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Abstract: Accurate measurement of daily infection incidence is cru-
cial to epidemic response. However, delays in symptom onset, testing, 
and reporting obscure the dynamics of transmission, necessitating 
methods to remove the effects of stochastic delays from observed 
data. Existing estimators can be sensitive to model misspecification 
and censored observations; many analysts have instead used meth-
ods that exhibit strong bias. We develop an estimator with a regu-
larization scheme to cope with stochastic delays, which we term the 
robust incidence deconvolution estimator. We compare the method 
to existing estimators in a simulation study, measuring accuracy in a 
variety of experimental conditions. We then use the method to study 
COVID-19 records in the United States, highlighting its stability in 
the face of misspecification and right censoring. To implement the 
robust incidence deconvolution estimator, we release incidental, a 
ready-to-use R implementation of our estimator that can aid ongoing 
efforts to monitor the COVID-19 pandemic.

Keywords: Deconvolution; COVID; Infection time series; Statistical 
estimation; Statistical inference 

(Epidemiology 2022;33: 470–479)

Information on the progress of an ongoing epidemic arrives 
with delays. New cases, hospitalizations, and deaths are 

reported potentially weeks after individuals are infected, 
which obscure the count of daily new infections. Accurate 
estimation of daily infections is crucial for understanding the 
dynamics of disease transmission, and assessing the impacts 
of interventions.1–3 Currently available methods for recon-
structing infection curves exhibit bias and instability.

Mathematically, observations such as daily reported 
cases can be described as a convolution of the underlying 
time series of new infections with a delay distribution—
the probability distribution that describes time from infec-
tion to reporting. Recovering the infections curve from 
delayed reports is a deconvolution operation (Figure  1). 
Unfortunately, deconvolution of noisy data presents an ill-
posed inverse problem, in which signal and noise cannot be 
separated, even when the delay distribution is known per-
fectly.4 Ill-posedness manifests as instability in estimates, 
which is compounded in infection estimation by right 
censoring—recent infections have a smaller probability 
of being reported in the observation period. Instability in 
deconvolution problems is often addressed by regulariza-
tion, which imposes structure on the signal that is recovered 
from noisy data.5

In this work, we propose a statistically robust method 
to infer infection time series from delayed data, which we 
call the robust incidence deconvolution estimator (RIDE). 
This method incorporates a specific form of regularization 
that yields stable infection estimates, even in the presence of 
right censoring. In a simulation study, we compare the RIDE 
to existing methods, highlighting estimator accuracy and sta-
bility. As a motivating example, we use this method to study 
transmission dynamics of SARS-CoV-2 at state and local 
levels. We compare it to existing estimators on epidemic data 
from different regions in the United States, qualitatively show-
ing its stability and robustness to censoring.

In our simulated and empirical examples, we com-
pare the RIDE to two classes of existing methods. The first 
class, which we term reconvolution estimators, estimate the 
infection curve by sampling from an assumed delay distribu-
tion and shifting observed case reports backward in time—
effectively, applying a convolution operation in reverse. This 
approach is stable and has been applied in a number of public 
tools for tracking the COVID-19 pandemic,6–8 but exhibits 
biases because it is not a deconvolution operation. The sec-
ond class of estimators perform regularized deconvolution but 
can yield unstable estimates if regularization is inadequate or 
right censoring is not addressed. These include back projec-
tion (BP) (or back calculation) estimators developed to ana-
lyze the AIDS epidemic,9–14 and the Richardson-Lucy (RL) 
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algorithm, a model-free deconvolution method that has been 
used to analyze influenza.15

Additionally, we make the proposed method available in 
an R package, incidental.

METHODS
We first give a brief overview of the statistical estima-

tion problem, existing approaches and the RIDE. Institutional 
Review Board approval was not required for this research, 
as we only use publicly available epidemiologic data that are 
deidentified.

