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Feature bagging is a well-established ensembling method which aims to reduce prediction variance
by training estimators in an ensemble on random subsamples or projections of features. Typically,
ensembles are chosen to be homogeneous, in the sense the the number of feature dimensions available
to an estimator is uniform across the ensemble. Here, we introduce heterogeneous feature ensembling,
with estimators built on varying number of feature dimensions, and consider its performance in a linear
regression setting. We study an ensemble of linear predictors, each fit using ridge regression on a subset
of the available features. We allow the number of features included in these subsets to vary. Using the
replica trick from statistical physics, we derive learning curves for ridge ensembles with deterministic
linear masks. We obtain explicit expressions for the learning curves in the case of equicorrelated data
with an isotropic feature noise. Using the derived expressions, we investigate the effect of subsampling
and ensembling, finding sharp transitions in the optimal ensembling strategy in the parameter space
of noise level, data correlations, and data-task alignment. Finally, we suggest variable-dimension
feature bagging as a strategy to mitigate double descent for robust machine learning in practice.

I. INTRODUCTION

Ensembling methods, where one combines predictions from multiple predictors to achieve a stronger prediction, are
ubiquitous in machine learning practice [1]. A popular class of ensembling methods (known as attribute bagging [2] as
well as the random subspace method [3]) are based on feature subsampling [2–6], where each predictor has access to
only a subset of data features, are independently trained on those features, and their predictions are combined to
achieve a stronger prediction. For example, the popular random forest method makes use of this strategy [3, 7]. An
advantage of these methods is that they allow parallel processing. For example, Feature-Distributed Machine Learning,
combine independent predictions made by agents who only see subsets of available features [8].
While commonly used in practice, a theoretical understanding of ensembling via feature subsampling is not well

developed. Here, we provide an analysis of this technique in the case of feature-subsampled linear ridge regression using
methods from statistical physics [9–12]. This allows us to obtain analytical expressions for typical case performance of
feature-subsampled linear ridge regression. Analysis of these equations under special cases reveal interesting phenomena
involving effects of noise, regularization, and subsampling on prediction performance.

Our findings relate to double-descent [13, 14], which results from over-fitting to noise and poses a serious problem for
practical machine learning. Regularization is commonly used to mitigate double descent, however optimal regularization
strength depends on data and noise levels [15, 16]. Our theory reveals an alternative strategy. We observe that
subsampling shifts the location of a predictor’s sample-wise double-descent peak [14, 16, 17]. An interesting consequence
of this is that if the predictors are heterogeneous in the number of features they see, they will go through double-descent
at different sample-sizes. Therefore, bagging them will lead a mitigation of double-descent, as when one predictor fails,
the others will compensate with accurate predictions.

In summary, we make the following original contributions:
• Using the replica trick from statistical physics [9, 11], we derive the generalization error of ensembled least-squares
ridge regression with random structured Gaussian data, deterministic feature maps, and a noisy linear teacher
function. Our derivation allows for heterogeneity in the rank of the feature maps of the ensemble members.

• We derive explicit formulas which demonstrate that subsampling alters the interpolation threshold of ridge regression.
• We demonstrate benefits of heterogeneous ensembling as a robust method for mitigating double-descent.
• We analyze the role of data correlations, readout noise, and data-task alignment in determining the optimal
ensembling strategy in a tractable special case.
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Related works: A substantial body of work has elucidated the behavior of linear predictors for a variety of feature
maps [13, 16, 18–29]. Several recent works have extended this research to characterize the behavior of ensembled
regression using solvable models [25, 30, 31]. Ref. [30] derives expressions for the generalization error of generalized
linear models, of which ridge ensembles are a special case, in terms of the solutions to a set of self-consistent equations.
However, [30] and [25] focus their analysis on the case of isotropic data and Gaussian random masks of homogeneous
dimensionality. In contrast, we explicitly consider learning from correlated data by ensembles with heterogeneous
readout dimensionality. Our work focuses on the effect of feature-wise subsampling. Additional recent works study the
performance of ridge ensembles with example-wise subsampling [32, 33] and simultaneous subsampling of features
and examples [31]. These works find that subsampling behaves as an implicit regularization, and prove equivalences
between optimal ensembling and optimal regularization. In a similar vein, we consider here ensembling as a safeguard
against insufficient regularization. Methods from statistical physics have long been used for machine learning theory
[10–12]. Relevant work in this domain include [34] which studied ensembling by data-subsampling in linear regression.

II. LERANING CURVES FOR ENSEMBLED RIDGE REGRESSION FROM THE REPLICA METHOD

We consider noisy ensembled ridge regression in the setting where ensemble members are trained independently
on masked versions of the available features. We derive our main analytical formula for generalization error of
ensembled linear regression, as well as analytical expressions for generalization error in the special case of subsampling
of equicorrelated features. Later sections illustrate the implications of the derived formulas.

A. Problem Setup

Consider a training set D = {ψ̄µ, yµ}Pµ=1 of size P . The training examples ψ̄µ ∈ RM are drawn from a Gaussian

distribution with Gaussian feature noise: ψ̄µ = ψµ + σµ, where ψµ ∼ N (0,Σs) and σµ ∼ N (0,Σ0). Data and noise
are drawn i.i.d. so that E

[
ψµψ

⊤
ν

]
= δµνΣs and E

[
σµσ

⊤
ν

]
= δµνΣ0. Labels are generated from a noisy teacher

function yµ = 1√
M
w∗⊤ψµ + ϵµ where ϵµ ∼ N (0, ζ2). Label noises are drawn i.i.d. so that E[ϵµϵν ] = δµνζ

2.

We seek to analyze the quality of predictions which are averaged over an ensemble of ridge regression models, each
with access to a subset of the features. We consider k linear predictors with weights ŵr ∈ RNr , r = 1, . . . , k. Critically,
we allow Nr ̸= Nr′ for r ̸= r′, which allows us to introduce structural heterogeneity into the ensemble of predictors. A
forward pass of the model is given as:

f(ψ) =
1

k

k∑
r=1

fr(ψ), fr(ψ) =
1√
Nr

ŵ⊤
r Ar(ψ + σ) + ξr. (1)

The model’s prediction f(ψ) is an average over k linear predictors. The “measurement matrices” Ar ∈ RNr×M act
as linear masks restricting the information about the features available to each member of the ensemble. Subsampling
may be implemented by choosing the rows of each Ar to coincide with the rows of the identity matrix – the row
indices corresponding to indices of the sampled features. The feature noise σ ∼ N (0,Σ0) and the readout noises
ξr ∼ N (0, η2r), are drawn independently at the execution of each forward pass of the model. Note that while the
feature noise is shared across the ensemble, readout noise is drawn independently for each readout: E[ξrξr′ ] = δrr′η

2
r .

The weight vectors are trained separately in order to minimize a regular least-squares loss function with ridge
regularization:

ŵr = argmin
wr∈RNr

[
P∑
µ=1

(
1√
Nr

w⊤
r Arψ̄µ + ξµr − yµ

)2

+ λ|w2
r |

]
(2)

Here {ξµr } represents the readout noise which is present during training, and independently drawn: ξµr ∼ N (0, η2r),
E[ξµr ξνr ] = η2rδµν . As a measure of model performance, we consider the generalization error, given by the mean-squared-
error (MSE) on ensemble-averaged prediction:

Eg(D) =

〈(
f(ψ)− 1√

M
w∗⊤ψ

)2
〉

(3)

Here, the angular brackets represent an average over the data distribution and noise: ψ ∼ N (0,Σs), σ ∼ N (0,Σ0),
ξr ∼ N (0, η2r). The generalization error depends on the particular realization of the dataset D through the learned
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FIG. 1. Comparison between numerically calculated generalization error and theoretical prediction. Dots show results of
numerical experiment. Lines are theoretical prediction. (a) Numerical experiment with [Σs]ij = .8|i−j|, [Σ0]ij = 1

10
(0.3)|i−j|,

ζ = 0.1, η = 0.2. We set k = 3 with ν1 = 0.2, ν2 = 0.4, ν3 = 0.6. Subsets of feature neurons accessed by each readout are drawn
randomly and are permitted to overlap (see inset). Circular markers show the result of numerical experiment with M = 2000
feature neurons averaged over 100 trials. Curve shows theoretical prediction, obtained by solving the saddle-point equations
11 numerically. Theory and experiment conducted with a fixed ground-truth readout w∗ drawn randomly from an isotropic
standard Gaussian distribution (b) Numerical experiment with [Σs]ij = (0.6)δij + 0.4, [Σ0]ij = .1δij , ζ = 0.1, η = 0.1. Ground
truth weights are randomly sampled in each trial as in eq. 12 with ρ = .3. We set k = 3 with ν1 = 0.1, ν2 = 0.3, ν3 = 0.5.
Subsets of feature neurons accessed by each readout are are mutually exclusive (see inset). Circular markers show the result of
numerical experiment with M = 5000 feature neurons averaged over 100 trials. Error bars show the standard error of the mean,
and are smaller than the markers. Curve shows analytical prediction obtained in the case of equicorrelated features.

weights {ŵ∗}. We may decompose the generalization error as follows:

Eg(D) =
1

k2

k∑
r,r′=1

Err′(D) (4)

Err′(D) ≡
1

M

[(
1
√
νrr
A⊤
r ŵr −w∗

)⊤

Σs

(
1

√
νr′r′

A⊤
r′ŵr′ −w∗

)
+

1
√
νrrνr′r′

ŵ⊤
r ArΣ0A

⊤
r′ŵr′ +Mδrr′η

2
r

] (5)

Computing the generalization error of the model is then a matter of calculating Err′ in the cases where r = r′ and
r ̸= r′. Furthermore, in the asymptotic limit we consider, we expect that the generalization error concentrates over
randomly drawn datasets D.

