. Hemin/TLR4-mediated degranulation of WPBs on 

the endothelial cell surface triggers rapid proinflammatory, prothrombotic, and 

vasoconstrictive responses in the vasculature.
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In addition to WPB degranulation, hemin- or LPS-mediated TLR4 signaling leads to NF-κB 

activation and the transcription of proinflammatory genes [19]. Inhibition of TLR4 signaling 

or knockout of the TLR4 gene completely abrogates hemin-stimulated WPB degranulation 

and NF-κB activation in endothelial cells [14]. Heme amplifies LPS-induced TLR4 

signaling [21], which may explain why hemolysis and hemoglobinuria are associated with 

increased mortality in septic patients [22, 23].

Hemin also has procoagulant effects on endothelium (von Willebrand factor and tissue 

factor expression) [14, 24] that could be explained by hemin-mediated TLR4 signaling [14]. 

Moreover, hemin activation of TLR4 signaling in monocytes and platelets could potentially 

induce thrombosis via tissue factor expression on monocytes (unpublished data) and platelet 

activation.

Hemin also induces oxidative stress in cells. Much of this has been attributed to iron-

catalyzed reactions [25]. However, there is evidence that LPS activated TLR4 in endothelial 

cells interacts with NADPH oxidase 4 (Nox4), a protein related to gp91phox (Nox2) of 

phagocytic cells and that Nox4 activity is required for TLR4-mediated NF-κB activation 

[26]. The Nox protein generates superoxide (O2
−) by transferring electrons from NADPH to 

O2. These superoxide free radicals are rapidly converted to H2O2 and O2 in cells. Thus, 

heme-mediated TLR4/NADPH oxidase signaling may explain much of the cellular oxidative 

stress that occurs during hemolysis.

4. Cytoprotection by Heme Oxygenase

Once heme enters the cell membrane, the next line of defense is heme oxygenase (HO). HO 

degrades heme into carbon monoxide (CO), biliverdin, and iron (Fe2+). There are two 

isoforms of HO, HO-1 and HO-2 [27]. HO-1 is highly inducible by a large number of 

oxidative stressors including heme. In normal healthy tissues, not involved in ongoing RBC 

destruction, HO-1 levels are low [27]. In tissues such as the kidney, HO-2, a constitutive 

enzyme, is an important first responder to intracellular heme. HO-2 null mice (HO-2−/−), 

compared with HO-2+/+ mice, exhibit greater renal dysfunction and histologic injury when 

administered Hb [28]. However, within 3 hours, HO-1 expression quickly surpasses HO-2 

and HO-1 becomes the principle cytoprotectant to subsequent exposures to heme [29]. The 

mechanisms controlling HO-1 induction are complex, cell specific, and tightly regulated by 

transcription. A large number of kinases (e.g., mitogen-activated protein kinases (MAPKs), 

protein kinase C (PKC), and phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (Akt)) 

and transcription factors (e.g., NF-κB, activator protein-1 (AP-1), nuclear factor E2-related 

factor 2 (Nrf2), biliverdin reductase (BVR) and BTB and CNC homologue 1 (Bach1)) are 

involved in regulating HO-1 expression [30]. Nrf2 appears to be an especially important 

regulator of HO-1 induction in response to oxidative stress and heme [31, 32]. Nrf2 

normally resides in the cytoplasm bound to an inhibitor protein: kelch-like ECH-associated 

protein-1 (Keap1). Keap1 expedites the ubiquitination and proteolysis of Nrf2. Oxidation of 

cystine residues to cysteine (i.e., disulfide cross-linking) on Keap1 releases Nrf2, prolongs 

Nrf2 half-life, and allows Nrf2 transport to the nucleus [33]. Molecular signaling by the PI3 

K/Akt pathway also plays an important role in Nrf2 activation. Activated Nrf2 translocates 

to the nucleus and binds to antioxidant response elements (ARE), which promotes the 
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transcription of a wide variety of antioxidant/anti-inflammatory genes including HO-1, 

ferritin, haptoglobin, and hemopexin. Heme also binds to the transcriptional repressor Bach1 

in the nucleus. Bach-1 is a member of the bZIP transcription factor family that serves as a 

repressor of HO-1 transcription through its higher binding affinity for multiple Maf 

recognition element (MARE) regions compared with Nrf2 [34]. When Bach1 forms a 

heterodimer with Maf, it binds to MARE regions and represses HO-1 transcription. Heme 

binding to Bach1 releases Bach1/Maf repression allowing Nrf2 binding and HO-1 

transcription.

