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Feature bagging is a well-established ensembling method which aims to reduce prediction variance
by training estimators in an ensemble on random subsamples or projections of features. Typically,
ensembles are chosen to be homogeneous, in the sense the the number of feature dimensions available
to an estimator is uniform across the ensemble. Here, we introduce heterogeneous feature ensembling,
with estimators built on varying number of feature dimensions, and consider its performance in a linear
regression setting. We study an ensemble of linear predictors, each fit using ridge regression on a subset
of the available features. We allow the number of features included in these subsets to vary. Using the
replica trick from statistical physics, we derive learning curves for ridge ensembles with deterministic
linear masks. We obtain explicit expressions for the learning curves in the case of equicorrelated data
with an isotropic feature noise. Using the derived expressions, we investigate the effect of subsampling
and ensembling, finding sharp transitions in the optimal ensembling strategy in the parameter space
of noise level, data correlations, and data-task alignment. Finally, we suggest variable-dimension
feature bagging as a strategy to mitigate double descent for robust machine learning in practice.

I. INTRODUCTION

Ensembling methods, where one combines predictions from multiple predictors to achieve a stronger prediction, are
ubiquitous in machine learning practice [1]. A popular class of ensembling methods (known as attribute bagging [2] as
well as the random subspace method [3]) are based on feature subsampling [2-6], where each predictor has access to
only a subset of data features, are independently trained on those features, and their predictions are combined to
achieve a stronger prediction. For example, the popular random forest method makes use of this strategy [3, 7]. An
advantage of these methods is that they allow parallel processing. For example, Feature-Distributed Machine Learning,
combine independent predictions made by agents who only see subsets of available features [8].

While commonly used in practice, a theoretical understanding of ensembling via feature subsampling is not well
developed. Here, we provide an analysis of this technique in the case of feature-subsampled linear ridge regression using
methods from statistical physics [9-12]. This allows us to obtain analytical expressions for typical case performance of
feature-subsampled linear ridge regression. Analysis of these equations under special cases reveal interesting phenomena
involving effects of noise, regularization, and subsampling on prediction performance.

Our findings relate to double-descent [13, 14], which results from over-fitting to noise and poses a serious problem for
practical machine learning. Regularization is commonly used to mitigate double descent, however optimal regularization
strength depends on data and noise levels [15, 16]. Our theory reveals an alternative strategy. We observe that
subsampling shifts the location of a predictor’s sample-wise double-descent peak [14, 16, 17]. An interesting consequence
of this is that if the predictors are heterogeneous in the number of features they see, they will go through double-descent
at different sample-sizes. Therefore, bagging them will lead a mitigation of double-descent, as when one predictor fails,
the others will compensate with accurate predictions.

In summary, we make the following original contributions:

e Using the replica trick from statistical physics [9, 11], we derive the generalization error of ensembled least-squares
ridge regression with random structured Gaussian data, deterministic feature maps, and a noisy linear teacher
function. Our derivation allows for heterogeneity in the rank of the feature maps of the ensemble members.

e We derive explicit formulas which demonstrate that subsampling alters the interpolation threshold of ridge regression.

e We demonstrate benefits of heterogeneous ensembling as a robust method for mitigating double-descent.

e We analyze the role of data correlations, readout noise, and data-task alignment in determining the optimal
ensembling strategy in a tractable special case.
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Related works: A substantial body of work has elucidated the behavior of linear predictors for a variety of feature
maps [13, 16, 18-29]. Several recent works have extended this research to characterize the behavior of ensembled
regression using solvable models [25, 30, 31]. Ref. [30] derives expressions for the generalization error of generalized
linear models, of which ridge ensembles are a special case, in terms of the solutions to a set of self-consistent equations.
However, [30] and [25] focus their analysis on the case of isotropic data and Gaussian random masks of homogeneous
dimensionality. In contrast, we explicitly consider learning from correlated data by ensembles with heterogeneous
readout dimensionality. Our work focuses on the effect of feature-wise subsampling. Additional recent works study the
performance of ridge ensembles with example-wise subsampling [32, 33] and simultaneous subsampling of features
and examples [31]. These works find that subsampling behaves as an implicit regularization, and prove equivalences
between optimal ensembling and optimal regularization. In a similar vein, we consider here ensembling as a safeguard
against insufficient regularization. Methods from statistical physics have long been used for machine learning theory
[10-12]. Relevant work in this domain include [34] which studied ensembling by data-subsampling in linear regression.