Method Overview
Given a time series of delayed observations for T days, 

Y Y YT= ( , , )1 …  and a delay distribution θ θ θ= ( , , )0 … P  (e.g., 
the distribution of time from infection to reporting) up to P 
days, the goal is to infer the time series of new infections 
X X XT= ( , , )1 … .  The expected value of the observed data Y 

is a convolution of the infection time series X with the delay 
distribution θ; estimation of X involves the deconvolution of 
Y and θ. To produce an estimator that is robust to noise in Y, 
we propose a model-based estimator using a cubic spline16 to 
describe the underlying infections, X, and a Poisson likelihood 
to describe the observed cases. We set the degrees of free-
dom of the spline basis using Akaike Information Criterion 
(AIC).17 Additionally, we add a regularization penalty on 
the second difference of the spline parameters, encouraging 
smoothness and select regularization strength with out-of-
sample log likelihood.

Finally, we include an additional adjustment for not-yet 
observed cases to stabilize estimates in the presence of right cen-
soring. Cases that are observed after the current time-point T due 
to reporting delays are relevant for the estimation of infections 
for days close to T. Estimates near T rely on only a few days of 
observations, leading to instability or overregularization near T.

We address this issue as a missing data problem, and use 
a strategy similar to multiple imputation techniques18 to impute 

samples after T. Specifically, we sample many extrapolations 
of the observed time series from a random walk that encodes 
the assumption that the autocorrelation in the observed data, 
which is a direct result of the convolution of infections with 
the delay distribution, will remain in future observations. For 
each extrapolation, we condition on the simulated counts to 
form the incidence estimate, and average estimates across 
these replicates.

Right censoring corresponds to missing information in 
Yt ′  for all ′t T> .  Those observations are, however, important 
for forming our estimate of X̂ t  for t close to T, which is where 
this extrapolation helps. Right censoring can be accompanied 
by under-ascertainment, which corresponds to incomplete 
counts in Yt for t close to T that might be corrected in the fol-
lowing days. For example, a test reported on June 1 may not 
enter official records and be available until a few days later, 
at which time it will still be reported as June 1. Right cen-
soring produces estimator instability near T through lack of 
data, while under-ascertainment often produces incorrect data 
near T. If recording delay data are available, a runoff triangle 
method19 can be used as preprocessing to correct for under-
ascertainment or, when used for forecasting, as an alternative 
to the existing extrapolation method. Since recording delay 
data are not widely available for COVID-19, we restrict our 
analysis to periods with relatively complete data.

Methodologic Details
We consider the following observation model of individ-

ual infected and reported dates. Each individual n N∈{1, , }…  
who becomes infected on day I Tn ∈{1, , }…  is confirmed on 
day C Tn ∈{1, , }… ,  and we assume that there were no infec-
tions before the initial time, denoted t = 1.  The date of confir-
mation is stochastically delayed from the date of infection In, 
C I Dn n n= + , where Dn is a random number of days sampled 
from a discrete distribution with delay distribution probability 
vector θ. The infection curve is a time series of daily infec-
tion counts over the population, denoted X X XT= ( , , )1 …  

FIGURE 1.  Infection estimation overview. Top: the underlying infection time series—new infections per day—is perturbed by 
a delay distribution (center) that is measured with other data or assumed known. Each infection date is stochastically delayed, 
resulting in the reporting curve (red ×’s)—new reported cases per day. Bottom: the estimation procedure aims to undo this sto-
chastic delay. Given observed report curve (left) we use a statistical estimator with the delay distribution to recover the underlying 
curve. (a) Assumed data generating process. (b) Estimation procedure.
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where X I tt n

N

n= 1( = )∑  and 1 is the indicator function. 
The observed report curve is a time series of daily reported 
cases, denoted Y Y YT= ( , , )1 … , defined analogously with Cn. 
Our goal is to reconstruct the infection time series X from an 
observed realization of counts y = ( , , )1y yT… .

These estimators consider θ fixed and known. Practically, 
θ can be estimated from studies or other data sources for 
COVID-19.20,21 We observe day-of-week and nonstationarity 
effects that are not captured by θ; we examine robustness to 
these our simulation study and case study, respectively. COVID-
19 delay distribution data sources, computations, and sensitivity 
are given in the eAppendix (http://links.lww.com/EDE/B924).