5. CO Mimics HO-1 Cytoprotection

The cytoprotective properties of HO-1 are mimicked by CO, which is released from heme 

by the HO reaction. CO gas is produced by HO-mediated opening of the heme ring. CO is a 

colorless, odorless gas that has traditionally been considered a dangerous poison. This 

toxicity is in part due to its high affinity for Hb (234X greater than O2), altering O2 transport 

and delivery [35]. CO also can interact with other heme proteins. However, like many other 

compounds this gas encompasses both a toxic and a therapeutic range [36]. At low 

concentrations, CO is a potent mediator of cell protection and has a number of properties 

that make it an attractive therapeutic option for treating hemolytic diseases. CO mimics 

many of the protective effects of HO-1, as well as some of the functions of NO. [3, 36, 37] 

Like NO, CO activates the heme protein guanylate cyclase, inhibits platelet activation and 

aggregation, and has a possible role as a neurotransmitter [3, 37]. Exogenous inhaled CO, at 

approximately 250 parts per million (ppm), and in some studies as low as 10 ppm [38], 

reduces inflammatory responses in several models of oxidant injury in similar ways to HO-1 

overexpression [37]. CO interacts with signal transduction pathways, inhibits 

proinflammatory genes, and augments anti-inflammatory cytokines [3, 37, 39, 40]. 

Specifically, it selectively activates cytoprotective p38 MAPK and Akt signaling pathways 

in a guanylate cyclase-independent manner [37, 39]. CO also inhibits proliferation of 

vascular smooth muscle cells and has antiapoptotic effects on cells [3, 37].

CO induces HO-1 expression by its action on Nrf2, thus amplifying HO-1 expression [41, 

42]. CO initially acts via inhibition of cytochrome c oxidase in the mitochondrial electron 

transport chain leading to the generation of low levels of O2
− and subsequently hydrogen 

peroxide (H2O2) that initiates the ensuing adaptive signaling [36]. Inhaled CO in mice or 

treatment of keratinocytes with H2O2 induces the phosphorylation/activation of p38 MAPK 

and Akt [43, 44]. Analysis using specific inhibitors of p38 MAPK and Akt has demonstrated 

that only Akt activation is involved in HO-1 and Nrf2 expression [44]. In addition, PI3 K 

and PKC inhibitors suppressed Akt phosphorylation, Nrf2 activation, and HO-1 expression 

[44]. Additional studies in knockout animals are warranted to further define the molecular 

signaling pathways responsible for upregulation of HO-1 by CO.

Thus CO induces an antioxidant (Nrf2 responsive genes) and anti-inflammatory (e.g., NF-

κB suppression, HO-1 and interleukin-10 upregulation) response. In addition, CO may 

inhibit TLR4 signal transduction by enhancing the interaction of TLR4 with caveolin-1 [45] 

and by downregulating TLR4 expression [46].
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6. Biliverdin Cytoprotection

Biliverdin is produced by the HO reaction with heme. Biliverdin reductase (BVR) catalyzes 

the reduction of biliverdin to bilirubin. BVR is expressed on the exterior of the plasma 

membrane where it quickly converts biliverdin to bilirubin [47]. The enzymatic conversion 

of biliverdin to bilirubin by BVR initiates a signaling cascade that results in a rapid increase 

in phosphorylation of Akt, leading to cytoprotection, due in part to upregulation of 

interleukin-10 expression [47]. In addition, phosphorylated Akt phosphorylates endothelial 

nitric oxide synthase (eNOS) in endothelial cells leading to S-nitrosylation of BVR [47]. S-

nitrosylation of BVR leads to nuclear translocation, where BVR binds to AP-1 sites in the 

TLR4 promoter and blocks transcription of TLR4 [47]. In addition, human BVR is a Ser/Tr/

Tyr-kinase and upstream activator of PKC and the insulin/insulin growth factor-1 pathways 

[48]. Thus like CO, biliverdin reduction to bilirubin by BVR regulates vital homeostatic 

signaling pathways in response to hemolysis.