II. LERANING CURVES FOR ENSEMBLED RIDGE REGRESSION FROM THE REPLICA METHOD

We consider noisy ensembled ridge regression in the setting where ensemble members are trained independently
on masked versions of the available features. We derive our main analytical formula for generalization error of
ensembled linear regression, as well as analytical expressions for generalization error in the special case of subsampling
of equicorrelated features. Later sections illustrate the implications of the derived formulas.

A. Problem Setup

Consider a training set D = {1,5/“ y“}fj:l of size P. The training examples '«,E# € RM are drawn from a Gaussian

distribution with Gaussian feature noise: ¥, = v, + o, where 1, ~ N(0,X;) and o, ~ N (0,3%). Data and noise
are drawn i.i.d. so that E ['«/)H't/);r] = 2, and E [O’MO'I] = 0, 20. Labels are generated from a noisy teacher
function y, = ﬁw*sz,L + e where e ~ N(0,¢?). Label noises are drawn i.i.d. so that E[e*€”] = §,,(>.

We seek to analyze the quality of predictions which are averaged over an ensemble of ridge regression models, each
with access to a subset of the features. We consider k linear predictors with weights w, € R, » =1,..., k. Critically,
we allow N, # N,. for r # r’, which allows us to introduce structural heterogeneity into the ensemble of predictors. A

forward pass of the model is given as:

k
S LW W)= b AW+ )+ (1)
r=1 r

The model’s prediction f(1) is an average over k linear predictors. The “measurement matrices” A, € RV <M act
as linear masks restricting the information about the features available to each member of the ensemble. Subsampling
may be implemented by choosing the rows of each A, to coincide with the rows of the identity matrix — the row
indices corresponding to indices of the sampled features. The feature noise o ~ N(0,X() and the readout noises
& ~ N(0,n?), are drawn independently at the execution of each forward pass of the model. Note that while the
feature noise is shared across the ensemble, readout noise is drawn independently for each readout: E[£.&,/] = 6,n2.

The weight vectors are trained separately in order to minimize a regular least-squares loss function with ridge
regularization:
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Here {¢/#} represents the readout noise which is present during training, and independently drawn: &% ~ N'(0,72),
E[¢F€Y] = 026, As a measure of model performance, we consider the generalization error, given by the mean-squared-
error (MSE) on ensemble-averaged prediction:

E,(D) = <<f(¢) - jﬂw*w)2> (3)

Here, the angular brackets represent an average over the data distribution and noise: ¥ ~ N (0,X;), o ~ N (0, X)),
& ~ N(0,72). The generalization error depends on the particular realization of the dataset D through the learned
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FIG. 1. Comparison between numerically calculated generalization error and theoretical prediction. Dots show results of
numerical experiment. Lines are theoretical prediction. (a) Numerical experiment with [3],; = gli=al, [Xo];; = %(0.3)"‘7]“,
¢=0.1,n=0.2. We set k =3 with v1 =0.2, v2 = 0.4, v3 = 0.6. Subsets of feature neurons accessed by each readout are drawn
randomly and are permitted to overlap (see inset). Circular markers show the result of numerical experiment with M = 2000
feature neurons averaged over 100 trials. Curve shows theoretical prediction, obtained by solving the saddle-point equations
11 numerically. Theory and experiment conducted with a fixed ground-truth readout w* drawn randomly from an isotropic
standard Gaussian distribution (b) Numerical experiment with [%.],. = (0.6)d;; + 0.4, [£o];; = .16i;, ¢ = 0.1, n = 0.1. Ground
truth weights are randomly sampled in each trial as in eq. 12 with p = .3. We set £ = 3 with v1 = 0.1, 1o = 0.3, v3 = 0.5.
Subsets of feature neurons accessed by each readout are are mutually exclusive (see inset). Circular markers show the result of
numerical experiment with M = 5000 feature neurons averaged over 100 trials. Error bars show the standard error of the mean,
and are smaller than the markers. Curve shows analytical prediction obtained in the case of equicorrelated features.

weights {w*}. We may decompose the generalization error as follows:

k
E,(D)= 5 > Fop(D) ()

ror/=1
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Computing the generalization error of the model is then a matter of calculating E,.. in the cases where r = r’ and
r # r’. Furthermore, in the asymptotic limit we consider, we expect that the generalization error concentrates over
randomly drawn datasets D.