B. Main Result

We calculate the generalization error using the replica trick from statistical physics. The result of our calculation is
stated in proposition 1. The proof is lengthy, and can be found in the SI.

Proposition 1. Consider the ensembled ridge regression problem described in Section IIA. Consider the asymptotic
limit where M,P, {Nr} → ∞ while the ratios α = P

M and νrr =
Nr

M , r = 1, . . . , k remain fixed. Define the following
quantities:

Σ̃rr′ ≡
1

√
νrrνr′r′

Ar[Σs +Σ0]A
⊤
r′ (6)

Gr ≡ INr
+ q̂rΣ̃rr (7)

γrr′ ≡
α

M(λ+ qr)(λ+ qr′))
tr
[
G−1
r Σ̃rr′G

−1
r′ Σ̃r′r

]
(8)

Then the average generalization error may be written as:

⟨Eg(D)⟩D =
1

K2

K∑
r,r′=1

⟨Err′(D)⟩D, (9)
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where

⟨Err′(D)⟩D =
γrr′ζ

2 + δrr′η
2
r

1− γrr′
+

1

1− γrr′

(
1

M
w∗⊤Σsw

∗
)

− 1

M(1− γrr′)
w∗⊤Σs

[
1

νrr
q̂rA

⊤
r G

−1
r Ar +

1

νr′r′
q̂r′A

⊤
r′G

−1
r′ Ar′

]
Σsw

∗

+
q̂r q̂r′

M(1− γrr′)

1
√
νrrνr′r′

w∗⊤ΣsA
⊤
r G

−1
r Σ̃rr′G

−1
r′ Ar′Σsw

∗

(10)

where the pairs of order parameters {qr, q̂r} for r = 1, . . . ,K, satisfy the following self-consistent saddle-point equations

q̂r =
α

λ+ qr
, qr =

1

M
tr
[
G−1
r Σ̃rr

]
. (11)

Proof. We calculate the terms in the generalization error using the replica trick from the statistical physics of disordered
systems. The full derivation may be found in the supplemental material.

We make several remarks on this result:

Remark 1. This is a highly general result which applies to any selection of linear masks {Ar}. However, we will focus
on the case where the {Ar} implement subsampling of the feature neurons.

Remark 2. Our result reduces to the results of [35] when k = 1 and η = 0, and may be obtained as a special case of
[36] in this limit. In the case where all readout weights have the same dimension Nr = N, r = 1, . . . , k, this result
may be obtained as a special case of the results of [30]. The novelty in our derivation (and subsequent analysis) is to
consider heterogeneity in the values of Nr.

Remark 3. The replica trick [37] is a non-rigorous but standard heuristic in the study of disordered systems. We
confirm our results in simulations.

In Figure 1a, we confirm the result of the general calculation by comparing with numerical experiments. Experimental
curves are generated by running ridge regression on randomly drawn datasets with M = 2000 features and averaging
over the resulting error. We use highly structured data, feature noise, label noise, and readout noise (see caption for
details). Each of k = 3 readouts sees a fixed but randomly drawn subset of features. Theory curves are calculated by
solving the fixed-point equations 11 numerically for the chosen Σs, Σ0 and {Ar}kr=1 then plugging the resulting order
parameters into eq. 10.

C. Equicorrelated Data

Our general result allows the freedom to tune many important parameters of the learning problem: the correlation
structure of the dataset, the number of ensemble members, the scales of noise, etc. However, the derived expressions
are rather opaque, as they depend on the solution to a set of in general analytically intractable self-consistent equations
for the order parameters. In order to better understand the phenomena captured by these expressions, we simplify
them in the tractable special case in which features of the data are equicorrelated:

Proposition 2. Consider the ensembled ridge regression problem described in section II A, and the result of proposition
1. Consider the special case in which we select the following parameters:

w∗ =
√
1− ρ2P⊥w

∗
0 + ρ1M (12)

w∗
0 ∼ N (0, IM ) (13)

Σs = s
[
(1− c)IM + c1M1⊤

M

]
(14)

Σ0 = ωIM (15)

with c ∈ [0, 1], ρ ∈ [−1, 1]. A label noise scale ζ ≥ 0 and readout noise scales ηr ≥ 0 are permitted. Here
P⊥ = IM − 1

N 1M1⊤
M is a projection matrix which removes the component of w∗

0 which is parallel to 1M . The

measurement matrices {Ar}kr=1 have rows consisting of distinct one-hot vectors so that each of the k readouts has
access to a subset of Nr = νrrM features. For r ̸= r′, denote by nrr′ the number of neurons sampled by both Ar and
Ar′ and let νrr′ ≡ nrr′/M remain fixed as M →∞.
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In this case, we may obtain fully analytical formulas for the generalization error as follows. First define the following
quantities:

a ≡ s(1− c) + ω Sr ≡
q̂r

νrr + aq̂r
, γrr′ ≡

a2νrr′SrSr′

α
(16)

The terms of the decomposed generalization error may then be written:

⟨Err′⟩D,w∗
0
=

1

1− γrr′

(
(1− ρ2)I0rr′ + ρ2I1rr′

)
+

γrr′ζ
2 + δrr′η

2
r

1− γrr′
(17)

where we have defined

I0rr′ ≡ s(1− c) (1− s(1− c)νrrSr − s(1− c)νr′r′Sr′ + as(1− c)νrr′SrSr′) (18)

I1rr′ ≡

{
s(1−c)(νrr′−νrrνr′r′ )+ωνrr′

νrrνr′r′
if 0 < c ≤ 1

I0rr′ if c = 0
(19)

and where the order parameters {qr, q̂r} may be obtained analytically as the solution (with qr > 0) to the following
quadratic system of equations:

qr =
aνrr

νrr + aq̂r
, q̂r =

α

λ+ qr
(20)

In the “ridgeless” limit where λ→ 0, we may make the following simplifications:

Sr →
2α

a (α+ νrr + |α− νrr|)
(21)

γrr′ →
4ανrr′

(α+ νrr + |α− νrr|) (α+ νr′r′ + |α− νr′r′ |)
(22)

Proof. Simplifying the fixed-point equations and generalization error formulas in this special case is an exercise in
linear algebra. The main tools used are the Sherman-Morrison formula [38] and the fact that the data distribution is

isotropic in the features so that the form of Σ̃rr and Σ̃rr′ depend only on Nr, Nr′ , and nrr′ . Thus, the result depends
only on the values of {νrr′} and not the identities of the subsampled features. To aid in computing the necessary
matrix contractions we developed a custom Mathematica package which handles block matrices of symbolic dimension,
with blocks containing matrices of the form M = c1I + c211

⊤. This package and the Mathematica notebook used to
derive these results will be made available online (see SI)

In this tractable special case, c ∈ [0, 1] is a parameter which tunes the strength of correlations between features
of the data. When c = 0, the features are independent, and when c = 1 the features are always equivalent. s sets
the overall scale of the features and ρ tunes the alignment of the ground truth weights with the special direction
in the covariance matrix. We refer to ρ as the “task alignment”, and it can be thought of as a simple proxy for
the “task-model alignment” [16] or “code-task alignment” [39]. In Figure 1b, we test these results by comparing the
theoretical expressions for generalization error with the results of numerical experiments, finding perfect agreement.
Note that in this case, both theory and experiment are averaged over ground-truth weights as well as datasets.

D. Subsampling shifts the double-descent peak of a linear predictor.

Consider the equicorrelated data model in the isotropic limit (c = 0). Consider a single linear regressor (k = 1)
which connects to a subset of N = νM features. In the ridgeless limit where regularization λ→ 0, and without readout
noise or feature noise (η = ω = 0), the generalization error is given by equation 17 with νrr = ν, s = 1, ηr = ω = 0 in
the λ→ 0 limit:

⟨Eg⟩D,w∗ =

{
ν

ν−α

[
(1− νrr) +

1
νrr

(α− ν)2
]
+ α

ν−αζ
2, if α < ν

α
α−ν [1− ν] + ν

α−ν ζ
2, if α > ν

}
(23)

Double descent can arise from two possible sources of variance: explicit label noise (ζ > 0) or implicit label noise
induced by feature subsampling (ν < 1). As Eg ∼ (α− ν)−1, we see that the generalization error diverges when α = ν.
The subsampling fraction ν thus controls the sample complexity α at which the double-descent peak occurs. Intuitively,
this occurs because subsampling changes the number of parameters of the regression model, and thus its interpolation
threshold. To demonstrate this, we plot the learning curves for subsampled linear regression on equicorrelated data in
Figure 2. While at finite ridge the test error no longer diverges when α = ν, it may still display a distinctive peak.



6

FIG. 2. Subsampling alters the location of the double-descent peak of a linear predictor. (a) Illustrations of subsampled
linear predictors with varying subsampling fraction ν. (b) Comparison between experiment and theory for subsampling linear
regression on equicorrelated datasets. We choose [Σs]ij = δij , [Σ0]ij = 0, ζ = 0, η = 0, and (i) λ = 0, (ii) λ = 10−4, (iii)

λ = 10−2. Dots show results of numerical experiment. Lines are analytical prediction.

