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Abstract: Nigrospora nonsegmented RNA virus 1 (NoNRV1) has been reported previously in the fungus
Nigrospora oryzae, but its biological effects on its host are unknown. In this work, we isolated a strain
9-1 of N. oryzae from a chrysanthemum leaf and identified NoNRV1 infection in the isolated strain.
The genome sequence of NoNRV1 identified here is highly homologous to that of the isolate HN-21
of NoNRV1 previously reported; thus, we tentatively designated the newly identified NoNRV1 as
NoNRV1-ZJ. Drug treatment with Ribavirin successfully removed NoNRV1-ZJ from the strain 9-1,
which provided us with an ideal control to determine the biological impacts of NoNRV1 infection on
host fungi. By comparing the virus-carrying (9-1) and virus-cured (9-1C) strains, our results indicated
that infection with NoNRV1 promoted the pigmentation of the host cells, while it had no discernable
effects on host growth on potato dextrose agar plates when subjected to osmotic or oxidative stress.
Interestingly, we observed inhibitory impacts of virus infection on the thermotolerance of N. oryzae
and the pathogenicity of the host fungus in cotton leaves. Collectively, our work provides clear
evidence of the biological relevance of NoNRV1 infection in N. oryzae, including pigmentation,
hypovirulence, and thermotolerance.

Keywords: mycovirus; Nigrospora nonsegmented RNA virus 1; Nigrospora oryzae; pigmentation;
pathogenicity; hypovirulence; thermotolerance

1. Introduction

Mycoviruses, also known as fungal viruses, are widespread in major fungal species, in-
cluding mushroom, yeasts, oomycetes, and filamentous fungi. The majority of mycoviruses
have a genome composed of one or more double-stranded RNA (dsRNA) segments [1].
Recently, an increasing number of mycoviruses with single-stranded RNA genomes have
been reported [2–9]. In addition, a plant geminivirus-related DNA mycovirus was also
reported [10]. Mycoviruses, such as yeast LA and M viruses, usually do not cause obvi-
ous viral symptoms [11,12], which is consistent with the limited influence of mycoviral
infection on gene expression in their fungal hosts [13–15]. In some cases, certain my-
coviruses induce dramatic changes in their hosts, including irregular growth, abnormal
pigmentation, and altered virulence [11,12,16]. The ability of mycoviruses to reduce the
virulence of fungal hosts, known as hypovirulence, has been proved to be a powerful
strategy to control fungal diseases in agriculture [17]. One of the well-known hypoviruses
is Cryphonectria hypovirus 1 (CHV1), which causes hypovirulence in chestnut blight fungus
Cryphonectria parasitica and has been used as a biocontrol agent [1,2,18,19]. In some cases,
mycoviruses are even obligate partners in mutualistic relationships with fungal hosts. For
instance, Curvularia thermal tolerance virus (CThTV)-infected C. protuberata is required for the
growth of a panic grass, Dichanthelium lanuginosum, in soils with temperatures >50 ◦C [20].
Transcriptomic analyses of fungi with or without infection of this virus suggest that CThTV
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infection promotes melanin biosynthesis [21], which was reported to be associated with
fungal thermotolerance [22,23].

Biological pigments are present ubiquitously in nature and have complicated chemical
compositions and variable colorization properties. If not all, many fungi produce pigments
which serve various biological functions, including harnessing solar energy for metabolic
use and protection against ionizing radiation [24]. Some mycoviruses have been revealed
to modulate host pigmentation [25–27]. CHV1-EP713 is a well-studied hypovirus that
is associated with reduced orange pigmentation in its host C. parasitica [28]. The brown-
black pigments generated from microorganisms have been referred to as ‘melanin’ and
‘melanin-like’. Melanin is a polymer of phenolic compounds with a negative charge and
hydrophobicity [29]. Fungi are rich in melanin that is deposited in the inner or outer layers
of cell walls depending on the fungal species. Microscopic studies of the overall architecture
of the melanin polymer in fungi reveal that melanin forms granular particles in the cell
wall [30,31]. Melanin is an important protective factor against adverse environmental
stresses, such as UV radiation, drying, and high osmosis [24]. A previous work reported
that CThTV upregulates the expression of host scytalone dehydratase—a key enzyme in
the melanin biosynthetic pathway [21]—suggesting that CThTV infection might promote
melanin accumulation in fungal host cells. This suggestion is supported by recently
published work on the same virus [32].