(5)

B. Main Result

We calculate the generalization error using the replica trick from statistical physics. The result of our calculation is
stated in proposition 1. The proof is lengthy, and can be found in the SI.

Proposition 1. Consider the ensembled ridge regression problem described in Section II A. Consider the asymptotic

limit where M, P,{N,.} — oo while the ratios « = % and Ve, = %, r=1,....k remain fivred. Define the following
quantities:

S = AN, 4+ DA (6)

rr! — \/m r s 0 r!
Gr = INT + qATi:TT (7)
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Then the average generalization error may be written as:
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where the pairs of order parameters {q,,§,} forr =1,..., K, satisfy the following self-consistent saddle-point equations
(6] 1 .
5. = : =t [G—lzw} . 11
v ¢ = 37t |Gr (11)

Proof. We calculate the terms in the generalization error using the replica trick from the statistical physics of disordered
systems. The full derivation may be found in the supplemental material. O

We make several remarks on this result:

Remark 1. This is a highly general result which applies to any selection of linear masks { A, }. However, we will focus
on the case where the {A,} implement subsampling of the feature neurons.

Remark 2. Our result reduces to the results of [35] when k =1 and n = 0, and may be obtained as a special case of
[36] in this limit. In the case where all readout weights have the same dimension N, = N,r = 1,...,k, this result
may be obtained as a special case of the results of [30]. The novelty in our derivation (and subsequent analysis) is to
consider heterogeneity in the values of N,..

Remark 3. The replica trick [37] is a non-rigorous but standard heuristic in the study of disordered systems. We
confirm our results in simulations.

In Figure 1a, we confirm the result of the general calculation by comparing with numerical experiments. Experimental
curves are generated by running ridge regression on randomly drawn datasets with M = 2000 features and averaging
over the resulting error. We use highly structured data, feature noise, label noise, and readout noise (see caption for
details). Each of k = 3 readouts sees a fixed but randomly drawn subset of features. Theory curves are calculated by
solving the fixed-point equations 11 numerically for the chosen X, ¥ and {A,}%_, then plugging the resulting order
parameters into eq. 10.

C. Equicorrelated Data

Our general result allows the freedom to tune many important parameters of the learning problem: the correlation
structure of the dataset, the number of ensemble members, the scales of noise, etc. However, the derived expressions
are rather opaque, as they depend on the solution to a set of in general analytically intractable self-consistent equations
for the order parameters. In order to better understand the phenomena captured by these expressions, we simplify
them in the tractable special case in which features of the data are equicorrelated:

Proposition 2. Consider the ensembled ridge regression problem described in section II A, and the result of proposition
1. Consider the special case in which we select the following parameters:

w* =/1—p2PLwj + ply
w§ ~ N (0, In)

B =s[(1—c)Ia + clarly,]
o =wly

with ¢ € [0,1],p € [-1,1]. A label noise scale ¢ > 0 and readout noise scales n, > 0 are permitted. Here
P, = Iy — %11\41}1 is a projection matriz which removes the component of wg which is parallel to 1pr. The
measurement matrices { A, }*_, have rows consisting of distinct one-hot vectors so that each of the k readouts has
access to a subset of N = v, M features. For r #1', denote by n,.,. the number of neurons sampled by both A, and
A, and let Ve = Ny /M remain fized as M — co.



In this case, we may obtain fully analytical formulas for the generalization error as follows. First define the following
quantities:

A 2
dr Q" Vpyr STST’
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The terms of the decomposed generalization error may then be written:

Y <2 + O 7772«
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and where the order parameters {q,,dr} may be obtained analytically as the solution (with ¢, > 0) to the following
quadratic system of equations:

AVpy «

r = ~ Ar = 20
e+ ad R PA (20)

In the “ridgeless” limit where A — 0, we may make the following simplifications:

2
S, — a (21)
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Proof. Simplifying the fixed-point equations and generalization error formulas in this special case is an exercise in
linear algebra. The main tools used are the Sherman-Morrison formula [38] and the fact that the data distribution is
isotropic in the features so that the form of 2M and ﬁwl depend only on N,., N,., and n,,» . Thus, the result depends
only on the values of {v,,+} and not the identities of the subsampled features. To aid in computing the necessary
matrix contractions we developed a custom Mathematica package which handles block matrices of symbolic dimension,
with blocks containing matrices of the form M = ¢ I + ¢o117. This package and the Mathematica notebook used to
derive these results will be made available online (see SI) O