The observed counts are related to the unobserved 
infection time series by a discrete convolution, which can be 
expressed as a matrix multiply,

	
Ε Y X P X| = ,[ ] θ �

(1)

where Pθ has a triangular structure that depends on the delay 
distribution θ. To deconvolve the observed signal, an estima-
tor needs to invert Pθ. See the eAppendix (http://links.lww.
com/EDE/B924) for details.

“Reconvolution” Incidence Reconstruction
A popular method for incidence estimation attempts to 

undo the stochastic delays by sampling from the delay distribu-
tion and subtracting the value from each observed time,7,8,22,23 
effectively a convolution of the already convolved report curve. 
For each case n, the reconvolution estimator samples a delay 
ˆ ~Dn Categorical( )θ  and computes ˆ ˆI c Dn n n= − , aggregating 

these into the incidence curve estimate ˆ ˆX I tt n

N

n= 1( = )∑ .

The linear relationship between X and Y makes clear the 
conceptual error of the reconvolution method. The reconvolu-
tion estimator has the expectation

	
Ε[ | = ] = ,X Y Py yθ

T
�

(2)

which will be inconsistent in general, as P Pθ θ
T ≠ −1 . This 

conceptual error motivates the use of methods developed for 
deconvolving signals. See the eAppendix (http://links.lww.
com/EDE/B924) for an in-depth discussion.

Deconvolution Estimators
Deconvolving signals is a well-studied problem in signal 

processing. One such deconvolution method is the RL estima-
tor,24,25 a model-free iterative algorithm that is flexible but highly 
sensitive to observation noise. Nevertheless, the RL estimator has 
been used to reconstruct incidence curves for infectious disease.15

An alternative class of methods uses statistical models 
to form deconvolved incidence estimates. BP (or back calcula-
tion) methods are model-based estimators that were developed 
to infer HIV/AIDS infection incidence.9–13,26 BP is closely 
related to empirical Bayes methods for deconvolution.27 These 
approaches form estimates by maximizing the marginal likeli-
hood of observed data given a model for X XT1, ,…  and some 
form of regularization. Parameterizing the incidence time 
series as X X XT1, , = ( )… β  using smoothing splines or a step 
function, a model-based objective function takes the form

	

L Y Y Pr Y YT T( ; , , ) = ( , , | )1 1β β… …
� ������ ����
−ln

neg. loglikelihood
��� � �� ��

+ ⋅λ βr( ) ,
regularization �

(3)

where the likelihood function varies from method to method. 
Previous methods have considered both multinomial12 and 
Poisson10 observation models, along with both model-based 
and post hoc methods of smoothing.26 Table summarizes vari-
ous deconvolution methods in the literature.

Ill-posedness and Regularization
Infection time series estimation is a classic ill-posed 

inverse problem. Without a model, the free parameters 
X XT1, ,…  are just identified—the number of free param-

eters is equal to the number of observed data points.4 Without 
observation noise, the convolution matrix Pθ can be inverted, 
and the true incidence X can be identified. With observation 
noise, the data alone cannot distinguish signal from noise, 
leading to fundamentally unstable estimation. Regularization 
imposes some realistic structure on the solution of the decon-
volution, based on prior information, to separate out the noise. 
Smoothness—the belief that incidence should not vary wildly 
day to day—is the main property induced by regularization.

We devise a model-based estimate using a cubic spline16 
to describe the underlying incidence, X ( )β ,  and a Poisson 
likelihood to describe the observed cases. Locations with low 
case counts can be prone to overfitting due to small sample 

