
ORIGINAL RESEARCH
published: 23 May 2018

doi: 10.3389/fnins.2018.00331

Frontiers in Neuroscience | www.frontiersin.org 1 May 2018 | Volume 12 | Article 331

Edited by:

Giacomo Indiveri,

Universität Zürich, Switzerland

Reviewed by:

Sadique Sheik,

University of California, San Diego,

United States

Xianghong Lin,

Northwest Normal University, China

*Correspondence:

Jun Zhu

dcszj@mail.tsinghua.edu.cn

Luping Shi

lpshi@tsinghua.edu.cn

†These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 24 October 2017

Accepted: 30 April 2018

Published: 23 May 2018

Citation:

Wu Y, Deng L, Li G, Zhu J and Shi L

(2018) Spatio-Temporal

Backpropagation for Training

High-Performance Spiking Neural

Networks. Front. Neurosci. 12:331.

doi: 10.3389/fnins.2018.00331

Spatio-Temporal Backpropagation
for Training High-Performance
Spiking Neural Networks

Yujie Wu 1†, Lei Deng 1,2†, Guoqi Li 1†, Jun Zhu 3* and Luping Shi 1*

1Department of Precision Instrument, Center for Brain-Inspired Computing Research, Beijing Innovation Center for Future

Chip, Tsinghua University, Beijing, China, 2Department of Electrical and Computer Engineering, University of California, Santa

Barbara, Santa Barbara, CA, United States, 3 State Key Lab of Intelligence Technology and System, Tsinghua National Lab

for Information Science and Technology, Tsinghua University, Beijing, China

Spiking neural networks (SNNs) are promising in ascertaining brain-like behaviors

since spikes are capable of encoding spatio-temporal information. Recent schemes,

e.g., pre-training from artificial neural networks (ANNs) or direct training based on

backpropagation (BP), make the high-performance supervised training of SNNs possible.

However, thesemethods primarily fastenmore attention on its spatial domain information,

and the dynamics in temporal domain are attached less significance. Consequently,

this might lead to the performance bottleneck, and scores of training techniques

shall be additionally required. Another underlying problem is that the spike activity is

naturally non-differentiable, raising more difficulties in supervised training of SNNs. In

this paper, we propose a spatio-temporal backpropagation (STBP) algorithm for training

high-performance SNNs. In order to solve the non-differentiable problem of SNNs, an

approximated derivative for spike activity is proposed, being appropriate for gradient

descent training. The STBP algorithm combines the layer-by-layer spatial domain (SD)

and the timing-dependent temporal domain (TD), and does not require any additional

complicated skill. We evaluate this method through adopting both the fully connected

and convolutional architecture on the static MNIST dataset, a custom object detection

dataset, and the dynamic N-MNIST dataset. Results bespeak that our approach

achieves the best accuracy compared with existing state-of-the-art algorithms on spiking

networks. This work provides a new perspective to investigate the high-performance

SNNs for future brain-like computing paradigm with rich spatio-temporal dynamics.

Keywords: spiking neural network (SNN), spatio-temporal recognition, leaky integrate-and-fire neuron, MNIST-

DVS, MNIST, backpropagation, convolutional neural networks (CNN)

1. INTRODUCTION

Spiking neural network encodes information in virtue of the spike signals and shall be promising
to effectuate more complicated cognitive functions in a way most approaching to the processing
paradigm of brain cortex (Allen et al., 2009; Zhang et al., 2013; Kasabov and Capecci, 2015). SNNs
are advantageous primarily due to the following two aspects: (1) more spatio-temporal information
is encoded with spike pattern flows through SNNs, whereas most DNNs lack timing dynamics,
especially the extensively-adopted feedforward DNNs; (2) more benefits can be achieved the
hardware in virtue of the event-driven paradigm of SNNs, which has been leveraged by numerous

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00331
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00331&domain=pdf&date_stamp=2018-05-23
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dcszj@mail.tsinghua.edu.cn
mailto:lpshi@tsinghua.edu.cn
https://doi.org/10.3389/fnins.2018.00331
https://www.frontiersin.org/articles/10.3389/fnins.2018.00331/full
http://loop.frontiersin.org/people/457284/overview
http://loop.frontiersin.org/people/368709/overview
http://loop.frontiersin.org/people/365765/overview

Wu et al. Spatio-Temporal Backpropagation for SNNs

neuromorphic platforms (Benjamin et al., 2014; Furber et al.,
2014; Merolla et al., 2014; Esser et al., 2016; Hwu et al., 2016;
Zhang et al., 2016).

Yet the SNNs training still remains challenging because of the
quite complicated dynamics and non-differentiable nature of the
spike activity. In a nutshell, the existing training methods for
SNNs fall into three types: (1) unsupervised learning; (2) indirect
supervised learning; (3) direct supervised learning. The first one
is originated from the weight modification of biological synapses,
e.g., spike timing dependent plasticity (STDP) (Querlioz et al.,
2013; Diehl and Cook, 2015; Kheradpisheh et al., 2016). Stemmed
from its primary dependency on the local neuronal activities
without global supervisor, effectuating high performance is
quite difficult. The second one firstly trains an ANN, and
thereupon transforms it into its SNN version with the same
network structure where the rate of SNN neurons acts as the
analog activity of ANN neurons (Peter et al., 2013; Hunsberger
and Eliasmith, 2015; Neil et al., 2016). The last one is the
direct supervised learning. Gradient descend, is a very popular
optimization method for this learning type (Bohte et al., 2000;
Schrauwen and Campenhout, 2004; Mckennoch et al., 2006;
Lee et al., 2016). Spikeprop (Bohte et al., 2000; Schrauwen
and Campenhout, 2004; Mckennoch et al., 2006) pioneered
the gradient descent method to design multi-layer SNNs for
supervised learning. It uses the first-spike time to encode input
signals and minimizes the difference between the network output
and desired signals, the whole process of which is similar to
the traditional BP. Lee et al. (2016) treated the membrane
potential as differentiable signals to solve the non-differential
problems of spikes, and proposed a directly BP algorithm
to train deep SNNs. Another efficient directly learning type
is based on biological synaptic plasticity mechanism. Ponulak
(2005); Ponulak and Kasiski (2010) developed the ReSuMe
algorithm which uses STDP-like rule with remote supervision to
learn the desired output spike sequence. Gtig and Sompolinsky
(2006); Urbanczik and Senn (2009) proposed the tempotron
learning rule which embeds information into spatio-temporal
spike pattern and modifies synaptic connection by the output
spike signals. Besides, some researchers utilized the unsupervised
local plasticity mechanisms to abstract hierarchical features, and
further modified network by parameters label signals (Mozafari
et al., 2017; Tavanaei and Maida, 2017). Many emergent
supervised training methods for SNNs have considered the
spatial-temporal dynamic of spike-based neuron, but most of
them primarily fasten more attention on one side of feature,
either the spatial feature or the temporal feature, which in
essence does not play out the advantage of SNNs and have to
leverage several complicated skills to improve performance, such
as error normalization, weight/threshold regularization, specific
reset mechanism, etc. (Diehl et al., 2015; Lee et al., 2016; Neil
et al., 2016). To this end, it is meaningful to design more general
dynamic model and learning algorithm on SNNs.