In this tractable special case, ¢ € [0,1] is a parameter which tunes the strength of correlations between features
of the data. When ¢ = 0, the features are independent, and when ¢ = 1 the features are always equivalent. s sets
the overall scale of the features and p tunes the alignment of the ground truth weights with the special direction
in the covariance matrix. We refer to p as the “task alignment”, and it can be thought of as a simple proxy for
the “task-model alignment” [16] or “code-task alignment” [39]. In Figure 1b, we test these results by comparing the
theoretical expressions for generalization error with the results of numerical experiments, finding perfect agreement.
Note that in this case, both theory and experiment are averaged over ground-truth weights as well as datasets.

D. Subsampling shifts the double-descent peak of a linear predictor.

Consider the equicorrelated data model in the isotropic limit (¢ = 0). Consider a single linear regressor (k = 1)
which connects to a subset of N = v M features. In the ridgeless limit where regularization A — 0, and without readout
noise or feature noise (7 = w = 0), the generalization error is given by equation 17 with v, = v, s=1, 7, =w =0 in
the A — 0 limit:

(E,) _)va {(1 — Vpp) + l,%r(a - V)z} + 2 ifa<v (23)
e 1 —v]+ =3 ifa>v

a—v

Double descent can arise from two possible sources of variance: explicit label noise (¢ > 0) or implicit label noise
induced by feature subsampling (v < 1). As E; ~ (o —v)~!, we see that the generalization error diverges when o = v.
The subsampling fraction v thus controls the sample complexity « at which the double-descent peak occurs. Intuitively,
this occurs because subsampling changes the number of parameters of the regression model, and thus its interpolation
threshold. To demonstrate this, we plot the learning curves for subsampled linear regression on equicorrelated data in
Figure 2. While at finite ridge the test error no longer diverges when o = v, it may still display a distinctive peak.
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FIG. 2. Subsampling alters the location of the double-descent peak of a linear predictor. (a) Illustrations of subsampled
linear predictors with varying subsampling fraction v. (b) Comparison between experiment and theory for subsampling linear
regression on equicorrelated datasets. We choose [X.];; = 65, [¥o];; =0, ( =0, 7 =0, and (i) A = 0, (i) A = 1074, (iii)
X = 1072, Dots show results of numerical experiment. Lines are analytical prediction.

E. Heterogeneous connectivity mitigates double-descent

The observed phenomenon of double-descent — over-fitting to noise in the training set near a model’s interpolation
threshold — poses a serious risk in practical machine-learning applications. Regularization is the canonical strategy
employed to mitigate double descent. However, in order to achieve monotonic learning, the regularization parameter
must be tuned to the structure of the task and the scale of the label noise [15] — no one choice for the regularization
parameter can mitigate double descent for all tasks. Considering again the plots in Figure 2(b), we observe that at any
value of a, the double-descent peak can be avoided with an acceptable choice of the subsampling fraction v. This
suggests another strategy to mitigate double descent: heterogeneous ensembling. Rather than training an ensemble of
linear predictors, each with the same interpolation threshold, we may ensemble over predictors with a heterogeneous
distribution of interpolation thresholds in the hopes that when one predictor fails, the other members of the ensemble
compensate. In Figure 3, we demonstrate that in the absence of a sufficiently regularization, heterogeneous ensembling
can mitigate double-descent. Specifically. We define two ensembling strategies: in homogeneous ensembling, each of
the k readouts is connected to the same fraction v, = % features. In heterogeneous ensembling, the number of features
connected by each of the k readouts are drawn i.i.d. from a Gamma distribution with fixed mean 1/k and variance o2.
We denote this v, ~ 'y, ». After they are independently drawn, subsampling fractions are re-scaled so that they sum
to unity: vy/ >, Vpy <= vpp. This ensures fair competition, wherein the total number of readout weights utilized in
homogeneous and heterogeneous ensembling are equal. Equivalently, we may consider the readout fractions v, to
be drawn from a Dirichlet distribution: (v1,...,v) ~ Dir((ck)™2, ..., (ck)~2) [40]. These strategies for connecting
readouts to the features are illustrated for k¥ = 10 in figures 3 a.i (homogeneous) and 3 a.ii (heterogeneous). The
density of the distribution T'y ,(v) is plotted in figure 3b for k = 10 and varying o. In figure S1, we apply these ideas
to a classification task on the CIFAR-10 dataset. We find that in this nonlinear setting, heterogeneous ensembling
prevents catastrophic over-fitting, leading to monotonic learning curves without regularization (see SI for details).