E. Heterogeneous connectivity mitigates double-descent

The observed phenomenon of double-descent – over-fitting to noise in the training set near a model’s interpolation
threshold – poses a serious risk in practical machine-learning applications. Regularization is the canonical strategy
employed to mitigate double descent. However, in order to achieve monotonic learning, the regularization parameter
must be tuned to the structure of the task and the scale of the label noise [15] – no one choice for the regularization
parameter can mitigate double descent for all tasks. Considering again the plots in Figure 2(b), we observe that at any
value of α, the double-descent peak can be avoided with an acceptable choice of the subsampling fraction ν. This
suggests another strategy to mitigate double descent: heterogeneous ensembling. Rather than training an ensemble of
linear predictors, each with the same interpolation threshold, we may ensemble over predictors with a heterogeneous
distribution of interpolation thresholds in the hopes that when one predictor fails, the other members of the ensemble
compensate. In Figure 3, we demonstrate that in the absence of a sufficiently regularization, heterogeneous ensembling
can mitigate double-descent. Specifically. We define two ensembling strategies: in homogeneous ensembling, each of
the k readouts is connected to the same fraction νrr =

1
k features. In heterogeneous ensembling, the number of features

connected by each of the k readouts are drawn i.i.d. from a Gamma distribution with fixed mean 1/k and variance σ2.
We denote this νrr ∼ Γk,σ. After they are independently drawn, subsampling fractions are re-scaled so that they sum
to unity: νrr/

∑
r νrr ← νrr. This ensures fair competition, wherein the total number of readout weights utilized in

homogeneous and heterogeneous ensembling are equal. Equivalently, we may consider the readout fractions νrr to
be drawn from a Dirichlet distribution: (ν1, . . . , νk) ∼ Dir((σk)−2, . . . , (σk)−2) [40]. These strategies for connecting
readouts to the features are illustrated for k = 10 in figures 3 a.i (homogeneous) and 3 a.ii (heterogeneous). The
density of the distribution Γk,σ(ν) is plotted in figure 3b for k = 10 and varying σ. In figure S1, we apply these ideas
to a classification task on the CIFAR-10 dataset. We find that in this nonlinear setting, heterogeneous ensembling
prevents catastrophic over-fitting, leading to monotonic learning curves without regularization (see SI for details).
In figure 3c, we use our analytical theory of equicorrelated data (see eqs. 17) to compare the performance of

homogeneous and heterogeneous ensembling with k = 10. We find that for an under-regularized predictor, (3c.i, c.ii,
c.iii) heterogeneous ensembling reduces the height of the double-descent peak. At larger regularization (3c.iv, c.v, c.vi),
homogeneous and heterogeneous ensembling perform similarly. We quantify the extent of double-descent through the
worst-case error maxα(Eg(α)). We find that as σ increases, the worst-case error decreases monotonically at no cost to
the asymptotic error Eg(α→∞) (see Fig. 3d,e).

F. Data correlations, readout noise, and task structure determine optimal ensemble size

We now ask whether ensembling is a fruitful strategy – i.e. whether it is preferable to have a single, fully connected
readout or multiple sparsely connected readouts. Intuitively, the presence of correlations between features permits
subsampling, as measurements from a subset of neurons will also confer information about the state of the others.
In addition, ensembling over multiple readouts can average out the readout noise. To quantify these notions, we
consider the special case of ensembling over k readouts, each connecting the same fraction νrr = ν = 1

k of features in an
equicorrelated code with correlation strength c and readout noise scale η, and task alignment ρ. We set the label noise,
feature noise, and overlap between readouts to zero (ζ = 0, ω = 0, νrr′ = 0 when r ̸= r′). In the ridgeless limit, we can

then express the error as : Eg(k) = s(1− c)F (H, k, ρ, α), where H ≡ η2

s(1−c) is an effective inverse signal-to-noise ratio
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FIG. 3. Homogeneous vs. Heterogeneous Ensembling on equicorrelated data. (a) We compare (i) homogeneous ensembling, in
which each readout connects to the same number of feature neurons and (ii) heterogeneous ensembling, in which the number of
feature neurons connected by a readout is drawn from a distribution. (b) We use the Gamma distribution with the convention
that Γk,σ(ν) is the probability density function of the Gamma distribution with mean k−1 and variance σ2. Shown here for
k = 10 and σ indicated by the colorbar. (c) Generalization Error Curves for Homogeneous and Heterogeneous ensembling with
k = 10 and indicated values of λ and σ. Curves are calculated using analytical theory for equicorrelated data with c = 0, η = 0,
ζ = 0. Solid blue is the learning curve for homogeneous subsampling. Dotted red curves show loss curve for 5 realizations of the
randomly drawn subsampling fractions {νrr}kr=1. Solid red is the learning curve for heterogeneous ensembling averaged over 100
realizations of the subsampling fractions {νrr}kr=1 drawn independently from Γk,σ(ν). (d) Average loss curves for heterogeneous
ensembling with k = 10, λ = 10−3, and σ indicated by the colorbar. (e) Average worst-case error and asymptotic error as
a function of variance for heterogeneous ensembling. Worst-case error is calculated for each realization of the subsampling
fractions as maxα Eg(α|{νrr}kr=1). Average worst-case error is the worst-case error averaged over realizations of the subsampling
fractions. Shaded region shows standard deviation over realizations of the subsampling fractions.

and F (H, k, ρ, α) is a rational function of its arguments (see SI for full expressions). Therefore, given fixed parameters
s, c, ρ, α, the value k∗ which minimizes error depends on η, s, and c only through the ratio H.
Using our analytical theory, we plot the optimal number of readouts k in the parameter space of H and ρ (see

Fig. 4a). The resulting phase diagrams are naturally divided into three regions. In the signal-dominated phase a
single fully-connected readout is optimal (k∗ = 1). In an intermediate phase, 1 < k∗ <∞ minimizes error. And in a
noise-dominated phase k∗ =∞. The boundary between the signal-dominated and noise-dominated phases (dotted
lines in 4a) can be written H = (1− 1

α )(1− ρ2) when α > 1 and H = α(1− α)(1− ρ2) when α < 1 . The boundary

between the intermediate and noise-dominated phases (dashed lines in 4a) can be written H = 2− (2 + 1
α )ρ

2. As is
evident in these phase diagrams, an increase in H causes an increase in k∗. This can occur because of a decrease in the
signal-to-readout noise ratio s/η2, or through an increase in the correlation strength c. An increase in ρ also leads
to an increase in k∗, indicating that ensembling is more effective when there is alignment between the structure of
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FIG. 4. Noise level and data correlation strength determine optimal readout strategy: Using analytical theory (see eq. 17), we
calculate the generalization error of linear predictors on equicorrelated data ([Σs]ij = (1− c)δij + c, 0 < c ≤ 1) with readout

noise with variance η2. Ground truth weights are drawn as in eq. 12. For convenience, we set λ = 0, though results are
qualitatively similar with small finite ridge. We consider k readouts, each connecting a fraction ν = 1/k of the feature neurons,
so that the total number of readout weights is conserved. (a) Phase diagrams of optimal k in the parameter space of task

alignment ρ and the inverse effective signal-to-noise ratio H ≡ η2

s(1−c)
. Color indicates the optimal number of readouts k∗, with

gray indicating k∗ = 1 and white indicating k∗ = ∞ We consider (i) α = 0.25, (ii) α = 0.75, (iii) α = 1.5, (iv) α = 103. Black
lines are analytically derived phase boundaries between regions of parameter space where finite optimal k∗ exists and where
k∗ = ∞. Dotted black lines are phase boundaries of the type where k∗ jumps discontinuously from 1 to ∞. Dashed black
lines are phase boundaries of the type where k∗ → ∞ from one side and k∗ = ∞ on the other. (b) for three choices of the
parameters (H, ρ) we plot the learning curve for ensembled linear regression for a variety of k values (see colorbar), as well as
k = ∞, indicated by the dotted black line. Depending on the region of parameter space, the optimal readout strategy may be to
select k∗ = 1, 1 < k∗ < ∞, or k∗ = ∞.

the data and the task. Learning curves from each of these phases for varying k are plotted in Fig. 4b. The resulting
shifts in the location of the double-descent peak resemble those observed in practice for ensembling methods applied to
linear classifiers [6].