Nigrospora oryzae is a widespread endophyte or weak pathogenic fungus that in-
fects a broad variety of crops, including maize (Zea mays) [33], rice (Oryza sativa) [34],
sorghum (Sorghum sp.) [35], cotton (Gossypium hirsutum) [36], and other plants [37–42].
Recently, a genome draft of N. oryzae was released [43] which will definitely acceler-
ate basic research on this pathogenic fungus. So far, several mycoviruses have been
found in N. oryzae, including N. oryzae victorivirus 1 [44], N. oryzae victorivirus 2 [45],
N. oryzae mitovirus 1/2 [45], N. oryzae fusarivirus 1 [46], N. oryzae partitivirus 1 [47], and
N. oryzae nonsegmented RNA virus 1 (NoNRV1) [48], which would make N. oryzae an ideal
microorganism for the study of mycovirus–host interactions. NoNRV1 is an unclassified
virus and has a dsRNA genome of 2857 bp encoding two separated open reading frames
(ORFs). ORF1 encodes a protein of unknown function, and ORF2 is responsible for encod-
ing a putative RNA-dependent RNA polymerase (RdRP) [48]. That is all we know about
the virus since the previous report on its genome sequence. In this work, we identified a
novel isolate of NoNRV1 from a strain of N. oryzae isolated from a chrysanthemum plant,
analyzed its genome sequence and phylogenesis, and tested its biological effects on the
fungal host.

2. Materials and Methods
2.1. Isolation and Identification of N. oryzae

A chrysanthemum leaf with mild mosaic symptoms was collected in 2018 at Xinsha
Island, Zhejiang Province, China. N. oryzae strain 9-1 was isolated from the surface-
disinfected leaf on potato dextrose agar (PDA) plates at 28 ◦C in darkness. The isolated
fungus was maintained on PDA plates, and its hyphal morphology and spore structure were
observed using a Nikon light microscopy (Jiangsu, China). To identify the isolated strain,
the internal transcribed region (ITS) fragment was amplified and sequenced according to
the reported procedure [49]. The obtained ITS sequence was used as a query for a BLAST
search of homologous sequences deposited in GenBank.

2.2. Extraction and Molecular Cloning of Viral dsRNA

DsRNA fragments were isolated from N. oryzae strain 9-1 according to the methodology
reported previously with a slight modification [50], CF-11 cellulose being replaced with
Sigmacell cellulose (S6790, Sigma, Steinheim, Germany). The molecular cloning of dsRNA
was performed according to the previous report [50]. Briefly, the dsRNA fragment was
mixed with Primer A (5′-PO4-TCTTCGGGTGTCCTTCCTCG-NH2-3′, Sangon, Shanghai,
China), T4 RNA ligase (NEB) and T4 DNA ligase (NEB). The mixture was incubated at



Viruses 2022, 14, 795 3 of 16

37 ◦C for 3 hr. The partial duplex was repaired with 2×Taq PCR StarMix (Genstar, Nanjin,
China) at 68 ◦C for 30 min and precipitated by the addition of 2.5 volumes of ethanol
with 10% 3M sodium acetate (pH 5.4). Following denaturation of the tailed dsRNA at 99
◦C for 3 min and ice incubation for 5 min, first-strand cDNA was synthesized using the
complementary Primer B (5′-CGAGGAAGGACACCCGAAGA-3′) and SuperScriptTM III
reverse transcriptase (Invitrogen, Waltham, MA, USA), according to the manufacturer’s
instructions. The full-length cDNA was obtained by a regular PCR using Primer B and
Q5 High-Fidelity DNA Polymerase (NEB). The resultant cDNA was cloned into the vector
pLB-simple (Tiangen, Beijing, China) for sequencing.

2.3. Ribavirin Treatment of the Isolated Fungus

As a nucleoside analog, the drug Ribavirin was reported to be efficient to cure specific
mycoviruses [51]. To remove NoNRV1-ZJ, here we cultured the isolated fungus 9-1 on
PDA plates containing 100 mM Ribavirin at 28 ◦C for 4 days, as described previously [52].
Then, the mycelia were transferred by hyphal-tipping to new Ribavirin-containing PDA
plates. After 5 successive passages, NoNRV1 was determined in both untreated and
Ribavirin-treated mycelia by RNA gel blot and RT-PCR, as described below.