In this paper, a direct supervised learning method is proposed
for SNNs, combining both the spatial domain (SD) and temporal
domain (TD) in the training phase. First and foremost, an
iterative LIF model with SNNs dynamics is established which
is appropriate for gradient descent training. On that basis, both

the spatial dimension and temporal dimension are considered
during the error backpropagation (BP) to evidently improves
the network accuracy. An approximated derivative is introduced
to address the non-differentiable issue of the spike activity.
We test our SNNs model through adopting both the fully
connected and convolutional architecture on the static MNIST
dataset and a custom object detection dataset, as well as the
dynamic N-MNIST dataset. Our method can make full use
of spatio-temporal-domain (STD) information that captures
the nature of SNNs, thus avoiding any complicated training
skill. Experimental results indicate that the proposed method
could achieve the best accuracy on both static and dynamic
datasets compared with existing state-of-the-art algorithms.
The influence of TD dynamics and different methods for the
derivative approximation are analyzed systematically. This work
enables to explore the high-performance SNNs for future brain-
like computing paradigms with rich STD dynamics.

2. METHODS AND MATERIALS

We focus on how to efficiently train SNNs by taking full
advantage of the spatio-temporal dynamics. In this section, we
propose a learning algorithm that enables us to apply spatio-
temporal BP for training spiking neural networks. To this end,
subsection 2.1 firstly introduces an iterative leaky integrate-and-
fire (LIF) model that are suitable for the error BP algorithm;
subsection 2.2 gives the details of the proposed STBP algorithm;
subsection 2.3 proposes the derivative approximation to address
the non-differentiable issue.

2.1. Iterative Leaky Integrate-And-Fire
Model in Spiking Neural Networks
It is known that Leaky Integrate-and-Fire (LIF) is the most
commonly used model at present to describe the neuronal
dynamics in SNNs, and it can be simply governed by:

τ
du(t)

dt
= −u(t)+ I(t) (1)

where u(t) is the neuronal membrane potential at time t, τ is a
time constant and I(t) denotes the pre-synaptic input which is
determined by the pre-neuronal activities or external injections
and the synaptic weights. When the membrane potential u
exceeds a given threshold Vth, the neuron fires a spike and
resets its potential to ureset . As shown in Figure 1, the forward
dataflow of the SNN propagates in the layer-by-layer SD like
DNNs, and the self-feedback injection at each neuron node
generates non-volatile integration in the TD. In this way,
the whole SNNs run with complex STD dynamics and code
spatio-temporal information into the spike pattern. The existing
training algorithms only consider either the SD such as the
supervised ones via BP, or the TD such as the unsupervised ones
via timing-based plasticity, which might cause the performance
bottleneck. Therefore, how to build a learning model by taking
full use of the spatio-temporal domain (STD) forms the main
motivation of this work.

Frontiers in Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

FIGURE 1 | Illustration of the spatio-temporal characteristic of SNNs. In

addition to the layer-by-layer spatial dataflow like ANNs, SNNs are famous for

the rich temporal dynamics. The existing training algorithms primarily fasten

more attention on one side, either the spatial domain such as the supervised

ones via backpropagation, or the temporal domain such as the unsupervised

ones via timing-based plasticity. This causes the performance bottleneck.

Therefore, how to build a framework for training high-performance SNNs by

making full use of the STD information forms the major motivation of this work.

However, directly obtaining the analytic solution of LIFmodel
in (1) makes it inconvenient to train SNNs based on BP with
discrete dataflow. This is because the whole network presents
complex dynamics in continuous TD. To address this issue,
firstly we solve the linear differential Equation (1) with the initial
condition u(t)|t=ti−1 = u(ti−1), and get the following iterative
updating rule:

u(t) = u(ti−1)e
ti−1−t

τ + Î(t) (2)

where the neuronal potential u(t) in (1) depends on the previous
potential at time ti−1 and the general pre-synaptic input Î(t).
The membrane potential exponentially decays until the neuron
receives new input, and a new update round will start once the
neuron fires a spike. That is to say, the neuronal state is co-
determined by the spatial accumulations of Î(t) and the leaky
temporal memory of u(ti−1).

As we know, the efficiency of error BP for training DNNs
greatly benefits from the iterative representation of gradient
descent which yields the chain rule for layer-by-layer error
propagation in the SD backward pass. This motivates us to
propose an iterative LIF based SNNS inwhich the iterations occur
in both the SD and TD as follows:

xt+1,n
i =

l(n−1)
∑

j=1

wn
ijo

t+1,n−1
j (3)

ut+1,n
i = ut,ni f (ot,ni)+ xt+1,n

i + bni (4)

ot+1,n
i = g(ut+1,n

i) (5)

where

f (x) = τe−
x
τ (6)

g(x) =
{

1, x ≥ Vth

0, x < Vth

(7)

In above formulas, the upper index t denotes the time step t, and
n and l(n) denote the nth layer and the number of neurons in
the nth layer, respectively. wij is the synaptic weight from the
jth neuron in pre-synaptic layer to the ith neuron in the post-
synaptic layer, and oj ∈ {0, 1} is the neuronal output of the
jth neuron where oj = 1 denotes a spike activity and oj = 0
denotes nothing occurs. Equation (4) transforms Equation (2)
to an iterative update of membrane potential in the LIF model.
The first item on the right refers to the decay component of

neuron potential corresponding to u(ti−1)e
ti−1−t

τ in Equation (2),
the second item xi refers to the simplified representation of the
pre-synaptic inputs of the ith neuron like Î(t) in Equation (2), and
the third item bi is an equivalent variable to the fire threshold.
Specifically, the threshold comparison of ut+1,n

i = ut,ni f (ot,ni) +
xt+1,n
i + bni > Vth is equivalent to u

t+1,n
i = ut,ni f (ot,ni)+ xt+1,n

i >

Vth − bni , hence the modeling of adjustable bias b is utilized to
mimic the threshold behavior.