7. Ferritin Heavy Chain (FHC) Cytoprotection

The induction of HO-1 is accompanied by the induction of ferritin [49]. Iron (Fe2+), released 

during the HO reaction, induces the translation of ferritin [50]. Labile cellular iron 

stimulates the translation of ferritin mRNA through interaction between a cytoplasmic iron 

regulatory protein (IRP) and a conserved nucleotide iron responsive element (IRE) present 

in the 5′ noncoding region of all ferritin mRNAs. The IRE forms a stem-loop structure and 

when the supply of iron to the cells is inadequate, the IRP is bound to the IRE and 

suppresses ferritin synthesis [51]. Ferritins are comprised of various ratios of heavy and light 

chains that form a protein shell surrounding an iron core. Ferritin is cytoprotective in cells, 

by its capacity to bind 4,500 iron molecules and through its FHC ferroxidase activity [52], 

which oxidizes redox active Fe2+ to Fe3+ for safe (redox inactive) storage in the core of the 

ferritin complex. FHC is protective against heme-mediated oxidative injury to endothelial 

cells in vitro [49]. FHC mutants lacking ferroxidase activity are not cytoprotective against 

heme-mediated oxidative injury. Overexpression of FHC protects tissues from ischemia-

reperfusion injury [53], antagonizes TNFα-mediated apoptosis [54], protects cells from UV-

radiation damage [55], prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-(MPTP-) 

induced neurotoxicity [56], and protects HeLa cells from H2O2 toxicity [57]. Nuclear FHC 

may play an important role in cytoprotection. Identification of a DNA binding motif for 

FHC raises the novel possibility of a role for FHC as a conventional transcription factor 

[58]. Nuclear FHC has been reported to incorporate into DNA and to protect DNA from UV 

and oxidative damage. FHC also binds with nuclear death domain-associated protein to 

inhibit DAXX-mediated apoptosis [59, 60].

8. HO-1 and Sickle Cell Disease

Sickle cell disease is an archetypal example of a chronic hemolytic disease. An inherited 

mutation, the amino acid glutamic acid is replaced with the amino acid valine at position 6 

in β-globin (Glu6Val). The resulting Hb-S polymerizes in the de-oxygenated state forming 

long rigid molecules that stick together. The polymerization of Hb-S leads to various shape 

changes in RBC including an elongated sickle or crescent shape, release of heme into RBC 
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membranes, oxidation of RBC lipids, and ultimately both intravascular and extravascular 

hemolysis [61]. Excessive release of Hb-S from sickle RBC into plasma can lead to the 

depletion of plasma haptoglobin, hemopexin and NO [62, 63], deposition of heme iron in 

cells and a proinflammatory/prothrombotic phenotype that promotes episodic painful 

vasoocclusive crises leading to ischemia/reperfusion injury and organ infarction.

Sickle cell disease patients in crisis-free steady state are experiencing unrelenting chronic 

hemolysis. The rate of hemolysis can be determined by measuring the half-life of RBC in 

patients or transgenic mouse models of sickle cell disease (Figure 1). The βmurine knock-

out/βS knock-in mouse model developed by the Townes laboratory [64] can be used to 

illustrate this point. RBC half-lives were measured in separate cohorts of HbAA-Townes 

(expressing normal human βA-globin), HbAS (heterozygous for βA- and βS-globin), and 

HbSS (homozygous for βS-globin) mice and in C57BL/6 mice. All circulating RBC were 

biotinylated at time zero. Five µL blood samples were obtained by tail vein puncture at 

various time intervals as indicated and the percentages of biotin labeled and unlabeled RBC 

were measured by flow cytometry. The half-lives of RBC in HbSS-Townes mice were 

markedly shorter (~2.5 days) than that of HbAA-Townes mice (~16 days). RBC in the 