TABLE.  Summary of Previous Deconvolution and Back Projection Models

Reference Method Summary Basis Regularization Extrapolation

Brookmeyer and Gail12 Back projection Step None Binomial model for unseen 

cases after last date

Brookmeyer11 Back projection Cubic spline Second order difference squared None

Liao and Brookmeyer14 Back projection Step Exponentiated transform squared: 
j

n
j

p
j

pb b
=2

1/
1

1/ 2( )∑ − − None

Becker et al.10 Back projection Step Local smoothing of EM update None

Bacchetti et al.9 Back projection Step Second order difference squared None

Goldstein et al.15 Richardson-Lucy Step Early stopping of update algorithm None

http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
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size. To address this issue, we first select the spline basis 
degrees of freedom using AIC17 and add a squared regular-
ization penalty on the second difference of the β parameters. 
To select λ, we split the observed data and use out-of-sample 
log likelihood. By default, we use 25% of the data to estimate 
out-of-sample log likelihood, and average over four random 
splits. The largest value of λ that gives an estimator within 
2% of the highest out-of-sample likelihood is selected as a 
guard against overfitting. Deconvolution methods can be sen-
sitive to loss function misspecification.9 The validation-based 
selection of λ allows the estimator to be robust to the types of 
misspecification associated with COVID-19 reporting data.

The stability of estimates in the most recent time win-
dow before T is another practical concern. In this window, the 
effective number of observations is small due to right censor-
ing, leading to estimator instability. We exploit the autocor-
relation structure induced by the convolution of incidence and 
the delay distribution by extrapolating the report curve for-
ward in time with a random walk and condition on these simu-
lated counts to form the incidence estimate. We first apply an 
Anscombe transform28 to the observed report curve to stabi-
lize the variance and use the empirical single-lag autocorrela-
tion to simulate random walk extrapolations centered around 
a first order approximation for drift. We average estimates 
over replicates of extrapolated random walks in a style similar 
to common techniques for handling missing data.18 We term 
this procedure the RIDE. Details are given in the eAppendix 
(http://links.lww.com/EDE/B924).

RESULTS
We study incidence estimator performance via a simu-

lation study and a case study of SARS-CoV-2 infection inci-
dence estimation in the United States.

Simulation Study
We examine the stability and reconstruction accuracy of 

estimators on a set of synthetic examples designed to mimic 
statistical issues associated with COVID-19 data: right cen-
soring and model misspecification. We study the accuracy 
of various incidence estimators described herein, including 
reconvolution, RL, BP10,26 implemented in the surveillance 
package in R29 with two levels of smoothing ( k = 2 , and 
k = 16 ), and our proposed method. We study the performance 
of the proposed RIDE under three conditions, (i) no extrapola-
tion and a spline basis, (ii) extrapolation with a spline basis, 
and (iii) extrapolation with a step function basis.

We compare methods on six synthetic infection curves 
to study varying levels of complexity: a steep curve with a 
slow decay (slow decay), a symmetric curve (symmetric), 
a double-peaked curve representing two waves (double), a 
pathologic curve that has a sharp climb followed by a total 
drop-off in cases (stop), and two faster moving curves with 
Matérn covariance structure (matern and matern2). Curves 
are depicted in Figure 2A.

For each curve, we consider two additional experimen-
tal settings—different levels of right censoring (from highly 
censored to fully observed) and misspecification in the delay 
distribution (approximating processing delays in commercial 
testing and case reporting). For censored data, we consider 
observation windows with T = 40, 50, 60, 80, and 100 days. 
We assume a delay distribution Gamma( = 10, = 1)k θ ,  with a 
mean delay of 10 days. In the misspecified setting, we mimic 
weekly reporting delays where on every sixth and seventh day 
a uniform random proportion of the cases between 30% and 
50% are reported 2 days later. See the eAppendix (http://links.
lww.com/EDE/B924) for a description of the synthetic data 
and additional results.

For each of the 60 experimental settings (six curves, five 
observation windows, and two noise models), we generate 80 
report curves with different random seeds. For each curve, we 
apply each estimator and measure its accuracy with the root 
mean squared error between the inferred and true infection 
time series.

In general, we find that the model-based approaches 
more accurately infer the infection time series than the recon-
volution and RL estimators. Figure 2B depicts typical behav-
ior; reconvolution tends to underestimate the steep slope 
and the peak infection incidence. The RIDE’s regularization 
scheme is crucial when the model is misspecified; random 
walk extrapolation is key to stabilizing estimates for highly 
censored data. For example, BP and reconvolution dramati-
cally under-predict the most recent infection incidence in the 
right-censored curve in Figure 2C.