Actually, formulas (4)–(5) are also inspired from the LSTM
model (Hochreiter and Schmidhuber, 1997; Gers et al., 1999;
Chung et al., 2015) by using a forget gate f (.) to control the
TD memory and an output gate g(.) to fire a spike. The forget
gate f (.) controls the leaky extent of the potential memory in
the TD, the output gate g(.) generates a spike activity when it is
activated. Specifically, for a small positive time constant τ , f (.)
can be approximated as:

f (ot,ni) ≈
{

τ , ot,ni = 0

0, ot,ni = 1
(8)

since τe−
1
τ ≈ 0. In this way, the LIF model could be transformed

to an iterative version where the recursive relationship in both the
SD and TD is clearly describe, which is suitable for the following
gradient descent training in the STD.

2.2. Spatio-Temporal Backpropagation
Training Framework
In order to present STBP training framework, we define the
following loss function L in which the mean square error for all
samples under a given time windows T is to be minimized:

L = 1

2S

S
∑

s=1

‖ ys −
1

T

T
∑

t=1

os
t,N ‖22 (9)

where ys and os denote the label vector of the sth training sample
and the neuronal output vector of the last layer N, respectively.

By combining Equations (3)–(9) together it can be seen that
L is a function of W and b. Thus, to obtain the derivative of L
with respect to W and b is necessary for the gradient descent.
Assume that we have obtained derivative of ∂L

∂oi
and ∂L

∂ui
at each

layer n at time t, which is an essential step to obtain the final ∂L
∂W

and ∂L
∂b . Figure 2 describes the error propagation (dependent on

the derivation) in both the SD and TD at the single-neuron level

Frontiers in Neuroscience | www.frontiersin.org 3 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

FIGURE 2 | Error propagation in the STD. (A) At the single-neuron level, the vertical path and horizontal path represent the error propagation in the SD and TD,

respectively. (B) Similar propagation occurs at the network level, where the error in the SD requires the multiply-accumulate operation like the feedforward

computation.

(Figure 2A) and the network level (Figure 2B). At the single-
neuron level, the propagation is decomposed into a vertical
path of SD and a horizontal path of TD. The dataflow of error
propagation in the SD is similar to the typical BP for DNNs,
i.e., each neuron accumulates the weighted error signals from the
upper layer and iteratively updates the parameters in different
layers. While the dataflow in the TD shares the same neuronal
states, which makes it quite complicated to directly obtain the
analytical solution. To solve this problem, we use the proposed
iterative LIF model to unfold the state space in both the SD and
TD direction, thus the states in the TD at different time steps
can be distinguished, which enables the chain rule for iterative
propagation. Similar idea can be found in the BPTT algorithm
for training RNNs in Werbos (1990).

Now, we discuss how to obtain the complete gradient descent
in the following four cases. Firstly, we denote that:

δ
t,n
i = ∂L

∂ot,ni
(10)

Case 1: t = T at the output layer n = N.
In this case, the derivative ∂L

∂oT,Ni

can be directly obtained since it

depends on the loss function in Equation (9) of the output layer.
We could have:

∂L

∂oT,Ni

= − 1

TS
(yi −

1

T

T
∑

k=1

ok,Ni). (11)

The derivation with respect to uT,Ni is generated based on oT,Ni

∂L

∂uT,Ni

= ∂L

∂oT,Ni

∂oT,Ni

∂uT,Ni

= δ
T,N
i

∂oT,Ni

∂uT,Ni

. (12)

Case 2: t = T at the layers n < N.
In this case, the derivative ∂L

∂oT,ni

iteratively depends on the error

propagation in the SD at time T as the typical BP algorithm. We
have:

∂L

∂oT,ni

=
l(n+1)
∑

j=1

δ
T,n+1
j

∂oT,n+1
j

∂oT,ni

=
l(n+1)
∑

j=1

δ
T,n+1
j

∂g

∂uT,ni

wji. (13)

Similarly, the derivative ∂L

∂uT,ni

yields

∂L

∂uT,ni

= ∂L

∂oT,ni

∂oT,ni

∂uT,ni

= δ
T,n
i

∂g

∂uT,ni

. (14)

Case 3: t < T at the output layer n = N.
In this case, the derivative ∂L

∂ot,Ni
depends on the error propagation

in the TD direction. With the help of the proposed iterative LIF
model in Equation (3)-(5) by unfolding the state space in the TD,
we acquire the required derivative based on the chain rule in the
TD as follows:

∂L

∂ot,Ni
= δ

t+1,N
i

∂ot+1,N
i

∂ot,Ni
+ ∂L

∂oT,Ni

= δ
t+1,N
i

∂g

∂ut+1,N
i

ut,Ni
∂f

∂ot,Nj
+ ∂L

∂oT,Ni

, (15)

∂L

∂ut,Ni
= ∂L

∂ut+1,N
i

∂ut+1,N
i

∂ut,Ni
= δ

t+1,N
i

∂g

∂ut+1,N
i

f (ot,ni), (16)

Frontiers in Neuroscience | www.frontiersin.org 4 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

where ∂L

∂oT,Ni

= − 1
TS (yi −

1
T

∑T
k=1 o

k,N
i) as in Equation (11).

Case 4: t < T at the layers n < N.
In this case, the derivative ∂L

∂ot,ni
depends on the error propagation

in both SD and TD. On one side, each neuron accumulates the
weighted error signals from the upper layer in the SD like Case 2;
on the other side, each neuron also receives the propagated error
from self-feedback dynamics in the TD by iteratively unfolding
the state space based on the chain rule like Case 3. So we have:

∂L

∂ot,ni
=

l(n+1)
∑

j=1

δ
t,n+1
j

∂ot,n+1
j

∂ot,ni
+ ∂L

∂ot+1,n
i

∂ot+1,n
i

∂ot,ni
(17)

=
l(n+1)
∑

j=1

δ
t,n+1
j

∂g

∂ut,ni
wji + δ

t+1,n
i

∂g

∂ut,ni
ut,ni

∂f

∂ot,ni
, (18)

∂L

∂ut,ni
= ∂L

∂ot,ni

∂ot,ni

∂ut,ni
+ ∂L

∂ot+1,n
i

∂ot+1,n
i

∂ut,ni
(19)

= δ
t,n
i

∂g

∂ut,ni
+ δ

t+1,n
i

∂g

∂ut+1,n
i

f (ot,ni). (20)

Based on the four cases, the error propagation procedure
(depending on the above derivatives) is shown in Figure 2. At the
single-neuron level (Figure 2A), the propagation is decomposed
into the vertical path of SD and the horizontal path of TD. At
the network level (Figure 2B), the dataflow of error propagation
in the SD is similar to the typical BP for DNNs, i.e. each neuron
accumulates the weighted error signals from the upper layer and
iteratively updates the parameters in different layers; and in the
TD, the neuronal states are iteratively unfolded in the timing
dimension that enables the chain-rule propagation. Finally, we
obtain the derivatives with respect toW and b as follows:

∂L

∂bn
=

T
∑

t=1

∂L

∂ut,n
∂ut,n

∂Lbn
=

T
∑

t=1

∂L

∂ut,n
, (21)

∂L

∂Wn =
T

∑

t=1

∂L

∂ut,n
∂ut,n

∂Wn

=
T

∑

t=1

∂L

∂ut,n
∂ut,n

∂xt,n
∂xt,n

∂Wn =
T

∑

t=1

∂L

∂ut,n
ot,n−1T , (22)

where ∂L
∂ut,n

can be obtained from in Equation (11)–(17). Given
the W and b according to the STBP, we can use gradient descent
optimization algorithms to effectively train SNNs for achieving
high performance.