HbAS-Townes mice had a half-life that was intermediate (~11 days) between AA and SS 

mice. The mean RBC half-life in normal C57BL/6 mice was 24 days, which was 50% longer 

than HbAA-Townes mice. The chronic hemolysis in HbSS mice can also be seen when 

measuring expired CO (Figure 2). The heme released from Hb during hemolysis eventually 

reaches tissues where the heme is degraded by HO, releasing CO that can be carried by Hb 

to the lungs and expired. Normal C57BL/6 mice release ~1 nmol/h/g of CO. When C57BL/6 

mice are injected with phenylhydrazine (PHZ) to induce massive hemolysis, the expired CO 

goes to ~5 nmols/h/g. Similarly, HbAA mice expire ~1 nmols/h/g of CO and the HbSS mice 

expire 6–7nmols/h/g of CO, which is indicative of the chronic hemolysis in the HbSS mice. 

CO expiration in the HbAS mice is similar to HbAA mice, suggesting measurement of 

expired CO may not be as sensitive in determining hemolytic rates as measurement of RBC 

turnover. However, the elevated levels of CO in expired breath are consistent with HO 

catabolism of heme in states of excessive hemolysis.

Counteracting the toxic effects of hemolysis is the upregulation of HO-1 in tissues of 

transgenic sickle mice (Figure 3) and human sickle patients [65, 67]. Further increases in 

HO-1 inhibit vascular inflammation and vaso-occlusion in mouse models of sickle cell 

disease [65, 66]. Transgenic sickle mice with additional 3–5 fold overexpression of wild 

type (wt)-HO-1 in the liver using a Sleeping Beauty transposon system have activated 

nuclear phospho-p38 MAPK and phospho-Akt (Figures 4(a) and 4(b)), decreased nuclear 

expression of NF-κB p65 (Figure 4(c)), and decreased soluble vascular cell adhesion 

molecule-1 (sVCAM-1) in serum (Figure 4(d)) [66]. Pretreatment of sickle mice for 3 

consecutive days with hemin (40 µmols/kg) intraperitoneally induced HO-1 in mouse tissues 

and mimicked the effects of wt-HO-1 overexpression via the Sleeping Beauty transposon 

system (Figures 4(a)−4(d)). Hypoxia-reoxygenation (H/R)-induced vaso-occlusion (stasis), a 

characteristic of sickle, but not normal mice, is inhibited in subcutaneous skin of sickle mice 

despite the absence of the HO-1 transgene in the skin suggesting distal effects of HO activity 

in the liver on the vasculature (Figure 5) [66]. No protective effects are seen in sickle mice 
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overexpressing a nonsense rat hmox-1 gene (ns-HO-1) that encodes carboxy-truncated HO-1 

with little or no enzyme activity [66]. As previously shown [65], mice pretreated for 3 days 

with hemin intraperitoneally to induce HO-1 have significantly lower stasis (2.8%) than 

mice pretreated with lactated Ringers solution (LRS) (P < 0.006) [66]. The cytoprotective 

effects of HO-1 overexpression in transgenic sickle cell mice are mimicked by 

administration of inhaled CO or biliverdin [65].

In sickle mice and patients in steady state, hemolysis is in balance with HO activity; a 

biologic set point with just enough HO-1 induction to counterbalance hemolysis. However, 

hyperhemolysis can occur during vasoocclusive crises in patients with sickle cell disease 

[68], suggesting an increased rate of intravascular hemolysis may tip a sickle patients 

balance from steady state to vasoocclusive crisis. Vaso-occlusion is an inflammatory 

adhesion driven process [14, 65, 69]. Vaso-occlusion can be induced in transgenic sickle 

mice by exposing the mice to H/R or by infusing a bolus of Hb or hemin to simulate a 

sudden increase in intravascular hemolysis [14, 65, 69]. Any of these insults (H/R, Hb, and 

hemin) leads to stasis of blood flow in the postcapillary venules [14, 65, 69]. This vaso-

occlusion can be blocked by inhibiting TLR4 signaling [14]; supporting the concept that 

hemin released from Hb during hemolysis promotes vaso-occlusion through hemin-induced 

TLR4 signaling and subsequent inflammatory response.