The distribution of errors measured over all experi-
mental settings for each estimator is presented in Figure 2D. 
The model-based estimators fare better in both the correctly 
specified and misspecified setting. BP is competitive in the 
well-specified setting, but in the misspecified setting accuracy 
suffers in comparison to our regularization scheme although 
both methods share the same likelihood model.

For censored data, random walk regularization stabilizes 
incidence reconstruction. In Figure 2E, we observe that both 
the reconvolution and BP methods struggle with right censor-
ing owing to a lack of enforced smoothness. Since the inci-
dence curve must describe unobserved cases, we include an 
estimate of these via extrapolation. Although this assumption 
may not be realistic in some instances, in smoother settings 
the autoregressive imputation offers a realistic assumption 
about the evolution of new cases. Additionally, averaging over 
random walk extrapolations stabilizes the uncertainty region 
toward the right of the curve. Coverage rates are in the eAp-
pendix (http://links.lww.com/EDE/B924).

Case Study—SARS-CoV-2 Infection Incidence 
Estimation

Monitoring the COVID-19 pandemic presents numer-
ous data challenges.2,30 Disease transmission can be studied 
using different sources of data, each with unique benefits and 

http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
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drawbacks. Data on reported cases are widely and consis-
tently available, even at the county level in the United States; 
however, such data are affected by variation in testing levels 
across geographical regions and time periods. Hospitalization 
data are not affected by testing effort,7 but represent a smaller 
proportion of total cases, and are not widely available at 

the county level. Deaths incur longer delays and represent 
a small proportion of infections, often leading to unstable 
incidence estimates in locations with low population or case 
loads. In addition to uncertain estimates of delay, all types 
of observations are susceptible to random sources of error, 
secular changes from nonstationary patterns of surveillance, 

FIGURE 2.  Synthetic experiments. (A) Six synthetic incidence curves and simulated observations with both correct and mis-
specified noise models. (B) Estimators on the full slow-decay data. (C) Estimators on censored slow-decay data. (D–E) Root mean 
squared error over all experimental settings and replicates for both correct and misspecified data for all data (D) and over the most 
recent 20 days of observations (E). Additional details are in the eAppendix; http://links.lww.com/EDE/B924. AR indicates autore-
gressive; BP, back projection; Re–conv, reconvolution; RIDE, robust incidence deconvolution estimator; RL, Richardson-Lucy; and 
RMSE, root mean squared error.

http://links.lww.com/EDE/B924
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diagnosis, and treatment. There are also well-known recording 
delays, where case, hospitalization, and death data are often 
revised upward for two weeks to a month after the reporting 
date.

We aggregated reported COVID-19 cases, hospi-
tal admissions, and deaths for selected regions with high-
quality data: Arizona, New York, Ohio, Texas, and Virginia. 

Hospital admission data are readily available in New York 
City, Arizona state, Ohio state, and within Virginia health 
regions. Data were collected from earliest available case 
records by region, from January 2020, through December, 
2020. Capture occurred at least 14 days after the last date 
for analysis. See the eAppendix (http://links.lww.com/EDE/
B924) for data sources.

FIGURE 3.  (A) Infections inci-
dence (solid black line), 90% 
credible regions (gray shaded) 
when available, and observed 
values (red plus) by data type 
across regions (rows) and by 
method (columns). (B) Estimated 
Rt with 90% credible regions 
fit using the method of1 from 
the incidence estimates in (A). 
Richardson-Lucy estimates are 
truncated in each panel for read-
ability. RIDE indicates robust inci-
dence deconvolution estimator.

http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
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We estimate delay distributions for infection to case, 
hospitalization, and death reports by composing two delay 
distributions: (1) time from infection to symptom onset, and 
(2) time from symptom onset to report. We estimate the time 
from infection to symptom onset by matching the quantiles 
of a gamma distribution to the data from31; from symptom 
onset to positive test report by fitting a gamma distribution to 
nonzero delay times from Florida for all cases through July 
14, 202032; from symptom onset to hospitalization, as fitted 
by7 using data from33,34; and from hospitalization to death.7 
Continuous distributions are discretized through rounding to 
estimate θ. See the eAppendix (http://links.lww.com/EDE/
B924) for the full delay distribution specification.