2.3. Derivative Approximation of the
Non-differentiable Spike Activity
In the previous sections, we have presented how to obtain the
gradient information based on STBP, but the issue of non-
differentiable points at each spiking time is yet to be addressed.
Actually, the derivative of output gate g(u) is required for the
STBP training of Equation (11)–(21). Theoretically, g(u) is a non-
differentiable Dirac function of δ(u) which greatly challenges

the effective learning of SNNs (Lee et al., 2016). g(u) has zero
value everywhere except an infinity value at zero, which causes
the gradient vanishing or exploding issue that disables the error
propagation. One of existing method views the discontinuous
points of the potential at spiking times as noise and claimed it is
beneficial for the model robustness (Bengio et al., 2015; Lee et al.,
2016), while it did not directly address the non-differentiability
of the spike activity. To this end, we introduce four curves to
approximate the derivative of spike activity denoted by h1, h2, h3,
and h4 in Figure 3B:

h1(u) =
1

a1
sign(|u− Vth| <

a1

2
), (23)

h2(u) = (

√
a2

2
− a2

4
|u− Vth|)sign(

2
√
a2

− |u− Vth|), (24)

h3(u) =
1

a3

e
Vth−u

a3

(1+ e
Vth−u

a3)2
, (25)

h4(u) =
1√
2πa4

e
− (u−Vth)

2

2a4 , (26)

where ai(i = 1, 2, 3, 4) determines the curve steepness, i.e., the
peak width. In fact, h1, h2, h3, and h4 are the derivative of
the rectangular function, polynomial function, sigmoid function
and Gaussian cumulative distribution function, respectively. To
be consistent with the Dirac function δ(u), we introduce the
coefficient ai to ensure the integral of each function is 1.
Obviously, it can be proven that all the above candidates satisfy
that:

lim
ai→0+

hi(u) =
dg

du
, i = 1, 2, 3, 4. (27)

Thus,
∂g
∂u in Equation (11)–(21) for STBP can be approximated

by:

∂g

∂u
≈ hi(u), i = 1, 2, 3, 4. (28)

In section 3.3, we will analyze the influence on the SNNs
performance with different curves and different values of ai.

3. RESULTS

3.1. Parameter Initialization
The initialization of parameters, such as the weights, thresholds
and other parameters, is crucial for stabilizing the firing activities
of the whole network. We should simultaneously ensure timely
response of pre-synaptic stimulus but avoid too much spikes that
reduces the neuronal selectivity. As it is known that the multiply-
accumulate operations of the pre-spikes and weights, and the
threshold comparison are two key computation steps in the
forward pass. This indicates the relative magnitude between the
weights and thresholds determines the effectiveness of parameter
initialization. In this paper, we fix the threshold to be constant
in each neuron for simplification, and only adjust the weights

Frontiers in Neuroscience | www.frontiersin.org 5 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

FIGURE 3 | Derivative approximation of the non-differentiable spike activity. (A) Step activation function of the spike activity and its original derivative function which is

a typical Diract function δ(u) with infinite value at u = 0 and zero value at other points. This non-differentiable property disables the error propagation. (B) Several

typical curves to approximate the derivative of spike activity.

to control the activity balance. Firstly, we initial all the weight
parameters by sampling from the standard uniform distribution:

W ∼ U[−1, 1] (29)

Then, we normalize these parameters by:

wn
ij =

wn
ij

√

∑l(n−1)
j=1 wn

ij
2
, i = 1, .., l(n) (30)

The set of other parameters is presented in Table 1. Note that
Adam (adaptive moment estimation Kingma and Ba, 2014) is
a popular optimization method to accelerate the convergence
speed of the gradient descent. When updating the parameters
(W and b) based on their gradients (in Equation 21-22), we apply
Adam optimizer that is usually used in ANNs. Actually, it does
not affect the process of gradient acquire process, while just used
for parameter update. The corresponding parameters are also
listed in Table 1. Furthermore, throughout all the simulations in
our work, any complex skill as in Diehl et al. (2015); Lee et al.
(2016) is no longer required, such as the error normalization,
weight/threshold regularization, fixed-amount-proportional
reset mechanism, etc.

3.2. Dataset Experiments
We test the STBP training framework on various datasets,
including the static MNIST dataset, a custom object detection
dataset as well as the dynamic N-MNIST dataset.

3.2.1. Spatio-Temporal Fully Connected Neural

Network

3.2.1.1. Static dataset
The MNIST dataset of handwritten digits (Lecun et al., 1998)
(Figure 4B) and a custom dataset for object detection (Zhang
et al., 2016) (Figure 4A) are chosen to test our method. MNIST

TABLE 1 | Parameters set in our experiments.

Network parameter Description Value

T Time window 30 ms

Vth Threshold (MNIST/object detection

dataset/N-MNIST)

1.5, 2.0, 0.2

τ Decay factor (MNIST/object detection

dataset/N-MNIST)

0.1, 0.15, 0.2 ms

a1, a2, a3, a4 Derivative approximation parameters

(Figure 3)

1.0

dt Simulation time step 1 ms

r Learning rate (SGD) 0.5

β1,β2, λ Adam parameters 0.9, 0.999, 1-10−8

is comprised of a training set with 60,000 labeled hand-written
digits, and a testing set of other 10,000 labeled digits, which
are generated from the postal codes of 0-9. Each digit sample
is a 28×28 grayscale image. The object detection dataset is a
two-category image dataset created by our lab for pedestrian
detection. It includes 1,509 training samples and 631 testing
samples of 28×28 grayscale image. Actually, these images are
patches inmany real-world large-scale pictures, where each patch
corresponds to an intrinsic location. The patches are sent to a
neural network for binary classification to tell us whether or
not an object exists in the scene, which is labeled by 0 or 1, as
illustrated in Figure 4A. If so, an extramodel will use the intrinsic
location of this patch as the detected location. The input of the
first layer should be a spike train, which requires us to convert
the samples from the static datasets into spike events. To this end,
the Bernoulli sampling conversion from original pixel intensity to
the spike rate is used in this paper. Specifically, each normalized
pixel is probabilistically converted to a spike event (“1”) at each
time step by using an independent and identically distributed
Bernoulli sampling. The probability of generating a “1,” i.e., a
spike event, is proportional to the normalized value of the entry.