2.4. RNA Gel Blot

To assess the efficacy of curing NoNRV1-ZJ from its host 9-1 by Ribavirin treatment, both
positive and negative strands of the virus were detected by RNA gel blotting assays, as described
previously [53]. Briefly, total RNAs were extracted from the untreated (9-1) and drug-treated
(9-1C) mycelia using TRIzol (Thermo-Fisher), separated in 1.5% agarose gel containing 7%
formaldehyde, and transferred onto a Hybond + nylon membrane (GE). The positive and nega-
tive strands of the viral genome were separately probed using the digoxigenin (DIG)-labeled DNA
oligos, oligo-S (5′-ACAAGACGCTCATTCTGTTTGACCCCATCCCGACCCACG-3′) and
oligo-AS (5′-TCTCGTGTTCGTCACAATGTCTACGACAAACGCAATCG-3′), respectively.
The DIG-labeled oligos were detected using a chemiluminescence-based DIG detection kit
(Roche), according to the manufacturer’s instructions.

2.5. RT-PCR

Total RNAs were extracted from the mycelia of 9-1 or 9-1C using TRIzol (Thermo-
Fisher), according to the manufacturer’s instructions. One microgram of total RNA was
used as template for synthesis of first-strand cDNA using 6mer random primer and
reverse transcriptase SSIII (Thermo-Fisher). Two microliters of the first-strand cDNA
samples were used as templates for PCR reactions using ORF1-specific primers (ORF1-F:
5′-ATGTCTACGACAAACG-3′; ORF1-R: 5′-CTAGACTTGAAAGGGATTG-3′) and Q5 DNA
polymerase (NEB). PCR reactions was run in a thermocycler (Eppendorf) with 98 ◦C for
30 sec, 35 cycles of 98 ◦C for 10 s, 56 ◦C for 15 s, and 72 ◦C for 15 s, followed by an extension
of 72 ◦C for 5 min. The resultant PCR products were separated on 1% agarose gel and
visualized under UV light after ethidium bromide staining.

2.6. Virulence Assays

Virulence of N. oryzae was assayed as described previously [54], with minor modifica-
tions, conidial suspensions as inocula being replaced with mycelia-containing agar plugs.
Agar plugs with diameters of 8 mm were cut from the equivalent positions of the 5-day-old
9-1 or 9-1C PDA plates and transferred to wounded leaf blades. After incubation for 2 days
at 28 ◦C, these inoculated leaves were kept in a Petri dish at room temperature for the
desired period. Virulence was assessed 14 days post inoculation (dpi) by determining
the area of dark brown to black lesions using Image J [55]. The virulence experiment was
performed twice independently.
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2.7. Sequence and Phylogenetic Analyses

Searches for homologous sequences in GenBank were carried out using BLAST [56].
Conserved motifs for viral proteins were searched in the SMART and/or pfam database [57].
Phylogenetic analysis was performed according to a methodology described previously [50].
Briefly, viral protein sequences were aligned using Clustal W [58], then subjected to calcula-
tions of genetic distance using the P-distance model in MEGA 11. Finally, a phylogenetic
tree was constructed using the maximum likelihood method with a bootstrap value of 1000.
RNA structures were predicted by mFold [59] and redrawn by RNAdrawer 2.0 [60]. The
conserved motifs of the catalytic domain of NoNRV1-ZJ RdRP were identified according
to the predicted protein structure, which was modeled by Phyre2 [61]. Alignments of
each motif across the chosen unsigned, non-segmented dsRNA viruses were performed
using Clustal W.

3. Results
3.1. Isolation of dsRNA Segments from N. oryzae

A filamentous fungus was isolated from a mild mosaic, surface-disinfected leaf of a
chrysanthemum plant. The fungal colony initially appeared white and turned gray and
black at about 5 dpi on PDA plates (Figure 1A). The filamentous hyphae were divided
into cell compartments by septa (Figure 1B). On PDA plates, the fungus produced a
limited number of black, spherical conidiospores with a size of about 10 µm in diameter
at late growing stage (Figure 1B), which is a typical spore-bearing structure of Nigrospora
species [62]. To determine the exact species, we amplified and sequenced the ITS sequence
from the fungus (Supplementary Figure S1A). A BLAST search for the nucleotide sequence
in GenBank showed that the ITS sequence has the highest identity (up to 99.24%) with
the ITS sequences of N. oryzae isolates (Supplementary Figure S1B). Combined with the
morphological characteristics, the ITS data indicate that the isolated fungus is an isolate of
N. oryzae, designated 9-1.