Comparison With Existing Estimation Methods
We apply existing estimation methods and the proposed 

RIDE to COVID-19 case data from Queens, New York, Staten 
Island, New York, the Austin, Texas metro area, and the state of 
Arizona in Figure 3. The incidence fits are then used as inputs 
to the method of1 for estimating Rt. These regions were chosen 
for the variation in the overall number of cases, noise levels, 
and incidence patterns. We compare the RIDE output to three 
existing approaches: BP,10 RL deconvolution,15 and reconvolu-
tion.6–8,22,23 BP is fit by the backprojNP method in the surveil-
lance package version 1.18.0 in R version 4.0.0 with parameters 
k = 16, eps = rep (0.005, 2), iter.max = rep (250, 2), B = –1. See 
the eAppendix (http://links.lww.com/EDE/B924) for a compar-
ison of BP fits across parameter levels.

The reconvolution procedure is a biased estimator and 
leads to oversmoothing of the infections curve and under 
estimating the peak. RL is sensitive to noise, leading to large 
oscillations in all cases due to a combination of a misspecified 
loss function and under-regularization. BP and reconvolution 
are also somewhat sensitive to noise, with moderate oscilla-
tions in the high-noise Austin region.

BP and reconvolution are sensitive to right censoring, 
often lowering estimates near T to capture outliers. The RIDE 
is robust to noise in reporting and right censoring due to care-
ful choice of basis, regularization, and extrapolation of obser-
vations after T. These parameters are tuned to model daily 
COVID-19 case report data. We note that due to its smoothing 
and censoring corrections, the RIDE produces Rt estimates 
with fewer oscillations and an absence of right-tail Rt declines 
when compared with the other methods.

All methods fit only as well as existing data allows. 
Although all COVID-19 reports include noise, there is under-
ascertainment of recent reports. We tried to mitigate this by 
omitting recent data. However, each method responds dif-
ferently to under-ascertainment. Reconvolution and BP tend 
to underestimate incidence at the end of the time series. The 
RIDE tries to correct for right censoring via extrapolation, so 
artificially low records can lead to a low extrapolation estimate 
and low incidence estimate. Recording data are not available 
for most COVID-19 cases, which would have allowed for 
under-ascertainment correction using the method of.19

FIGURE 4.  Infections incidence (solid black line), 90% credible regions (gray shaded), and observed values by data type (red plus 
for cases, green cross for hospitalizations, and blue diamond for deaths) across regions.

http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
http://links.lww.com/EDE/B924
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Comparison of Inferences by Data Source
We next apply the RIDE to case, hospitalization, and 

mortality data from Arizona, Ohio, Virginia, New York City 
boroughs, and New York City as a whole—locations chosen 
for their readily available hospitalization data and relatively 
large number of reports. Staten Island is omitted due to a low 
death rate throughout the summer. Figure 4 depicts inferred 
daily infections that lead to reports. These values are on differ-
ent scales as only a fraction of infections lead to hospitaliza-
tion or death, or even reported cases. Moreover, these scaling 
factors can change over time as testing capacity increases and 
case mortality rate decreases. Nevertheless, they should have 
general alignment about when peaks occur and outbreak inten-
sity. Note that the peak in estimated infections precedes the 
peak in reported cases, and has steeper upward and downward 
trajectories than the observed data time series. Additionally, 
uncertainty regions near the end of the time series are much 
larger for daily infections inferred from deaths data. This is 
due to the longer lag between infection and death relative to 
cases and hospitalizations. Reproductive numbers fitted using 
the method of,1 based on the inferred infection time series, are 
given in Figure 5.