9. Potential Therapies for Heme-Induced Inflammation and Vascular 

Activation

The most effective strategy to avert heme-induced inflammation and vascular activation is to 

prevent or inhibit hemolysis. In sickle cell disease there is much effort underway to develop 

drugs to induce fetal Hb expression in RBC because of its ability to inhibit the 

polymerization of HbS and subsequent hemolysis. In lieu of effective strategies to stop 

hemolysis, the clinician must deal with the consequences of hemolysis. Infusions of 

supplemental haptoglobin and/or hemopexin are under consideration [7]. Other options 

include pharmacologic induction of the HO-1/ferritin system or inhibition of TLR4 

signaling. This could possibly be accomplished by the administration of biliverdin [47, 70, 

71], inhaled CO, CO-releasing molecules or CO bound to pegylated Hb [36, 43, 65, 72].

10. Conclusions

The release of free heme during hemolysis is injurious to cells. Extraordinary arrays of 

plasma and cellular defenses have evolved to protect cells from free heme. Failure to 

adequately protect against free heme can result in damage to the vasculature. This damage 

can be stopped by a robust anti-oxidative and anti-inflammatory response by vascular cells. 

With our current knowledge and understanding of these pathways, it may be possible to 

intervene clinically to bolster the cytoprotective responses and prevent much of the vascular 

damage associated with hemolysis.
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Abbreviations

Hb Hemoglobin

RBC Red blood cells

ROS Reactive oxygen species

MetHb Ferric hemoglobin

TLR4 Toll-like receptor-4

DAMP Damage-associated molecular pattern

LPS Lipopolysaccharide

TNF-α Tumor necrosis factor-alpha

WPB Weibel-Palade Body

NF-κB Nuclear factor-kappa B

Nox NADPH oxidase

HO Heme oxygenase

MAPK Mitogen-activated protein kinase

PKC Protein kinase C

PI3K Phosphatidylinositol 3-kinase

Akt Protein kinase B

AP-1 Activator protein-1

Nrf2 Nuclear factor-erythroid 2 p45-related factor 2

BVR Biliverdin reductase

Bach1 BTB and CNC homologue 1

Keap1 Kelch-like ECH-associated protein 1

ARE Antioxidant response elements

MARE Maf recognition element

FHC Ferritin heavy chain

Ppm Parts per million

HIF-1α Hypoxia-inducible factor-1-alpha

eNOS Endothelial nitric oxide synthase
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IRP Iron regulatory protein

IRE Iron response element

MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

DAXX Death domain-associated protein

PHZ Phenylhydrazine

Wt Wild type

sVCAM-1 Soluble vascular cell adhesion molecule-1

H/R Hypoxia-reoxygenation

Ns Nonsense

LRS Lactated Ringer’s solution
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Figure 1. 
Red blood cell survival in C57BL/6, HbAA-, HbAS-, and HbSS-Townes mice. RBC half-

lives were measured in C57BL/6, HbAA-, HbAS-, and HbSS-Townes mice (n = 5–7 mice/

group). Values are means; standard deviations have been omitted for clarity, but coefficients 

of variation were less than 10%. The half-lives of circulating RBCs were measured by 

biotinylating RBCs by tail vein injection of 150 µL of 30 mg/mL sulfo-N-

hydroxysuccinimide-biotin (Thermo Scientific, Rockford, IL, USA). Biotinylated RBCs 

were labeled with streptavidin-APC and the percentages of labeled and unlabeled RBC were 

measured by flow cytometry. RBC half-lives were estimated by interpolating between data 

points on either side of 50% survival. Half-lives for each mouse model are listed below the 

figure.
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Figure 2. 
Endogenous CO production in mouse models of SCD. Exhaled CO was collected for 3 hours 

from C57BL/6, HbAA-, HbAS-, and HbSS-Townes mice (n = 5–7 mice/group). C57BL/6 

mice injected with phenylhydrazine, an hemolysis inducing drug, 48 and 24 hours before 

collection of exhaled CO, served as positive controls for breath CO measurements. Exhaled 

CO was 5.9-fold higher in C57BL/6 mice injected with phenylhydrazine (n = 4) than 

untreated C57BL/6 mice (n = 12, * P < 0.001). Exhaled CO levels were not significantly 

higher than untreated C57BL/6 controls in the HbAA- and Hb-AS-Townes (n = 4) models. 