Frontiers in Neuroscience | www.frontiersin.org 6 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

FIGURE 4 | Static dataset experiments. (A) A custom dataset for object detection. This dataset is a two-category image set built by our lab for pedestrian detection.

By detecting whether there is a pedestrian, an image sample is labeled by 0 or 1. The images in the yellow boxes are labeled as 1, and the rest ones are marked as 0.

(B) MNIST dataset. (C) Raster plot of the spike pattern converted from the center patch of 5×5 pixels of a sample in the object detection dataset (up) and MNIST

(down). (D) Raster plot presents the comparison of output spike pattern over a digit 9 in MNIST dataset before and after the STBP training.

For example, if the pixel intensity is 0.8, it can generate a spike
event at each time step with probability of 0.8 ant remain silent
(“1”) with probability of 0.2 = 1 − 0.8. Then, the spike events
within a certain time window form a spike train. The upper
and lower sub-figures in Figure 4C are the spike pattern of 25
input neurons converted from the center patch of 5×5 pixels of a
sample on the object detection dataset and MNIST, respectively.
Figure 4D illustrates an example for the spike pattern of output
layer within 15ms before and after the STBP training over the
stimulus of digit 9. At the beginning, neurons in the output layer
randomly fires, while after the training the 10th neuron coding
digit 9 fires most intensively that indicates correct inference is
achieved.

Table 2 compares our method with several other advanced
results that uses the structure similar to Multi-layer Perceptron
(MLP). Although we do not use any complex skill, the proposed
STBP training method also outperforms all the reported results.
We can achieve 98.89% testing accuracy which performs the

best. Table 3 compares our model with the typical MLP on the
object detection dataset. The baseline model is one of the typical
artificial neural networks (ANNs), i.e., not SNNs, and in the
following we use ‘non-spiking network’ to distinguish them. It
can be seen that our model achieves comparable performance
with the non-spiking MLP. Note that the overall firing rate of the
input spike train from the object detection dataset is higher than
the one from MNIST dataset, so we increase its threshold to 2.0
in the simulation experiments.

3.2.1.2. Dynamic dataset
Compared with the static dataset, dynamic dataset, such as
the N-MNIST (Orchard et al., 2015), contains richer temporal
features, and therefore it is more suitable to exploit SNN’s
potential ability. We use the N-MNIST database as an example to
evaluate the capability of our STBP method on dynamic dataset.
N-MNIST converts the mentioned static MNIST dataset into its
dynamic version of spike train by using the dynamic vision sensor

Frontiers in Neuroscience | www.frontiersin.org 7 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

TABLE 2 | Comparison with the state-of-the-art spiking networks with similar architecture on MNIST.

Model Network structure Training skills Accuracy%

Spiking RBM (STDP) (Neftci et al., 2013) 784-500-40 None 93.16

Spiking RBM(pre-training*) (Peter et al., 2013) 784-500-500-10 None 97.48

Spiking MLP(pre-training*) (Diehl et al., 2015) 784-1200-1200-10 Weight normalization 98.64

Spiking MLP(pre-training*) (Hunsberger and Eliasmith, 2015) 784-500-200-10 None 98.37

Spiking MLP(BP) (O’Connor and Welling, 2016) 784-200-200-10 None 97.66

Spiking MLP(STDP) (Diehl and Cook, 2015) 784-6400 None 95.00

Spiking MLP(BP) (Lee et al., 2016) 784-800-10 Error normalization/

parameter regularization

98.71

Spiking MLP(STBP) 784-800-10 None 98.89

We mainly compare with these methods that have the similar network architecture, and * means that their model is based on pre-trained ANN models.

TABLE 3 | Comparison with the typical MLP over object detection dataset.

Model Network structure Accuracy

Mean Interval∗

Non-spiking MLP(BP) 784-400-10 98.31% [97.62%, 98.57%]

Spiking MLP(STBP) 784-400-10 98.34% [97.94%, 98.57%]

*Results with epochs [201,210].

(DVS) (Lichtsteiner et al., 2007). For each original sample from
MNIST, the work (Orchard et al., 2015) controls the DVS to
move in the direction of three sides of the isosceles triangle in
turn (Figure 5B) and collects the generated spike train which
is triggered by the intensity change at each pixel. Figure 5A
records the saccade results on digit 0. Each sub-graph records
the spike train within 10ms and each 100ms represents one
saccade period. Due to the two possible change directions of
each pixel intensity (brighter or darker), DVS could capture the
corresponding two kinds of spike events, denoted by on event
and off event, respectively (Figure 5C). Since N-MNIST allows
the relative shift of images during the saccade process, it produces
34×34 pixel range. And from the spatio-temporal representation
in Figure 5C, we can see that the on-events and off-events are so
different that we use two channel to distinguish it. Therefore, the
network structure is 34×34×2-400-400-10.

Table 4 compares our STBP method with some state-of-the-
art results on N-MNIST dataset. The upper 5 results are based
on ANNs, and lower 4 results including our method uses SNNs.
The ANNs methods usually adopt a frame-based method, which
collects the spike events in a time interval (30 ∼ 300ms) to
form a frame of image, and use the conventional algorithms for
image classification to train the networks. Since the transformed
images are often blurred, the frame-based preprocessing is
harmful for model performance and abandons the hardware
friendly event-driven paradigm. As can be seen from Table 4,
the models of ANN are generally worsen than the models of
SNNs.

In contrast, SNNs could naturally handle event stream
patterns, and via better use of spatio-temporal features, our
proposed STBP method achieves best accuracy of 98.78% when

compared all the reported ANNs and SNNs methods. The
greatest advantage of our method is that we did not use any
complex training skill, which is beneficial for future hardware
implementation.

3.2.2. Spatio-Temporal Convolution Neural Network
Extending our framework to convolution neural network
structure allows the network going deeper and grants network
more powerful SD information. Here we use our framework
to establish the spatio-temporal convolution neural network.
Compared with our spatio-temporal fully connected network, the
main difference is the processing of the input image, where we use
the convolution in place of the weighted summation. Specifically,
in the convolution layer, each convolution neuron receives the
convoluted results as input and updates its state according to
the LIF model. In the pooling layer, because the binary coding
of SNNs is inappropriate for standard max pooling, we use the
average pooling instead.