III. CONCLUSION

In this paper, we provided a theory of feature-subsampled ensembling techniques focusing on feature-subsampled
linear ridge regression. Our technique was the replica method from statistical physics which led us to derive an
analytical formula for the typical case generalization error in the aforementioned setting. We solved these equations
for a special case which revealed many interesting phenomena.
One of these phenomena relate to double descent [13, 14]. In most machine learning applications, the size of the

dataset is known at the outset and suitable regularization may be determined to mitigate double descent, either by
selecting a highly over-parameterized model [13] or by cross-validation techniques (see for example [19]). However,
in contexts where a single network architecture is designed for an unknown task or a variety of tasks with varying
structure and noise levels, heterogeneous ensembling may be used to smooth out the perils of double-descent. Our
analysis of ensembling in noisy neural networks suggests that an ensembling approach may be useful in improving the
stability of analog neural networks, where readout noise is a significant problem (see, for example, [41]).
Much work remains to achieve a full understanding of the interactions between data correlations, readout noise,

and ensembling. In this work, we have given a thorough treatment of the convenient special case where features
are equicorrelated and readouts do not overlap. Future work should analyze ensembling for codes with an arbitrary
correlation structure, in which readouts access randomly chosen, potentially overlapping subsets of features. This will
require to average our expressions for the generalization error over randomly drawn masks {Ar}. This problem has
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been thoroughly studied in the case where the entries of Ar are i.i.d Gaussian [30], as in the ever-popular random
feature model. Recent progress on the problem of non-Gaussian projections for a single readout has been made in [42].
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Appendix A: Application to CIFAR10 Classification Task

In this section, we demonstrate that the qualitative insights gained from our analysis of the linear regression
task with Gaussian data carries over to a practical machine learning task. In particular, we show that ensembling
with heterogeneous readout connectivity can mitigate double-descent in the CIFAR10 classification task [43] without
regularization. The experimental setup is as follows:
To obtain a useful feature map, we first train a deep, fully connected multi-layer perceptron (MLP) to solve the

CIFAR10 classification task. The MLP has three hidden layers of size Nh = 1000. We use a training set of 50,000
images xµ ∈ RN0 , N0 = 3072 from Nout = 10 classes. The targets are assigned as one-hot vectors We write this
network as follows:

h = ReLU(N
−1/2
in Winx) (A1)

h2 = ReLU(M−1/2W1h1) (A2)

ψ(x) = ReLU(M−1/2W2h2) (A3)

ŷ(x) = M−1/2Woutψ(x) (A4)

Where Win ∈ RNh×Nin , W1 ∈ RNh×M , W2 ∈ RNh×M , Wout ∈ R10×M We use a MSE loss function:

ℓ({Win,W1,W2,Wout}) =
∑
µ

(ŷ(xµ)− yµ) (A5)

The predicted class is then assigned as the class corresponding to the component of ŷ with maximum value. Training
for 2000 steps with full-batch gradient descent and the Adam optimizer at a learning rate of .001, the network achieves
a training accuracy of 90% and a test accuracy of ∼ %50. The learned features ψ(x) are then extracted and new
readout weights are trained using the homogeneous or heterogeneous ensembling strategies with modifications for
handling multiple readout classes. An ensemble of k predictions is made:

yr(x) =
1√
Nr

WrArψ(x) (A6)

for r = 1, . . . , k. Here, each Ar ∈ RNr×Nin implements subsampling of a randomly drawn subset of Nr features,
and wr ∈ RNout×Nr predict the class of the input from these subsampled features. The weights Wr are trained
independently using a pseudoinverse rule, which is equivalent to ridge regression in the limit of zero regularization.
Finally, the predictions of the ensemble of readouts are combined using a mean with a nonlinear threshold:

ŷ(x) =

k∑
r=1

ϕ(yr(x)) (A7)

ϕ(x) =
1

2

(
1 + tanh(5(x− 1

2
))

)
(A8)

In supplemental figure 1, we demonstrate the performance of re-learning ensembles of readout weights using the
homogeneous and heterogeneous ensembling strategies. To review, in homogeneous ensembling, the subsampling
fractions νrr =

Nr

M are chosen as νrr = 1/k, r = 1, . . . , k. However, in heterogeneous subsampling, the weights are

drawn from a gamma distribution with mean 1/k and variance σ2, then re-scaled so that
∑
r νrr = 1. In figure S1, we

use σ = 1/(2k).
We that the heterogeneous ensembling approach leads to a smooth learning curve without double descent. This

effect is most pronounced in the plots of “test accuracy”, which is the probability of incorrect classification of a test
example. While homogeneous ensembling shifts the double-descent peak toward smaller P , heterogeneous ensembling
eliminated the peak. Because the data is heavily correlated, there is no cost to the prediction performance at large P .

Appendix B: Generalization error of ensembled linear regression from the replica trick

Here we use the Replica Trick from statistical physics to derive analytical expressions for Err′ . We treat the cases
where r = r′ and r ̸= r′ separately. Following a statistical mechanics approach, we calculate the average generalization
error over a Gibbs measure with inverse temperature β;
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FIG. 5. Homogeneous and Heterogeneous Subsampling applied to CIFAR10 demonstrates the benefit of heterogeneous ensembling.
(a) Eigenvalue spectrum of the empirical feature covariance matrix Ex

[
(ψ(x)− Exψ(x))(ψ(x)− Exψ(x))

⊤⟩
]
. Spectrum

is well fit by a power law with exponent λn ∝ n−α with exponent α = 1.13. (b,c) Test Accuracy defined as the fraction of
test examples which are incorrectly classified by the ensemble of readouts using homogeneous ensembling strategy (b) and
heterogeneous ensembling strategy (c) with σ = 1

2k
.

Z =

∫ ∏
r

dw exp

−β

2

∑
r

Er
t −

Mβ

2

∑
r,r′

Jrr′Err′(wr,wr′)

 (B1)

Er
t =

P∑
µ=1

(
1√
Nr

w⊤
r Arψ̄µ + ξr − yµ

)2

+ λ|w2
r | (B2)

In the limit where β →∞ the gibbs measure will concentrate around the weight vector ŵr which minimizes the
regularized loss function. The replica trick relies on the following identity:

⟨log(Z[D])⟩D = lim
n→0

1

n
log (⟨Zn⟩D) (B3)

where ⟨·⟩D represents an average over all quenched disorder in the system. In this case, quenched disorder – the
disorder which is fixed prior to and throughout training of the weights – consists of the selected training examples
along with their feature noise and label noise: D = {ψµ,σµ, ϵµ}Pµ=1. The calculation proceeds by first computing the
average of the replicated partition function assuming n is a positive integer. Then, in a non-rigorous but standard
step, we analytically extend the result to n→ 0.

1. Diagonal Terms

We start by calculating Err for some fixed choice of r. Noting that the diagonal terms of the generalization error
Err only depend on the learned weights wr, and the loss function separates over the readouts, we may consider the
Gibbs measure over only these weights:

Z =

∫
dwr exp

(
− β

2λ
Et
r −

JMβ

2
Err(wr)

)
(B4)
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⟨Zn⟩D =

∫ ∏
a

dwa
rE{ψµ,σµ,ϵµ}

exp

(
−βM

2λ

∑
µ,a

1

M

[
1
√
νrr
wa⊤
r Ar (ψµ + σµ)−w∗⊤ψµ −

√
M(ϵµ − ξµr )

]2

−β

2

∑
a

|wa
r |2 −

JMβ

2

∑
a

Err(w
a)

) (B5)

Next we must perform the averages over quenched disorder. We first integrate over {ψµ,σµ, ξµr , ϵµ}Pµ=1. Noting that
the scalars

hraµ ≡
1√
M

[
1
√
νrr
wa⊤
r Ar (ψµ + σµ)−w∗⊤ψµ −

√
M(ϵµ − ξµr )

]
are Gaussian random variables (when conditioned on Ar) with mean zero and covariance:

⟨hraµ hrbν ⟩ = δµνQ
rr
ab (B6)

Qrr
ab =

1

M

[(
1
√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1
√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

] (B7)

To perform this integral we re-write in terms of {Hr
µ}Pµ=1, where

Hr
µ =


hr1µ
hr2µ
...

hrnµ

 ∈ Rn (B8)

⟨Zn⟩D =

∫ ∏
a

dwa
rE{ψµ,σµ,ϵµ} exp

(
− β

2λ

∑
µ

Hr⊤
µ Hr

µ −
β

2

∑
a

|wa
r |2 −

JMβ

2

∑
a

Err(w
a)

)
(B9)

Integrating over the Hr
µ we get:

⟨Zn⟩D =

∫ ∏
a

dwa
r exp

(
−P

2
log det

(
In +

β

λ
Qrr

)
− β

2

∑
a

|wa
r |2 −

JMβ

2

∑
a

Err(wr)

)
(B10)

Next we integrate over Qr and add constraints. We use the following identity:

1 =
∏
ab′

∫
dQrr

abδ

(
Qrr
ab −

1

M

[(
1
√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1
√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

]) (B11)

Using the Fourier representation of the delta function, we get:

1 =
∏
ab

∫
1

4πi/M
dQrr

abdQ̂
rr
ab exp

(
M

2
Q̂rr
ab

(
Qrr
ab −

1

M

[(
1
√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1
√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

])) (B12)
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Inserting this identity into the replicated partition function and substituting Err(w
a
r ) = Qrr

aa − ζ2 we find:

⟨Zn⟩D ∝∫ ∏
ab

dQrr
abdQ̂

rr
ab exp

(
−P

2
log det

(
In +

β

λ
Qrr

)
+

1

2

∑
ab

MQ̂rr
abQ

rr
ab −

JMβ

2

∑
a

(Qrr
aa − ζ2)

)
∫ ∏

a

dwa
r exp

(
−β

2

∑
a

|wa
r |2 −

1

2

∑
ab

Q̂rr
ab

[(
1
√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1
√
νrr
A⊤
r w

b
r −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r w

b
r +M(ζ2 + η2r)

])
(B13)

In order to perform the Gaussian integral over the {wa
r}, we unfold over the replica index a. We first define the

following:

w·
r ≡

w
1
r
...
wn
r

 (B14)

T r ≡ βIn ⊗ INr + Q̂
rr ⊗

(
1

νrr
Ar(Σs +Σ0)A

⊤
r

)
(B15)