Inferred infections from deaths consistently peaked ear-
lier by about a week than inferred infections from hospitaliza-
tions in New York City. This may be due to nascent treatment 
regimes and overwhelmed hospitals in New York City during 
March and April. We note that Rt estimates based on case, 

hospitalization, and death inferences track closely in most 
areas. One area of disagreement is Rt estimates based on inci-
dence inferred from deaths versus other sources in NYC bor-
oughs during summer months. This is likely due to low New 
York City death rates during the late summer and early fall, 
where there were a daily average of 1.2 deaths in Brooklyn, 
1.6 in the Bronx, 0.6 in Manhattan, 1.0 in Queens, and 4.6 in 
New York City overall between August 1 and September 30, 
2020. In comparison, there were 10.9 (104.9) average daily 
hospitalizations (cases) in Brooklyn during that same period, 
with 6.9 (50.7) in the Bronx, 3.6 (45.5) in Manhattan, 7.9 
(71.2) in Queens, and 30.7 (291.3) in New York City overall. 
Other regions had higher death rates during that period; there 
were an average of 32.1 daily deaths in Arizona, 21.6 in Ohio, 
and 17.0 in Virginia, which lead to more stable Rt estimates.

Relationships between the case rate, hospitalization rate, 
and death rate have changed between February and December. 
This is likely due to increases in testing, falling case mortality 
rates, and shifting infection demographics. Although case or 
death incidence curves often align well with hospitalization 
curves at a specific point in time, these external factors can 
lead to poor alignment over longer time periods.

In the eAppendix (http://links.lww.com/EDE/B924), 
we present additional inferences at the state and local levels, 
including alignment with policy interventions including stay-
at-home orders and school closures, and incidence at regional 
versus state levels.

FIGURE 5.  Rt fitted on infection time series estimated by data type across regions. Solid lines are means and ribbons are 90% 
credible regions.

http://links.lww.com/EDE/B924
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DISCUSSION
Infection incidence and transmission dynamics are 

obscured by the incubation period, testing delays, reporting 
delays, and time to hospitalization or death. Accurate esti-
mation of the underlying infection time series is a pressing 
problem rife with challenges and complications, including 
observation noise, censoring, and model misspecification. 
Existing methods can exhibit significant bias or are sensitive 
to noise or missing observations in reported data. The RIDE is 
statistically rigorous and robust to some of the data challenges 
that are present with COVID-19 reported data, including high-
noise levels and right censoring. Despite concerns that varia-
tion in testing effort may make hospitalizations data superior 
to data from all cases for monitoring infection dynamics, we 
found that our inferences from case data provided a reasonable 
proxy for those fit from hospitalization data, which are much 
less widely available and pose signal-to-noise ratio problems 
in less populous counties or regions.

One of the most promising uses for regional infec-
tions estimation is as a tool in the evaluation of public policy. 
Accurate reconstruction of infection time series is necessary 
to assess how policies influenced transmission over time, in 
particular when reporting is lagged and multiple interventions 
may have been undertaken in succession. Local SARS-CoV-2 
dynamics may differ from state-level patterns, and policy 
decisions are often implemented to mitigate effects in the 
areas with the highest case loads. Only looking at state-level 
responses to policy decisions can blur policy effects as areas 
with different responses are aggregated.

There remains room to improve these estimators. As 
mentioned earlier, incorporation of methods to account for 
under-ascertainment either in the preprocessing or extrapo-
lation phase would improve right-tail estimates. One salient 
aspect of the ongoing COVID-19 pandemic are day-of-week 
reporting effects. This source of error can be incorporated into 
the likelihood model with additional parameters. Additionally, 
reporting delays can vary by region and change over time. 
One potential approach for coping with such variation is to 
jointly model case and hospitalization data and use the rela-
tive stability of hospitalization delays to identify changes in 
the case reporting delay distribution. A joint approach has 
the potential to more efficiently use all available informa-
tion, but would be limited to regions where hospitalization 
data are relatively available. Lastly, the delay distribution is 
the single-most important hyperparameter for estimating the 
infection time series.9 This delay may change due to reporting 
habits, improvements in care, or shifting demographics of the 
infected population, among other factors.35

Our results suggest that the method chosen to estimate 
infection counts influences the estimate itself and conclusions 
drawn. Providing a stable, accurate, and consistent way to 
estimate infection time series can enable more accurate char-
acterization of real-time transmissibility (i.e., the effective 
reproductive number) and ultimately may help policy-makers 

assess the effectiveness of public health interventions at the 
state and local levels.
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