Our spiking CNN model are tested on the MNIST dataset
as well as the object detection dataset . In the MNIST, our
network contains two convolution layers with kernel size of
5 × 5 and two average pooling layers alternatively, followed
by one full connected layer. And like traditional CNN, we
use the elastic distortion (Simard et al., 2003) to preprocess
dataset. Table 5 records the state-of-the-art performance of
spiking convolution neural networks over MNIST dataset. Our
proposed spiking CNN model obtain 98.42% accuracy, which
outperforms other reported spiking networks with slightly lighter
structure. Furthermore, we configure the same network structure
on a custom object detection database to evaluate the proposed
model performance. The testing accuracy is reported after
training 200 epochs. Table 6 indicates our spiking CNN model
could achieve a competitive performance with the non-spiking
CNN.

3.3. Performance Analysis
3.3.1. The Impact of Derivative Approximation Curves
In subsection 2.3 , we introduce different curves to approximate
the ideal derivative of the spike activity. Here we try to analyze
the influence of different approximation curves on the testing
accuracy. The experiments are conducted on the MNIST dataset,

Frontiers in Neuroscience | www.frontiersin.org 8 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

FIGURE 5 | Dynamic dataset of N-MNIST. (A) Each sub-picture shows a 10ms-width spike train during the saccades. (B) Spike train is generated by moving the

dynamic vision sensor (DVS) in turn toward the direction of 1, 2, and 3. (C) Spatio-temporal representation of the spike train from digit 0 (Orchard et al., 2015)where

the upper one and lower one denote the on-events and off-events, respectively.

TABLE 4 | Comparison with state-of-the-art networks over N-MNIST.

Model Network structure Training skills Accuracy%

Non-spiking CNN(BP) (Neil et al., 2016) - None 95.30

Non-spiking CNN(BP) (Neil and Liu, 2016) - None 98.30

Non-spiking MLP(BP)(Lee et al., 2016) 34× 34× 2-800-10 None 97.80

LSTM(BPTT) (Neil et al., 2016) - Batch normalization 97.05

Phased-LSTM(BPTT) (Neil et al., 2016) - None 97.38

Spiking CNN(pre-training*) (Neil and Liu, 2016) - None 95.72

Spiking MLP(BP) (Lee et al., 2016) 34× 34× 2-800-10 Error normalization/parameter

regularization

98.74

Spiking MLP(BP) (Cohen et al., 2016) 34× 34× 2-10000-10 None 92.87

Spiking MLP(STBP) 34× 34× 2-800-10 None 98.78

We only show the network structure based on MLP, and the other network structure refers to the above references. *means that their model is based on pre-trained ANN models.

and the network structure is 784−400−10. The testing accuracy
is reported after training 200 epochs. Firstly, we compare the
impact of different curve shapes on model performance. In our
simulation we use the mentioned h1, h2, h3, and h4 shown in
Figure 3B. Figure 6A illustrates the results of approximations

of different shapes. We observe that different nonlinear curves,
such as h1, h2, h3, and h4, only present small variations on the
performance.

Furthermore, we use the rectangular approximation as an
example to explore the impact of curve steepness (or peck width)

Frontiers in Neuroscience | www.frontiersin.org 9 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

on the experiment results. We set a1 = 0.1, 1.0, 2.5, 5.0, 7.5, 10
and the corresponding results are plotted in Figure 6B. Different
colors denote different a1 values. Actually, a1 in the rang

TABLE 5 | Comparison with other spiking CNN over MNIST.

Model Network structure Accuracy

Spiking CNN (pre-training*)

(Esser et al., 2016)

28×28×1-12C5-P2-64C5-

P2-10

99.12%

Spiking CNN(BP) (Lee et al.,

2016)

28×28×1-20C5-P2-50C5-

P2-200-10

99.31%

Spiking CNN (STBP) 28×28×1-15C5-P2-40C5-

P2-300-10

99.42%

We mainly compare with these methods that have the similar network architecture, and

*means that their model is based on pre-trained ANN models.

TABLE 6 | Comparison with the typical CNN over object detection dataset.

Model Network structure Accuracy

Mean Interval∗

Non-spiking CNN(BP) 28× 28× 1-6C3-300-10 98.57% [98.57%, 98.57%]

Spiking CNN(STBP) 28× 28× 1-6C3-300-10 98.59% [98.26%, 98.89%]

*Results with epochs [201,210].

of 0.5–5.0 achieves comparable convergence while too large
(a1 = 10) or too small (a1 = 0.1) value performs worse
performance. Combining Figures 6A,B, it indicates that the key
point for approximating the derivation of the spike activity is to
capture the nonlinear nature and proper curve steepness, while
the specific curve shape is not so critical.

3.3.2. The Impact of Temporal Domain
A major contribution of this work is introducing the temporal
domain into the existing spatial domain based BP training
method, which makes full use of the spatio-temporal dynamics
of SNNs and enables the high-performance training. Now
we quantitatively analyze the impact of the TD item. The
experiment configurations keep the same with the previous
section (784 − 400 − 10) and we also report the testing results
after training 200 epochs. Here the existing BP in the SD is termed
as SDBP.

Table 7 records the simulation results. The testing accuracy
of SDBP is lower than the accuracy of the STBP on different
datasets, which shows the temporal information is beneficial
for model performance. Specifically, compared to the STBP, the
SDBP has a 1.21% loss of accuracy on the objective recognition
dataset, which is 5 times larger than the loss on the MNIST.
And results also imply that the performance of SDBP is not
stable enough. In addition to the interference of the dataset
itself, the reason for this variation may be the unstability of

FIGURE 6 | Comparisons of different derivation approximation curves. (A) The influence of curve shape. (B) The influence of curve steepness/width.

TABLE 7 | Comparison for the SDBP model and the STBP model on different datasets.

Model Dataset Network structure Training skills Accuracy

Mean Interval*

Spiking MLP Objective recognition 784-400-10 None 97.11% [96.04%,97.78%]

(SDBP) MNIST 784-400-10 None 98.29% [98.23%, 98.39%]

Spiking MLP Objective recognition 784-400-10 None 98.32% [97.94%, 98.57%]

(STBP) MNIST 784-400-10 None 98.48% [98.42%, 98.51%]

*Results with epochs [201,210].

Frontiers in Neuroscience | www.frontiersin.org 10 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

SNNs training method. Actually, the training of SNNs relies
heavily on the parameter initialization, which is also a great
challenge for SNNs applications. In many reported works,
researchers usually leverage some special skills or mechanisms
to improve the training performance, such as the regularization,
normalization, etc. In contrast, by using our STBP training
method, much higher performance can be achieved on the
same network (98.48% on MNIST and 98.32% on the object
detection dataset). Note that the STBP didn’t use any complex
training skill. This stability and robustness indicate that the
dynamics in the TD fundamentally includes great potential for
the SNNs computing and this work indeed provides an insightful
evidence.