In figure 3c, we use our analytical theory of equicorrelated data (see eqs. 17) to compare the performance of
homogeneous and heterogeneous ensembling with & = 10. We find that for an under-regularized predictor, (3c.i, c.ii,
c.iii) heterogeneous ensembling reduces the height of the double-descent peak. At larger regularization (3c.iv, c.v, c.vi),
homogeneous and heterogeneous ensembling perform similarly. We quantify the extent of double-descent through the
worst-case error max, (Fg(a)). We find that as o increases, the worst-case error decreases monotonically at no cost to
the asymptotic error E,(a — o0) (see Fig. 3d,e).

F. Data correlations, readout noise, and task structure determine optimal ensemble size

We now ask whether ensembling is a fruitful strategy — i.e. whether it is preferable to have a single, fully connected
readout or multiple sparsely connected readouts. Intuitively, the presence of correlations between features permits
subsampling, as measurements from a subset of neurons will also confer information about the state of the others.
In addition, ensembling over multiple readouts can average out the readout noise. To quantify these notions, we
consider the special case of ensembling over k readouts, each connecting the same fraction v,.,, = v = % of features in an
equicorrelated code with correlation strength ¢ and readout noise scale 7, and task alignment p. We set the label noise,
feature noise, and overlap between readouts to zero (( =0, w = 0, Vv = 0 when r # 7). In the ridgeless limit, we can

then express the error as : Ey(k) = s(1 — ¢)F(H,k,p,a), where H = S(%C) is an effective inverse signal-to-noise ratio



i ii
d W 0.2
W 0.18
\M\\\‘ “\“ 0.16
\\\ “\‘\‘\ 0.14
(Y 8'%2
Wiled 8282
c 1V 1.000 { = Homogeneous 004
0.975 4 = Heterogeneous Mean 002
5 0.950 - A .
w 0.925
i d a
0.900 A 2.25 0.6
0.875 -
r—:Z.OO-
000 005 010 015 020 025 030 _ <vq 75 | 0.4
Vv r )
1.000 1= 1 X 150
0.975
1 1.25_ 0.2
5 0.950 o =—
“E 0.925 2k 1.001— —~——
3
" 0.900 4 T T T 0.0
' 0.0 0.1 0.2
0.875 a=P/M
0B 05 0l0 03 030 035 03 obo obs ol ols ok ok ok ©
iii Vi 2 (Maxq(Eg(a)))
2.00 4 1.00 4 - (Eg(a—’w))
5175 u_?’
g Lso 0.95 -
® 25 0.90
1.00 1 1 I 1 I I I
0.00 005 010 015 020 025 030 % 100 005 010 015 020 025 030 0123456
a=PM a=P/M ko

FIG. 3. Homogeneous vs. Heterogeneous Ensembling on equicorrelated data. (a) We compare (i) homogeneous ensembling, in
which each readout connects to the same number of feature neurons and (ii) heterogeneous ensembling, in which the number of
feature neurons connected by a readout is drawn from a distribution. (b) We use the Gamma distribution with the convention
that T'y »(v) is the probability density function of the Gamma distribution with mean k™' and variance o. Shown here for
k =10 and o indicated by the colorbar. (c) Generalization Error Curves for Homogeneous and Heterogeneous ensembling with
k = 10 and indicated values of A and o. Curves are calculated using analytical theory for equicorrelated data with ¢ =0, n =0,
¢ = 0. Solid blue is the learning curve for homogeneous subsampling. Dotted red curves show loss curve for 5 realizations of the
randomly drawn subsampling fractions {,}¥_;. Solid red is the learning curve for heterogeneous ensembling averaged over 100
realizations of the subsampling fractions {vy, }¥_, drawn independently from I'y ,(v). (d) Average loss curves for heterogeneous
ensembling with & = 10, A\ = 1073, and o indicated by the colorbar. (e) Average worst-case error and asymptotic error as
a function of variance for heterogeneous ensembling. Worst-case error is calculated for each realization of the subsampling
fractions as maxq Ey(a|{vy}o_1). Average worst-case error is the worst-case error averaged over realizations of the subsampling
fractions. Shaded region shows standard deviation over realizations of the subsampling fractions.

and F(H,k, p,a) is a rational function of its arguments (see SI for full expressions). Therefore, given fixed parameters
s, ¢, p, a, the value k£* which minimizes error depends on 7, s, and ¢ only through the ratio H.