V r ≡ (Q̂rr ⊗ INr )(1n ⊗
1
√
νrr
ArΣsw

∗) (B16)

We then have for the integral over w

∫
dw·

r exp

(
−1

2
w·⊤
r T rw·

r′ + V r⊤w·
r

)
(B17)

= exp

(
1

2
V r⊤(T r)−1V r − 1

2
log det(T r)

)
(B18)

We can finally write the replicated partition function as:

⟨Zn⟩D ∝∫ ∏
ab

dQrr
abdQ̂

r
ab exp

(
−P

2
log det

(
In +

β

λ
Qrr

)
+

1

2

∑
ab

MQ̂rr
abQ

rr
ab −

JMβ

2

∑
a

(Qrr
aa − ζ2)

)

exp

(
1

2
V r⊤(T r)−1V r − 1

2
log det(T r)− 1

2

∑
ab

Q̂rr
ab(M(ζ2 + η2r) +w

∗⊤Σsw
∗)

) (B19)

We now make the following replica-symmetric ansatz:

βQrr
ab = qδab + q0 (B20)

β−1Q̂rr
ab = q̂δab + q̂0 (B21)

which is well-motivated because the loss function is convex. We may then rewrite the partition function as follows:

⟨Zn⟩D = exp

(
−nM

2
g [q, q0, q̂, q̂0]

)
(B22)

Where the effective action is written:
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g [q, q0, q̂, q̂0] = α

[
log(1 +

q

λ
) +

q0
λ+ q

]
− (qq̂ + qq̂0 + q0q̂) + J

[
(q + q0)− βζ2

]
− β

νrrM
q̂2w∗⊤ΣsA

⊤
r G

−1ArΣsw
∗ +

1

M

[
log det(G) + q̂0 tr[G

−1Σ̃]
]
+ βq̂

(
ζ2 + η2r +

1

M
w∗⊤Σsw

∗
) (B23)

Where G ≡ INr + q̂Σ̃ and Σ̃ ≡ 1
νrr
Ar(Σs +Σ0)A

⊤
r

We have

Err =
∂

∂J
lim
β→∞

1

β
g[q, q0, q̂, q̂0] (B24)

Where g is evaluated at the values of q, q0, q̂, q̂0 which minimize g, in accordance with the method of steepest descent.

Err = ∂J

(
1

M
w⋆⊤

[
q̂Σs −

1

νrr
q̂2ΣsA

⊤
r G

−1ArΣs

]
w∗ + q̂(ζ2 + η2r)− Jζ2

)
= [∂J q̂]

(
1

M
w⋆⊤

[
Σs −

2

νrr
q̂ΣsA

⊤
r G

−1ArΣs +
1

νrr
q̂2ΣsA

⊤
r G

−1Σ̃G−1ArΣs

]
w∗ + ζ2 + η2r

)
− ζ2

(B25)

To complete the calculation, we need to find ∂J q̂. We may do this by examining two of the saddle-point equations:

∂g

∂q0
= 0 =

α

λ+ q
− q̂ + J ⇒ q̂ =

α

λ+ q
+ J (B26)

∂g

∂q̂0
= 0 = −q + 1

M
tr
[
G−1Σ̃

]
⇒ q =

1

M
tr
[
G−1Σ̃

]
(B27)

These two equations may in principle be solved for the dominant values of q and q̂. Letting κ = λ+ q, we get:

∂J q̂ = − α

κ2
∂Jq + 1 (B28)

∂Jq = − 1

M
∂J q̂ tr

[
(G−1Σ̃)2

]
(B29)

Solving this system of equations, we find ∂J q̂ = 1
1−γ where γ ≡ α

Mκ2 tr
[
(G−1Σ̃)2

]
Err =

1

1− γ

1

M
w⋆⊤

[
Σs −

2

νrr
q̂ΣsA

⊤
r G

−1ArΣs +
1

νrr
q̂2ΣsA

⊤
r G

−1Σ̃G−1ArΣs

]
w∗ +

γζ2 + η2r
1− γ

(B30)

=
1

1− γ

1

M
w⋆⊤

[
Σs −

1

νrr
q̂ΣsA

⊤
r G

−1ArΣs −
1

νrr
q̂ΣsA

⊤
r G

−2ArΣs

]
w∗ +

γζ2 + η2r
1− γ

(B31)

2. Off-Diagonal Terms

We now calculate Err′ for r ̸= r′. We now must consider the joint Gibbs Measure over wr and wr′ :

Z =

∫
dwrdwr′ exp

(
− β

2λ
(Et

r + Et
r′)−

JMβ

2
Err′(wr,wr′)

)
(B32)

(B33)

⟨Zn⟩D =

∫ ∏
a

dwa
rdw

a
r′E{ψµ,σµ,ϵµ}

exp

(
−βM

2λ

∑
µ,a

1

M

[(
hraµ
)2

+
(
hr

′a
µ

)2]
− β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− JMβ

2

∑
a

Err′(w
a
r ,w

a
r′)

) (B34)
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Where the hraµ are defined as before. Next we must perform the averages over quenched disorder. We first integrate
over {ψµ, ϵµ}. To do so, we note that the hraµ are Gaussian random variables with covariance structure:

⟨hraµ hr
′b
ν ⟩ = δµνQ

rr′

ab (B35)

Qrr′

ab =
1

M

[(
1
√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νr′r′

A⊤
r′w

b
r′ −w∗

)
+

1
√
νrrνr′r′

wa⊤
r ArΣ0A

⊤
r′w

b
r′ +Mζ2

] (B36)

To perform this integral we re-write in terms of {Hµ}Pµ=1, where

Hµ =

[
Hr
µ

Hr′

µ

]
∈ R2n (B37)

⟨Zn⟩D =

∫ ∏
a

dwa
rdw

a
r′E{ψµ,σµ,ϵµ}

exp

(
− β

2λ

∑
µ

H⊤
µHµ −

β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− JMβ

2

∑
a

Err′(w
a
r ,w

a
r′)

) (B38)

Integrating over Hµ we get:

⟨Zn⟩D =

∫ ∏
a

dwa
rdw

a
r′

exp

(
−P

2
log det

(
I2n +

β

λ
Q

)
− β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− JMβ

2

∑
a

Err(w
a
r ,w

a
r′)

) (B39)

Where we have defined the matrix Q so that:

Q =

[
Qrr Qrr′

Qrr′ Qr′r′

]
(B40)

Next we integrate over Q and add constraints. We use the following identity:

1 =
∏
ab

∫
dQrr′

ab δ

(
Qrr′

ab −
1

M

[(
1
√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νr′r′

A⊤
r′w

b
r′ −w∗

)
+

1
√
νrrνr′r′

wa⊤
r ArΣ0A

⊤
r′w

b
r′ +Mζ2

]) (B41)

Using the Fourier representation of the delta function, we get:

1 =
∏
ab

∫
1

4πi/M
dQrr′

ab dQ̂
rr′

ab exp

(
M

2
Q̂rr′

ab

(
Qrr′

ab −
1

M

[(
1
√
νrr
wa⊤
r Ar −w∗⊤

)
Σs

(
1

√
νr′r′

A⊤
r′w

b
r′ −w∗

)
+

1

νrr
wa⊤
r ArΣ0A

⊤
r′w

b
r′ +Mζ2

])) (B42)

Inserting this identity and the corresponding statements for Qrr
ab and Qr′r′

ab into the replicated partition function and

substituting Err′(w
a) = Qrr′

aa − ζ2 we find:



17

⟨Zn⟩D ∝
∫ ∏

abr1r2

dQr1r2
ab dQ̂r1r2

ab

exp

(
−P

2
log det

(
I2n +

β

λ
Q

)
+

1

2

∑
abr1r2

MQ̂r1r2
ab Qr1r2

ab −
JMβ

2

∑
a

(Qrr′

aa − ζ2)

)
∫ ∏

a

dwa
rdw

a
r′ exp

(
−β

2

∑
a

[
|wa

r |2 + |wa
r′ |2
]
− 1

2

∑
abr1r2

Q̂r1r2
ab

[(
1
√
νr1
wa⊤
r1 Ar1 −w∗⊤

)
Σs

(
1
√
νr2
A⊤
r2w

b
r2 −w

∗
)

+
1

√
νr1νr2

wa⊤
r1 Ar1Σ0A

⊤
r2w

b
r2 +Mζ2

])
(B43)

Where sums over r1 and r2 run over {r, r′}.
In order to perform the Gaussian integral over the {wa

r}, we unfold in two steps. We first define the following:

w·
r ≡

w
1
r
...
wn
r

 (B44)

[Q̂rr′ ]ab ≡ Q̂rr′

ab (B45)

Σ̃rr′ ≡
1

√
νrrνr′r′

Ar[Σs +Σ0]A
⊤
r′ (B46)

T rr
′
≡ βδrr′In ⊗ INr

+ Q̂rr′ ⊗ Σ̃rr′ (B47)

Unfolding over the replica indices, we then get:

⟨Zn⟩D ∝
∫ ∏

abr1r2

dQr1r2
ab dQ̂r1r2

ab

exp

(
−P

2
log det

(
I2n +

β

λ
Q

)
+

1

2

∑
abr1r2

MQ̂r1r2
ab Qr1r2

ab −
JMβ

2

∑
a

(Qrr′

aa − ζ2)