4. DISCUSSION

In this work, we propose a spatio-temporal backpropagation
(STBP) algorithm that allows to effective supervised learning
for SNNs. Although existing supervised learning methods
have considered either SD feature or TD feature (Gtig
and Sompolinsky, 2006; Lee et al., 2016; O’Connor and
Welling, 2016), they do not combine them well, which
may cause their model hardly to get high-accuracy results
on some standard benchmarks. Although indirect training
methods (Diehl et al., 2015; Hunsberger and Eliasmith, 2015)
achieve performance very close to the pre-trained model, the
conversion strategy essentially helps little to understand the
nature of SNNs. By combining the information in both SD
and TD domain, our STBP algorithm can bridge this gap.
We implement STBP on both MLP and CNN architecture,
which are verified on both static and dynamic datasets.
Results of our model are superior to the existing state-of-
the-art SNNs on relatively small-scale networks of spiking
MLP and CNNs, and even outperforms non-spiking DNNs
with the same network size on dynamic N-MNIST dataset.
Specifically, on MNIST, we achieve 98.89% accuracy with
fully connected architecture and achieve 99.42% accuracy
with convolutional architecture. On N-MNIST, we achieve
98.78% accuracy with fully connected architecture, to the
best of our knowledge, which beats previous works on
this dataset.

Furthermore, we introduce an approximated derivative to
address the non-differentiable issue of the spike activity. Previous
works regard the non-differentiable points as noise (Vincent
et al., 2008; Hunsberger and Eliasmith, 2015), while our results
reveal that the steepness and width of the approximation curve
would affect the learning performance, while the specific curve
shape is not so critical. Another attractive advantage of our
algorithm is that it does not need complex training skills which
are widely used in existing schemes to guarantee the performance
(Diehl et al., 2015; Lee et al., 2016; Neil et al., 2016), that
makes it easier to be implemented in large-scale networks. These
results also indicate that the use of spatio-temporal complexity
to solve problems captures one of the key potentials of SNNs.
Because the brain leverages complexity in both the temporal

and spatial domain to solve problems, we also would like to
claim that implementing the STBP on SNNs is more bio-plausible
than applying the spatial BP like that in DNNs. The remove of
extra training skills also makes it more hardware-friendly for the
design of neuromorphic chips with online learning ability.

Since the N-MNIST converts the static MNIST into a dynamic
event-driven version by the relative movement of DVS, in essence
this generation method could not provide sufficient temporal
information and additional data feature than original database.
Hence it is important to further apply our model to tackle
more convincing problems with temporal characteristics, such
as TIMIT (Garofolo et al., 1993), Spoken Digits database (Davis
et al., 1952).

We also evaluate our model on CIFAR-10 dataset. Here we do
not resort to any data argument methods and training techniques
(e.g., batch normalization, weight decay). Considering the
training speed, we adopt a small-scale structure with 2
convolution layers (20 channels with kernel 5 × 5 - 30 channels
5 × 5), 2 × 2 average-pooling layers after each convolution
layer, followed by 2 fully connected layers (256 and 10 neurons,
respectively). Testing accuracy is reported after 100 training
epochs. The spiking CNN achieves 50.7% accuracy and the
ANN with same structure achieves 52.9% accuracy. It suggests
that SNN is able to obtain comparable performance on larger
datasets. To the best of our knowledge, currently few works
report the results on CIFAR10 for direct training of SNNs (not
including those pre-trained ANN models). The difficulty of this
problem mainly involves two aspects. Firstly, it is challenging
to implement BP algorithm to train SNNs directly at this stage
because of the complex dynamics and non-differentiable spike
activity . Secondly, although it is energy efficient to realize SNN
on specialized neuromorphic chips, it is very difficult and time-
consuming to simulate the complex kinetic behaviors of SNN
on computer software (about ten times or even hundred times
the runtimes compared to the same structure ANN). Therefore,
accelerating the supervised training of large scale SNNs based on
CPU/GPU or neuromorphic substrates is also worth studying in
the future.

AUTHOR CONTRIBUTIONS

YWand LD proposed the idea, designed and did the experiments.
YW, LD, GL, and JZ conducted the modeling work. YW, LD, and
GL wrote the manuscript, then JZ and LS revised it. LS directed
the projects and provided overall guidance.

ACKNOWLEDGMENTS

The work was partially supported by National Natural
Science Foundation of China (61603209), the Study of
Brain-Inspired Computing System of Tsinghua University
program (20151080467), Beijing Natural Science Foundation
(4164086), Independent Research Plan of Tsinghua University
(20151080467), and by the Science and Technology Plan of
Beijing, China (Grant No. Z151100000915071).

Frontiers in Neuroscience | www.frontiersin.org 11 May 2018 | Volume 12 | Article 331

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Wu et al. Spatio-Temporal Backpropagation for SNNs

REFERENCES

Allen, J. N., Abdel-Aty-Zohdy, H. S., and Ewing, R. L. (2009). “Cognitive

processing using spiking neural networks,” in IEEE 2009 National Aerospace

and Electronics Conference (Dayton, OH), 56–64.

Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., and Wu, Y. (2015). An objective

function for stdp. Comput. Sci. preprint arXiv.

Benjamin, B. V., Gao, P., Mcquinn, E., Choudhary, S., Chandrasekaran,

A. R., Bussat, J. M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 699–716.

doi: 10.1109/JPROC.2014.2313565

Bohte, S. M., Kok, J. N., and Poutr, J. A. L. (2000). “Spikeprop: backpropagation for

networks of spiking neurons,” in Esann 2000, European Symposium on Artificial

Neural Networks, Bruges, Belgium, April 26-28, 2000, Proceedings (Bruges),

419–424.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2015). Gated feedback recurrent

neural networks. Comput. Sci. 2067–2075. preprint arXiv.

Cohen, G. K., Orchard, G., Leng, S. H., Tapson, J., Benosman, R. B., and Schaik,

A. V. (2016). Skimming digits: neuromorphic classification of spike-encoded

images. Front. Neurosci. 10:184. doi: 10.3389/fnins.2016.00184

Davis, K. H., Biddulph, R., and Balashek, S. (1952). Automatic recognition

of spoken digits. J. Acoust. Soc. Am. 24:637. doi: 10.1121/1.19

06946

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., and Cook, M. (2015). “Fast-classifying, high-

accuracy spiking deep networks through weight and threshold balancing” in

International Joint Conference on Neural Networks (Killarney), 1–8.

Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R.,

Andreopoulos, A., et al. (2016). Convolutional networks for fast, energy-

efficient neuromorphic computing. Proc. Natl. Acad. Sci. U.S.A. 113, 11441–

11446. doi: 10.1073/pnas.1604850113

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The

spinnaker project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.

2304638

Garofolo, J. S., Lamel, L. F., Fisher,W.M., Fiscus, J. G., Pallett, D. S., Dahlgren, N. L.

(1993). DARPA TIMIT Acoustic-Phonetic Continous Speech Corpus CD-ROM.