Using our analytical theory, we plot the optimal number of readouts k in the parameter space of H and p (see
Fig. 4a). The resulting phase diagrams are naturally divided into three regions. In the signal-dominated phase a
single fully-connected readout is optimal (k* = 1). In an intermediate phase, 1 < k* < co minimizes error. And in a
noise-dominated phase k* = oco. The boundary between the signal-dominated and noise-dominated phases (dotted
lines in 4a) can be written H = (1 — 1)(1 — p*) when a > 1 and H = o(1 — a)(1 — p?) when o < 1 . The boundary
between the intermediate and noise-dominated phases (dashed lines in 4a) can be written H =2 — (2+ 1)p?. As is
evident in these phase diagrams, an increase in H causes an increase in k*. This can occur because of a decrease in the
signal-to-readout noise ratio s/n?, or through an increase in the correlation strength c. An increase in p also leads
to an increase in k*, indicating that ensembling is more effective when there is alignment between the structure of
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FIG. 4. Noise level and data correlation strength determine optimal readout strategy: Using analytical theory (see eq. 17), we
calculate the generalization error of linear predictors on equicorrelated data ([X];; = (1 —¢)dij + ¢, 0 < ¢ < 1) with readout
noise with variance n?. Ground truth weights are drawn as in eq. 12. For convenience, we set A = 0, though results are
qualitatively similar with small finite ridge. We consider k readouts, each connecting a fraction v = 1/k of the feature neurons,
so that the total number of readout weights is conserved. (a) Phase diagrams of optimal k in the parameter space of task
alignment p and the inverse effective signal-to-noise ratio H = ﬁ Color indicates the optimal number of readouts k*, with
gray indicating k* = 1 and white indicating k* = co We consider (i) a = 0.25, (ii) @ = 0.75, (iii) @ = 1.5, (iv) @ = 10°. Black
lines are analytically derived phase boundaries between regions of parameter space where finite optimal £* exists and where
k* = oco. Dotted black lines are phase boundaries of the type where k* jumps discontinuously from 1 to co. Dashed black
lines are phase boundaries of the type where k* — oo from one side and k™ = oo on the other. (b) for three choices of the
parameters (H, p) we plot the learning curve for ensembled linear regression for a variety of k values (see colorbar), as well as
k = oo, indicated by the dotted black line. Depending on the region of parameter space, the optimal readout strategy may be to
select kx =1, 1 < kx < 00, or kx = oo.

the data and the task. Learning curves from each of these phases for varying k are plotted in Fig. 4b. The resulting
shifts in the location of the double-descent peak resemble those observed in practice for ensembling methods applied to
linear classifiers [6].

III. CONCLUSION

In this paper, we provided a theory of feature-subsampled ensembling techniques focusing on feature-subsampled
linear ridge regression. Our technique was the replica method from statistical physics which led us to derive an
analytical formula for the typical case generalization error in the aforementioned setting. We solved these equations
for a special case which revealed many interesting phenomena.

One of these phenomena relate to double descent [13, 14]. In most machine learning applications, the size of the
dataset is known at the outset and suitable regularization may be determined to mitigate double descent, either by
selecting a highly over-parameterized model [13] or by cross-validation techniques (see for example [19]). However,
in contexts where a single network architecture is designed for an unknown task or a variety of tasks with varying
structure and noise levels, heterogeneous ensembling may be used to smooth out the perils of double-descent. Our
analysis of ensembling in noisy neural networks suggests that an ensembling approach may be useful in improving the
stability of analog neural networks, where readout noise is a significant problem (see, for example, [41]).

Much work remains to achieve a full understanding of the interactions between data correlations, readout noise,
and ensembling. In this work, we have given a thorough treatment of the convenient special case where features
are equicorrelated and readouts do not overlap. Future work should analyze ensembling for codes with an arbitrary
correlation structure, in which readouts access randomly chosen, potentially overlapping subsets of features. This will
require to average our expressions for the generalization error over randomly drawn masks {A,}. This problem has



been thoroughly studied in the case where the entries of A, are i.i.d Gaussian [30], as in the ever-popular random
feature model. Recent progress on the problem of non-Gaussian projections for a single readout has been made in [42].
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