)

exp

(
−1

2

∑
abr1r2

Q̂r1r2
ab

(
w∗⊤Σsw

∗ +Mζ2
))

∫
dw·

rdw
·
r′ exp

(
−1

2

∑
r1r2

w·⊤
r1 T

r1r2wr2 +
∑
r1r2

[
(Q̂r1r2 ⊗ INr1

)(1n ⊗
1
√
νr1
Ar1Σsw

∗)

]⊤
wr1

)
(B48)

Note that the dimensionality of T r1r2 varies for different choices of r1 and r2. Next, we unfold over the two readouts:

w ≡
[
w·
r

w·
r′

]
(B49)

T ≡
[
T rr T rr

′

T r
′r T r

′r′

]
(B50)

V ≡

 (
(Q̂rr + Q̂rr′)⊗ INr

)(
1n ⊗ 1√

νrr
ArΣsw

∗
)(

(Q̂r′r′ + Q̂r′r)⊗ INr′

)(
1n ⊗ 1√

νr′r′
Ar′Σsw

∗
) (B51)

The integral over w then becomes:

∫
dw exp

(
−1

2
w⊤Tw + V ⊤w

)
∝ exp

(
1

2
V ⊤T−1V − 1

2
log detT

)
(B52)
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We are now ready to make a replica-symmetric ansatz. The order parameter that we wish to constrain is Qrr′

ab .
Overlaps go between the weights from different replicas of the system as well as different readouts. The scale of the
overlap between two measurements depends on their overlap with each other and with the principal components of
the data distribution. An ansatz which is replica-symmetric but makes no assumptions about the overlaps between
different measurements is as follows:

βQr1r2
ab = Qr1r2δab + qr1r2 (B53)

β−1Q̂r1r2
ab = Q̂r1r2δab + q̂r1r2 (B54)

Next step is to plug the RS ansatz into the free energy and simplify. To make calculations more transparent, we
re-label the paramters in the RS ansatz as follows:

βQrr = qI +Q11⊤ (B55)

βQr′r′ = rI +R11⊤ (B56)

βQrr′ = cI + C11⊤ (B57)

β−1Q̂rr = q̂I + Q̂11⊤ (B58)

β−1Q̂r′r′ = r̂I + R̂11⊤ (B59)

β−1Q̂rr′ = ĉI + Ĉ11⊤ (B60)

In order to simplify log det (λI2n + βQ), we note that this is a symmetric 2-by-2-block matrix, where each block
commutes with all other blocks. We may then use [44]’s result to simplify.

log det (λI2n + βQ) = n

[
log
(
(λ+ q)(λ+ r)− c2

)
+

(λ+ q)R+ (λ+ r)Q− 2cC

(λ+ q)(λ+ r)− c2

]
+O(n2) (B61)

∑
abr1r2

Q̂r1r2
ab Qr1r2

ab = n
[(

qq̂ + q̂Q+ qQ̂
)
+
(
rr̂ + r̂R+ rR̂

)
+ 2

(
cĉ+ ĉC + cĈ

)]
+O(n2) (B62)

∑
a

(
Qrr′

aa − ζ2
)
= n

[
1

β
(c+ C)− ζ2

]
+O(n2) (B63)

∑
abr1r2

Q̂r1r2
ab = βn [q̂ + r̂ + 2ĉ] (B64)

log det(T ) = n

[
log(β) + log det

[
Grr Grr′

Gr′r Gr′r′

]
+q̂ tr(DrrΣ̃rr + ĉ tr(Drr′Σ̃r′r) + r̂ tr(Dr′r′Σ̃r′r′) + ĉ tr(Dr′rΣ̃rr′)

]
+O(n2)

(B65)

where Grr = INr + q̂Σ̃rr Gr′r′ = INr′ + r̂Σ̃r′r′ Grr′ = ĉΣ̃rr′ Gr′r = ĉΣ̃r′r (B66)

and where the Dr1r2 matrices are defined implicitly through the following equation:[
Grr Grr′

Gr′r Gr′r′

]−1

=

[
Drr Drr′

Dr′r Dr′r′

]
(B67)

The Dr1r2 matrices can be expressed in terms of the Gr1r2 and their inverses by the standard 2 × 2 block matrix
inversion formula (see, for example, [45]). Applying this formula gives the following:
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Drr =

[
I + q̂Σ̃rr − ĉ2Σ̃rr′

(
I + r̂Σ̃r′r′

)−1

Σ̃r′r

]−1

(B68)

Dr′r′ =

[
I + r̂Σ̃r′r′ − ĉ2Σ̃r′r

(
I + q̂Σ̃rr

)−1

Σ̃rr′

]−1

(B69)

Drr′ = −ĉDrrΣ̃rr′G
−1
r′r′ (B70)

Dr′r = −ĉDr′r′Σ̃r′rG
−1
rr (B71)

V ⊤T−1V = nβw∗⊤

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]⊤ [
Grr Grr′

Gr′r Gr′r′

]−1
[

1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]
w∗ +O(n2) (B72)

Collecting these terms, we may write the replicated partition function as follows:

⟨Zn⟩D = exp

(
−nM

2
g
[
q,Q, r,R, c, C, q̂, Q̂, r̂, R̂, ĉ, Ĉ

])
(B73)

Where the effective action is written:

g
[
q,Q, r,R, c, C, q̂, Q̂, r̂, R̂, ĉ, Ĉ

]
= (B74)

α

[
log
(
(λ+ q)(λ+ r)− c2

)
+

(λ+ q)R+ (λ+ r)Q− 2Gg

(λ+ q)(λ+ r)− c2

]
(B75)

−
[(

qq̂ + q̂Q+ qQ̂
)
+
(
rr̂ + r̂R+ rR̂

)
+ 2

(
cĉ+ ĉC + cĈ

)]
(B76)

+ J(c+ C)− βJζ2 (B77)

+ β [q̂ + r̂ + 2ĉ]

(
1

M
w∗⊤Σw∗ + ζ2

)
(B78)

− βw∗⊤

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]⊤
G−1

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]
w∗ (B79)

+
1

M

[
log(β) + log det (G) + Q̂ tr(DrrΣ̃rr) + Ĉ tr(Drr′Σ̃r′r) + R̂ tr(Dr′r′Σ̃r′r′) + Ĉ tr(Dr′rΣ̃rr′)

]
(B80)

where we have defined G ≡
[
Grr Grr′

Gr′r Gr′r′

]
We have:

Err′ =
∂

∂J
lim
β→∞

1

β
g
[
q,Q, r,R, c, C, q̂, Q̂, r̂, R̂, ĉ, Ĉ

]
(B81)

Where g is evaluated at the values of Q, q,R, r, C, c, Q̂, q̂, R̂, r̂, Ĉ, ĉ which minimize g, in accordance with the method
of steepest descent (and thus implicitly depend on J). This gives:

Err′ = −ζ2 +
[
∂q̂

∂J
+

∂r̂

∂J
+ 2

∂ĉ

∂J

](
1

M
w∗⊤Σsw

∗ + ζ2
)

(B82)

− 2

M
w∗⊤

[
1√
νrr

( ∂q̂∂J + ∂ĉ
∂J )ArΣs

1√
νr′r′

( ∂r̂∂J + ∂ĉ
∂J )Ar′Σs

]⊤
G−1

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]
w∗ (B83)

+
1

M
w∗⊤

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]⊤
G−1 ∂G

∂J
G−1

[
1√
νrr

(q̂ + ĉ)ArΣs
1√
νr′r′

(r̂ + ĉ)Ar′Σs

]
w∗ (B84)
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∂G

∂J
=

∂G

∂q̂

∂q̂

∂J
+

∂G

∂r̂

∂r̂

∂J
+

∂G

∂ĉ

∂ĉ

∂J
=

[
∂q̂
∂J Σ̃rr

∂ĉ
∂J Σ̃rr′

∂ĉ
∂J Σ̃r′r

∂r̂
∂J Σ̃r′r′

]
(B85)

All that remains is to calculate the saddle-point values of q̂, r̂, ĉ and their derivatives with respect to J at J = 0.