NIST Speech Disc 1-1.1. NASA STI/Recon Technical Report n 93.

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to

forget: continual prediction with lstm. Neural Comput. 12, 2451–2571.

doi: 10.1162/089976600300015015

Gtig, R., and Sompolinsky, H. (2006). The tempotron: a neuron that learns spike

timing-based decisions. Nat. Neurosci. 9:420–428. doi: 10.1038/nn1643

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hunsberger, E., and Eliasmith, C. (2015). Spiking deep networks with lif neurons.

Comput. Sci. preprint arXiv.

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2016). A self-driving robot using

deep convolutional neural networks on neuromorphic hardware. arXiv.org.

Kasabov, N., and Capecci, E. (2015). Spiking neural network methodology

for modelling, classification and understanding of eeg spatio-

temporal data measuring cognitive processes. Infor. Sci. 294, 565–575.

doi: 10.1016/j.ins.2014.06.028

Kheradpisheh, S. R., Ganjtabesh, M., and Masquelier, T. (2016). Bio-inspired

unsupervised learning of visual features leads to robust invariant object

recognition.Neurocomputing 205, 382–392. doi: 10.1016/j.neucom.2016.04.029

Kingma, D., and Ba, J. (2015). “Adam: A method for stochastic optimization,” in

International Conference on Learning Representations (ICLR).

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86, 2278–2324.

doi: 10.1109/5.726791

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Lichtsteiner, P., Posch, C., and Delbruck, T. (2007). A 128x128 120db 15us latency

asynchronous temporal contrast vision sensor. IEEE J. Solid State Circ. 43,

566–576. doi: 10.1109/JSSC.2007.914337

Mckennoch, S., Liu, D., and Bushnell, L. G. (2006). “Fast modifications of

the spikeprop algorithm,” in IEEE International Joint Conference on Neural

Network Proceedings (Vancouver, BC), 3970–3977.

Merolla, P. A., Arthur, J. V., Alvarezicaza, R., Cassidy, A. S., Sawada, J., Akopyan,

F., et al. (2014). Artificial brains. A million spiking-neuron integrated circuit

with a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Mozafari, M., Kheradpisheh, S. R., Masquelier, T., Nowzaridalini, A., and

Ganjtabesh, M. (2017). First-spike based visual categorization using reward-

modulated stdp. preprint arXiv.

Neftci, E., Das, S., Pedroni, B., Kreutzdelgado, K., and Cauwenberghs, G. (2013).

Event-driven contrastive divergence for spiking neuromorphic systems. Front.

Neurosci. 7:272. doi: 10.3389/fnins.2013.00272

Neil, D., and Liu, S. C. (2016). “Effective sensor fusion with event-based sensors

and deep network architectures,” in IEEE International Symposium on Circuits

and Systems, ed O. René Levesque (Montréal, QC).

Neil, D., Pfeiffer, M., and Liu, S. C. (2016). Phased lstm: accelerating recurrent

network training for long or event-based sequences. arXiv.org.

O’Connor, P., and Welling, M. (2016). Deep spiking networks. arXiv.org.

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting

static image datasets to spiking neuromorphic datasets using saccades. Front.

Neurosci. 9:437. doi: 10.3389/fnins.2015.00437

Peter, O., Daniel, N., Liu, S. C., Tobi, D., and Michael, P. (2013). Real-time

classification and sensor fusion with a spiking deep belief network. Front.

Neurosci. 7:178. doi: 10.3389/fnins.2013.00178

Ponulak, F., (2005). ReSuMe-New Supervised Learning Method for Spiking

Neural Networks[J]. Institute of Control and Information Engineering, Poznan

University of Technology.

Ponulak, F., and Kasiski, A. (2010). Supervised learning in spiking neural networks

with resume: sequence learning, classification, and spike shifting. Neural

Comput. 22, 467–510. doi: 10.1162/neco.2009.11-08-901

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device

variations in a spiking neural network with memristive nanodevices. IEEE

Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.2250995

Schrauwen, B., and Campenhout, J. V. (2004). Extending spikeprop. arXiv.org 1,

471–475.

Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). “Best practices for

convolutional neural networks applied to visual document analysis,” in

International Conference on Document Analysis and Recognition (Edinburgh),

958.

Tavanaei, A., and Maida, A. S. (2017). Bio-inspired spiking convolutional neural

network using layer-wise sparse coding and stdp learning. preprint arXiv.

Urbanczik, R., and Senn, W. (2009). A gradient learning rule for the tempotron.

Neural Comput. 21, 340–352. doi: 10.1162/neco.2008.09-07-605

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P. A. (2008). “Extracting

and composing robust features with denoising autoencoders,” in International

Conference on Machine Learning (Helsinki), 1096–1103.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proc. IEEE 78, 1550–1560. doi: 10.1109/5.58337

Zhang, B., Shi, L., and Song, S. (2016). Creating more intelligent

robots through brain-inspired computing. Science 354:1445.

doi: 10.1126/science.354.6318.1445-b

Zhang, X., Xu, Z., Henriquez, C., and Ferrari, S. (2013). “Spike-based indirect

training of a spiking neural network-controlled virtual insect,” in Decision

and Control (CDC), 2013 IEEE 52nd Annual Conference on (Florence: IEEE),

6798–6805.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Wu, Deng, Li, Zhu and Shi. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neuroscience | www.frontiersin.org 12 May 2018 | Volume 12 | Article 331

https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1121/1.1906946
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1162/089976600300015015
https://doi.org/10.1038/nn1643
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.ins.2014.06.028
https://doi.org/10.1016/j.neucom.2016.04.029
https://doi.org/10.1109/5.726791
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JSSC.2007.914337
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2013.00272
https://doi.org/10.3389/fnins.2015.00437
https://doi.org/10.3389/fnins.2013.00178
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1162/neco.2008.09-07-605
https://doi.org/10.1109/5.58337
https://doi.org/10.1126/science.354.6318.1445-b
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
	1. Introduction
	2. Methods and Materials
	2.1. Iterative Leaky Integrate-And-Fire Model in Spiking Neural Networks
	2.2. Spatio-Temporal Backpropagation Training Framework
	2.3. Derivative Approximation of the Non-differentiable Spike Activity

	3. Results
	3.1. Parameter Initialization
	3.2. Dataset Experiments
	3.2.1. Spatio-Temporal Fully Connected Neural Network
	3.2.1.1. Static dataset
	3.2.1.2. Dynamic dataset

	3.2.2. Spatio-Temporal Convolution Neural Network

	3.3. Performance Analysis
	3.3.1. The Impact of Derivative Approximation Curves
	3.3.2. The Impact of Temporal Domain

	4. Discussion
	Author Contributions
	Acknowledgments
	References