Exhaled CO levels were highest in HbSS-Townes mice (n = 4), 6.9-fold higher than HbAA-

Townes mice (n= 4, * P < 0.001). Values are means ± SD.
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Figure 3. 
HO-1 expression is elevated in the organs of sickle mice. Western blots for HO-1 were 

performed on organ homogenates (1 µg of homogenate DNA per lane) from lungs, livers, 

and spleens of untreated normal mice and S + S-Antilles, and BERK sickle mice. The 32 kD 

HO-1 bands are shown for each organ and each mouse (a). The mean HO-1 band intensities 

(n = 4) ± SD are expressed as fold above normal control mice (b). *P < 0.05 normal versus 

sickle. Figure derived from [65] American Society for Clinical Investigation.
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Figure 4. 
Cytoprotective pathways are activated in sickle mice overexpressing wild type (wt)-HO-1. 

Nuclear extracts were isolated from livers and 30 µ g of nuclear extract protein from each 

liver was run on a western blot and immunostained for phospho- and total p38 and Akt, and 

NF-κB p65. NF-κB p65 protein bands at 65 kDa were quantified by densitometry. Nuclear 

phospho-p38 MAPK (a) and phospho-Akt (b) were increased in mice 8 weeks after 

hydrodynamic infusion of Sleeping Beauty (SB)-wt-HO-1 DNA or after intraperitoneal 

injection of hemin chloride for 3 consecutive days, but not in control mice, given a 

hydrodynamic infusion of lactated Ringers solution (LRS) or SB-nonsense (ns)-HO-1 DNA. 

Total nuclear p38 MAPK (a) and Akt (b) were not different between treatment groups. NF-

κB p65 was decreased in liver nuclear extracts of sickle mice injected with SB-wt-HO-1 or 

hemin, but not in control, LRS, or SB-ns-HO-1 treated mice (c). Serum levels of sVCAM-1 

were measured by ELISA. Serum sVCAM-1 was lower in sickle mice injected with SB-wt-

HO-1 DNA (P < 0.05) or hemin (P < 0.05), but not in mice infused with SB-ns-HO-1 DNA 

when compared to mice infused with LRS (d). Values are means ± SEM; n = 2–4 mice per 

treatment group; * P < 0.05 compared to LRS controls using one-way ANOVA. Figure 

derived from [66].
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Figure 5. 
Vaso-occlusion (stasis) is inhibited in the skin of sickle mice 8 weeks after hydro dynamic 

infusion of liver-directed SB-wt-HO-1 or 24 h after 3 days of intraperitoneal hemin 

pretreatment (40 µmols/kg) compared to control mice or mice given hydrodynamic infusions 

of LRS or enzymatically inactive ns-HO-1. Vascular stasis was measured in a dorsal skin 

fold chamber (DSFC) model after H/R. At baseline in room air, the mice were placed under 

a microscope and flowing venules were selected inside the DSFC. The mice were then 

subjected to 1 h of hypoxia (7% O2/93% N2) followed by 1h of reoxygenation in room air. 

After 1h of reoxygenation, the same venules were reexamined for blood flow. The number 

of static venules exhibiting no blood flow was counted and expressed as a percentage of the 

total number of venules examined. There were 7 mice and 403 venules in the control group, 

5 mice and 243 venules in the LRS group, 5 mice and 347 venules in the wt-HO-1 group, 6 

mice and 325 venules in the ns-HO-1 group, and 5 mice and 227 venules in the hemin 

group. There was a minimum of 26 venules per mouse. Values are mean % stasis ± SEM. 

The proportions of venules exhibiting stasis in each treatment group were compared using a 

z-test; *P < 0.05 compared to LRS controls. Figure derived from [66].
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