∂g

∂Q
= 0 =

α(λ+ r)

(λ+ q)(λ+ r)− C2
− q̂ (B86)

∂g

∂Q̂
= 0 = −q + 1

M
tr
(
DrrΣ̃rr

)
(B87)

∂g

∂R
= 0 =

α(λ+ q)

(λ+ q)(λ+ r)− C2
− r̂ (B88)

∂g

∂R̂
= 0 = −r + 1

M
tr
(
Dr′r′Σ̃r′r′

)
(B89)

∂g

∂g
= 0 =

−2αC
(λ+ q)(λ+ r)− C2

− 2Ĉ + J (B90)

∂g

∂ĉ
= 0 = −2C +

1

M
tr
(
Drr′Σ̃r′r +Dr′rΣ̃rr′

)
(B91)

These 6 equations can in principle be solved for {q, r, c, q̂, r̂, ĉ} and their derivatives with respect to J . Note that
when J = 0, the saddle point equations B90, B91 are solved by setting c = ĉ = 0, and in this case the remaining
saddle-point equations decouple over the readouts (as expected for independently trained ensemble members) giving:
For readout r:

0 =
α

(λ+ q)
− q̂ (B92)

0 = −q + 1

M
tr
(
G−1
rr Σ̃rr

)
(B93)

and for readout r′:

0 =
α

(λ+ r)
− r̂ (B94)

0 = −r + 1

M
tr
(
G−1
r′r′Σ̃r′r′

)
(B95)

These are equivalent to the saddle-point equations for a single readout given in equation B87, B86 as expected for
independently trained readouts. It is physically sensible that c = 0 when J = 0, because at zero source, there is no
term in the replicated system energy function which would distinguish the overlap between two readouts from the
same replica from the overlap between two readouts in separate replicas (we expect that the total overlap between
readouts is non-zero, as we may still have C > 0). Differentiating the saddle point equations with respect to J will
give a 6 by 6 system of equations for the derivatives of the order parameters. With foresight, we first calculate ∂JD

∂JD = ∂JG
−1 = −G−1(∂JG)G−1 (B96)

Evaluated at J = 0, we have the following:

∂JDrr = −∂J q̂G−1
rr Σ̃rrG

−1
rr (B97)

∂JDr′r′ = −∂J r̂G−1
r′r′Σ̃r′r′G

−1
r′r′ (B98)

∂JDrr′ = −∂J ĉG−1
rr Σ̃rr′G

−1
r′r′ (B99)

∂JDr′r′ = −∂J ĉG−1
r′r′Σ̃r′rG

−1
rr (B100)

Differentiating equations B86, B87, B88, B89, B90, B91 and evaluating at J, c, ĉ = 0 we get:
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0 = ∂J q̂ +
α

(λ+ q)2
∂Jq (B101)

0 = ∂Jq + ∂J q̂
1

M
tr

[(
G−1
rr Σ̃rr

)2]
(B102)

0 = ∂J r̂ +
α

(λ+ r)2
∂Jr (B103)

0 = ∂Jr + ∂J r̂
1

M
tr

[(
G−1
r′r′Σ̃r′r′

)2]
(B104)

1

2
= ∂J ĉ+

α

(λ+ q)(λ+ r)
∂Jc (B105)

0 = ∂Jc+ ∂J ĉ
1

M
tr
[
G−1
rr Σ̃rr′G

−1
r′r′Σ̃r′r

]
(B106)

Solving these equations, we obtain:

∂J q̂ = 0 (B107)

∂J r̂ = 0 (B108)

∂J ĉ =
1

2(1− γ)
(B109)

where γ ≡ α

(λ+ q)(λ+ r)

1

M
tr
[
G−1
rr Σ̃rr′G

−1
r′r′Σ̃r′r

]
(B110)

We may then simplify the expression for the generalization error as follows:

Err′ =
γ

1− γ
ζ2 +

1

1− γ

(
1

M
w∗⊤Σsw

∗
)

− 1

M(1− γ)
w∗⊤Σs

[
1

νrr
q̂A⊤

r G
−1
rr Ar +

1

νr′r′
r̂A⊤

r′G
−1
r′r′Ar′

]
Σsw

∗

+
1

M(1− γ)
q̂r̂

1
√
νrrνr′r′

w∗⊤ΣsA
⊤
r G

−1
rr Σ̃rr′G

−1
r′r′Ar′Σsw

∗

(B111)

Re-labeling the order parameters: q̂ → q̂r, r̂ → q̂r′ , γ → γrr′ and Grr → Gr, we obtain the result given in the main
text.

Appendix C: Equicorrelated Data Model

To gain an intuition for the joint effects of correlated data, subsampling, ensembling, feature noise, and readout
noise, we simplify the formulas for the generalization error in the following special case:

Σs = s
[
(1− c)IM + c1M1⊤

M

]
(C1)

Σ0 = ωIM (C2)

Here s is a parameter which sets the overall scale of the data and c ∈ [0, 1] tunes the correlation structure in the
data and ω sets the scale of an isotropic feature noise. We consider an ensemble of k readouts, each of which sees a
subset of the features. Due to the isotropic nature of the equicorrelated data model and the pairwise decomposition of
the generalization error, we expect that the generalization error will depend on the partition of features among the
readout neurons through only:
• The number of features sampled by each readout: Nr ≡ νrrM , for r = 1, . . . , k
• The number of features jointly sampled by each pair of readouts nrr′ ≡ νrr′M for r, r′ ∈ {1, . . . , k}
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Here, we have introduced the subsampling fractions νrr =
Nr

M and the overlap fractions νrr′ =
nrr′
M

We will average the generalization error over readout weights drawn randomly from the space perpendicular to 1M ,
with an added spike along the direction of 1M :

w∗ =
√
1− ρ2P⊥w

∗
0 + ρ1M (C3)

w∗
0 ∼ N (0, IM ) (C4)

The projection matrix may be written P⊥ = IM − 1
N 1M1⊤

M . The two components of the ground truth weights will
yield independent contributions to the generalization error in the sense that

⟨Err′⟩ = (1− ρ2)Err′(ρ = 0) + ρ2Err′(ρ = 1) (C5)

Calculating Err and Err′ is an exercise in linear algebra which is straightforward but tedious. To assist with the
tedious algebra, we wrote a Mathematica package which can handle multiplication, addition, and inversion of matrices
of symbolic dimension of the specific form encountered in this problem. This form consists of block matrices, where
the blocks may be written as aδMNIM + b1M1⊤

N , where a, b are scalars and δMN ensures that there is only a diagonal
component for square blocks (when M = N). This package is included as supplemental material to this publication.

1. Diagonal Terms and Saddle-Point Equations

Here, we solve for the dominant values of qr and q̂r and simplify the expressions for Err in the case of equicorrelated
features described above. In this isotropic setting, Err, qr, q̂r will depend on the subsampling only through Nr = νrrM .
We may then write, without loss of generality Ar =

(
INr

0
)
∈ RNr×M where 0 denotes a matrix of all zeros, of the

appropriate dimensionality.

We start by simplifying the saddle-point equations B87,B86. Expanding 1
M tr

(
G−1
r Σ̃rr

)
and keeping only leading

order terms, the saddle-point equations for qr and q̂r reduce to:

qr =
νrr (s(1− c) + ω)

q̂r(s(1− c) + ω) + νr
(C6)

q̂r =
α

λ+ qr
(C7)

Defining a ≡ s(1− c) + ω and solving this system of equations, we find:

qr =

√
a2α2 + 2aα(λ− a)νr + (a+ λ)2ν2r − aα+ (a− λ)νr

2νr
(C8)

q̂r =

√
a2α2 + 2aα(λ− a)νr + (a+ λ)2ν2r + aα− (a+ λ)νr

2aλ
(C9)

We have selected the solution with qr > 0 because self-overlaps must be at least as large as overlaps between different
replicas. This solution to the saddle-point equatios can be applied to each of the k readouts.

Next, we calculate Err. Expanding γrr ≡ α
Mκ2 tr

[
(G−1Σ̃)2

]
to leading order in M , we find:

γrr =
a2ανr

(λ+ qr)
2
(aq̂r + νr)

2 (C10)

⟨Err⟩D,w∗(ρ = 0) =
1

1− γrr

1

M
tr

[
P⊥

(
Σs −

2

νrr
q̂rΣsA

⊤
r G

−1
r ArΣs +

1

νrr
q̂2rΣsA

⊤
r G

−1
r Σ̃G−1

r ArΣs

)
P⊥

]
+

γrr
1− γrr

ζ2 + η2r ,

(C11)

⟨Err⟩D,w∗(ρ = 1) =
1

1− γrr

1

M
1⊤
M

[
Σs −

2

νrr
q̂rΣsA

⊤
r G

−1
r ArΣs +

1

νrr
q̂2rΣsA

⊤
r G

−1
r Σ̃G−1

r ArΣs

]
1m

+
γrr

1− γrr
ζ2 + η2r ,

(C12)
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With the aid of our custom Mathematica package, we calculate the traces and contractions in these expressions and
expand them to leading order in M , finding:

⟨Err⟩D,w∗(ρ = 0) =
1

1− γrr

(
s(1− c)

(
1− (1− c)sq̂rνr (q̂r(s(1− c) + ω) + 2νr)

(q̂r(s(1− c) + ω) + νr) 2

))
+

γrrζ
2 + η2r

1− γrr
(C13)

⟨Err⟩D,w∗(ρ = 1) =
1

1− γrr

(
s(1− c)(1− νrr) + ω

νrr

)
+

γrrζ
2 + η2r

1− γrr
(C14)

In the “ridgeless” limit where λ→ 0, we obtain:

γrr =
4ανrr

(α+ νrr + |α− νrr|)2
(C15)

⟨Err(ρ = 0)⟩D,w∗ =


s(1−c)νrr
νrr−α

(
1 + sα(1−c)(α−2νrr)

νrr[s(1−c)+ω]

)
+

αζ2+νrrη
2
r

νrr−α , if α < νrr
s(1−c)α
α−νrr

(
1− s(1−c)νrr

s(1−c)+ω

)
+

νrrζ
2+αη2r

α−νrr , if α > νrr

 (λ→ 0) (C16)

⟨Err(ρ = 1)⟩D,w∗ =


νrr

νrr−α

(
s(1−c)(1−νrr)+ω

νrr

)
+

αζ2+νrrη
2
r

νrr−α , if α < νrr

α
α−νrr

(
s(1−c)(1−νrr)+ω

νrr

)
+

νrrζ
2+αη2r

α−νrr , if α > νrr

 (λ→ 0) (C17)

2. Off-Diagonal Terms

In this section, we calculate the off-diagonal error terms Err′ for r ̸= r′, again making use of our custom Mathematica
package to simplify contractions of block matrices of the prescribed form. By the isotropic nature of the equicorrelated
data model, Err′ can only depend on the subsampling scheme through νrr, νr′r′ , and νrr′ . We can thus, without loss
of generality, write:

Ar =

(
Inr×nr

0nr×nr′ 0nr×ns
0nr×l

0ns×nr
0ns×nr′ Ins×ns

0ns×l

)
∈ RNr×M (C18)

Ar′ =

(
0nr′×nr Inr′×nr′ 0nr′×ns 0nr′×l
0ns×nr 0ns×nr′ Ins×ns 0ns×l

)
∈ RNr′×M (C19)

where we have defined ns to be the number of features shared between the readouts, nr = Nr−ns and nr′ = Nr′−ns
and the count of remaining features l = M − nr − nr′ − ns.

Then, to leading order in M , we find:

γrr′ =
ανrr′(s(1− c) + ω)2

(λ+ qr)(λ+ qr′) (νrr + (s(1− c) + ω)q̂r) (νr′r′ + (s(1− c) + ω)q̂r′)
(C20)

Averaging Err′ over w
∗
0 ∼ N (0, IM ), we get:

⟨Err′(D)⟩D,w∗(ρ = 0) =
γrr′

1− γrr′
ζ2 +

1

1− γrr′

(
1

M
tr [P⊥ΣsP⊥]

)
− 1

M(1− γrr′)
tr

[
P⊥Σs

(
1

νrr
q̂rA

⊤
r G

−1
r Ar +

1

νr′r′
q̂r′A

⊤
r′G

−1
r′ Ar′

)
ΣsP⊥

]
+

q̂r q̂r′

M(1− γrr′)

1
√
νrrνr′r′

tr
[
P⊥ΣsA

⊤
r G

−1
r Σ̃rr′G

−1
r′ Ar′ΣsP⊥

]
,

(C21)
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⟨Err′(D)⟩D,w∗(ρ = 1) =
γrr′

1− γrr′
ζ2 +

1

M(1− γrr′)

(
1⊤
MΣs1M

)
− 1

M(1− γrr′)
1⊤
MΣs

(
1

νrr
q̂rA

⊤
r G

−1
r Ar +

1

νr′r′
q̂r′A

⊤
r′G

−1
r′ Ar′

)
Σs1

⊤
M

+
q̂r q̂r′

M(1− γrr′)

1
√
νrrνr′r′

1⊤
MΣsA

⊤
r G

−1
r Σ̃rr′G

−1
r′ Ar′Σs1M

(C22)

Calculating these contractions and traces and expanding to leading order in M , we get:

⟨Err′(D)⟩D,w∗(ρ = 0) =
s(1− c)

1− γrr′

(
1− s(1− c)νrr q̂r

νrr + (s(1− c) + ω)q̂r
− s(1− c)νr′r′ q̂r′

νr′r′ + (s(1− c) + ω)q̂r′

+
s(1− c)(s(1− c) + ω)νrr′ q̂r q̂r′

(νrr + (s(1− c) + ω)q̂r)(νr′r′ + (s(1− c) + ω)q̂r′)

)
+

γrr′

1− γrr′
ζ2

(C23)

⟨Err′(D)⟩D,w∗(ρ = 1) =
1

1− γrr′

(
s(1− c)(νrr′ − νrrνr′r′) + ωνrr′

νrrνr′r′

)
+

γrr′

1− γrr′
ζ2 (C24)

Taking λ→ 0 we get the ridgeless limit:

γrr′ →
4ανrr′

(α+ νrr + |α− νrr|)(α+ νr′r′ + |α− νr′r′ |)
(λ→ 0) (C25)

⟨Err′(D)⟩D,w∗(ρ = 0) =
1

1− γrr′
F0(α) +

γrr′

1− γrr′
ζ2 (r ̸= r′) (C26)

where

F0(α) ≡


(c−1)s(νrνr′ ((2α−1)(c−1)s+ω)−α2(c−1)sνrr′)

νr((c−1)s−ω)νr′
, if α ≤ νrr ≤ νr′r′

(c−1)s(νr′ ((c−1)sνr+(α−1)(c−1)s+ω)−α(c−1)sνrr′ )
((c−1)s−ω)νr′

, if νrr ≤ α ≤ νr′r′
(c−1)s((c−1)sνr′−csνrr′+(c−1)sνr−cs+sνrr′+s+ω)

(c−1)s−ω , if νrr ≤ νr′r′ ≤ α

 (C27)

⟨Err′(D)⟩D,w∗(ρ = 1) =
1

1− γrr′

(
s(1− c)(νrr′ − νrrνr′r′) + ωνrr′

νrrνr′r′

)
+

γrr′

1− γrr′
ζ2 (λ→ 0) (C28)

3. Phase Transitions in Uniform Resource-Constrained Ensembling.

We make further simplifications in the special case where ω = ζ = 0, ηr = η, νrr =
1
k for all r = 1, . . . k, and νrr′ = 0

for all r ̸= r′. in the ridgeless limit λ→ 0.

Ek =
1

k
Err(νrr = 1/k) +

k − 1

k
Err′(νrr = νr′r′ = 1/k, νrr′ = 0) (C29)

Or, in full:

Ek =

 −
α(c−1)k2s(2α(ρ2−1)−2ρ2+1)−(c−1)ks(α2(ρ2−1)−α−ρ2+1)+η2

k(αk−1) , if α ≤ 1
k

(c−1)(k−1)s(αk2(ρ2−1)+k(−αρ2+α−2ρ2+1)+2(ρ2−1))+αη2k2

k2(αk−1) , if α ≥ 1
k

 (r ̸= r′) (C30)
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To find the boundary between the signal-dominated and noise-dominated regions, we set E∞ = E1, and rearrange
to get:

H =

{
α(1− α)(1− ρ2), if 0 < α < 1
(α−1)(1−ρ2)

α , if α > 1

}
(C31)

To find the boundary between the intermediate and noisy phases, we set: Ek+1 = Ek and take the limit k →∞,
then rearrange to get:

H = 2−
(
1 + 2α

α

)
ρ2 (C32)

4. Infinite Data Limit

In this section we consider the behavior of generalization error in the equicorrelated data model as α→∞ while
keeping the λ ∼ O(1). For simplicity, we assume νrr′ = 0 for r ≠ r′, isotropic features (c = 0), no feature noise
(ω = 0) and uniform readout noise ηr = η as in main text figure 3. This limit corresponds to data-rich learning, where
the number of training examples is large relative to the number of model parameters. In this case, the saddle point
equations reduce to:

q̂r →
α

λ
(C33)

qr →
νrrλ

α
(C34)

In this limit, we find that γrr′ → 0. Using this, we can simplify the generalization error as follows:

Eg =
1

k2

k∑
rr′=1

Err′ = s

[
1−

(
2− 1

k

)(
1

k

k∑
r=1

νrr

)]
+

η2

k
(C35)

Interestingly, we find that the readout error in this case depends on the subsampling fractions νrr only through their
mean. Therefore, with infinite data, there will be no distinction between homogeneous and heterogeneous subsampling.

Appendix D: Numerical Experiments

Numerical experiments are performed by generating synthetic datasets by drawing data randomly from multivariate
Gaussian distributions, assigning feature noise and noisy labels. Writing the training set in terms of a data matrix
Ψ ∈ RM×P in which column µ consist of the training point ψµ and the labels are organized into a column vector y
such that yµ = yµ, the learned weights are calculated as:

ŵ = Ψ
(
Ψ⊤Ψ+ λIp

)−1
y (D1)

In the ridgeless case, a pseudoinverse is used:

ŵ = Ψ†y (D2)

Numerical experiments were performed using the PyTorch library [46]. The code used to perform numerical experiments
and generate plots is provided in a zip file with this submission, and will be made publicly available on GitHub upon
acceptance of this manuscript. Numerical computations necessary for this work may be performed in a small amount
of time (less than one hour) using an Nvidia GPU.
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1. Details of Heterogeneous Subsampling Theory

In this section, we describe the method used to calculate loss curves for heterogeneous subsampling experiments seen
in main text fig. 3. In each trial, Subsampling fractions {ν1, . . . , νk} are generated according to the following process:

1. Each fraction νrr is drawn independently from a Γ distribution with mean 1
k and variance σ2. νrr ∼ Γk,σ

2. The fractions are re-scaled in order to sum to unity: νrr → νrr/(ν1 + · · ·+ νk)

Equivaltly, the fractions νrr are drawn from a Dirichlet distribution [40]. Then, the loss curves are calculated from the
given fractions {νrr} using equations C16, C17, C23, C24. The dotted red lines show the loss curves for 5 single trials.
The solid red lines show the average loss curves from 100 trials. Note that we have defined our own convention for the
parameterization of the Γ distribution in which the inverse of the mean and the standard deviation are specified. In
terms of the standard “shape” and “scale” parameters, we have:

Γk,σ ≡ Γ
(
shape = (kσ)−2, scale = kσ2

)
(D3)

Appendix E: Code Availability

All Code used in this paper has been made available online (see https://github.com/benruben87/Learning-Curves-for-
Heterogeneous-Feature-Subsampled-Ridge-Ensembles.git). This includes code used to perform numerical experiments,
calculate theoretical learning curves, and produce plots as well as the custom Mathematica libraries used to simplify
the generalization error in the special case of equicorrelated data.
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