Figure 1. The strain 9-1 of Nigrospore oryzae contains a ~3 kb double-stranded (ds) RNA segment.
(A) Colonial morphology of 9-1. (B) Microscopic view of hyphae with septa and conidiospores. Red
arrows indicate the conidiospores. (C) Electrophoresis of the dsRNA sample extracted from 9-1.
M indicates a DNA ladder. (D) Electrophoresis of the dsRNA sample after digestion by nucleases
DNase I and RNase S1 simultaneously. M indicates a DNA ladder.

To test whether the isolate 9-1 contained mycoviral dsRNAs, dsRNAs were isolated
from the isolated mycelia and separated by electrophoresis. The electrophoresis result
displayed three clear bands (Figure 1C). The largest band was approximately 3 kb in size,
and the other two bands were less than 1.5 kb. After digestion of the dsRNA sample with
both nucleases, DNase I and RNase S1, simultaneously, only the largest band was retained
(Figure 1D), indicating that 9-1 contained a ~3 kb dsRNA segment.

3.2. Sequence Analysis of the Mycovirus Infecting the 9-1 Isolate of N. oryzae

To obtain the genetic information of the dsRNA molecule, the full-length cDNA was
amplified and sequenced. Consensus sequence of the full-length cDNA was retrieved
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from two independent clones and deposited in GenBank (accession number: OK166809.1).
Sequence analyses showed that the dsRNA molecule is composed of 2857 bp with a G+C
composition of 57.72%. A BLAST search for the whole dsRNA sequence showed that it has
a 99% identity with the previous isolate HN-21 of NoNRV1 [48], which is a monopartite
dsRNA mycovirus. This indicates the N. oryzae 9-1 was infected with an isolate of NoNRV1,
designated NoNRV1-ZJ. As reported previously [48], the positive strand of the NoNRV1-ZJ
genome contains two ORFs separated by a 58nt intergenic sequence (IGR) (Figure 2A).
ORF1 is located at the 5′ end of the dsRNA and encodes an approximately 19 kDa protein
with no putative conserved domains and an unknown function. A BLAST search for the
ORF1-encoded protein showed that it matched best with the ORF1-encoded protein of the
NoNRV1 HN-21 isolate, showing a 98.9% similarity [48]. In addition, it has similarities
(31.5–53.09%) with six non-segmented dsRNA mycoviruses, including Ustilaginoidea virens
nonsegmented virus 2 (UvNV-2, MH094804.1), Ustilaginoidea virens nonsegmented virus 1
(UvNV-1, KJ605397.1), Purpureocillium lilacinum nonsegmented virus 1 (PlNV-1, KU747155.1),
Phytophthora cactorumusti-like virus 1 (PCLV1, MW349904.1), Conidiobolus non-segmented
RNA virus 1 (CNRV-1, MT246778), and a proposed partitivirus species (MN033127). ORF2
located downstream of ORF1 encodes an approximately 83 kDa, putative RdRP (Figure 2A),
with a 99.4% similarity to that of NoNRV1 HN-21 [48].

Figure 2. Characterization of the genomic sequence of NoNRV1-ZJ. (A) Genome organization. The
positive strand of the NoNRV1-ZJ genome is predicted to encode two ORFs (ORF1, ORF2). The arrow
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with dashed lines indicates a plausible ribosomal +1 frameshifting via a slippery sequence (shown
in the panel (C)) at the 3′ end of the ORF1. (B) Conserved motifs (A-G) of the catalytic domain of
RdRP from unsigned, non-segmented dsRNA mycoviruses. Red asterisks indicate the conserved
residues in the characterized motifs. (C) The proposed slippery sequences for +1 frameshifting in five
non-segmented dsRNA mycoviruses. Slippery sequences are italicized. The stop codon of ORF1 is
colored red. The initiation codon of ORF2 is colored blue. (NNN) indicates the non-stop codon of the
intergenic sequence via ribosomal +1 frameshifting translation. (D) Predicted secondary structures of
NoNRV1-ZJ 5′ UTR, IGR, and 3′ UTR. The IGR is surrounded by dashed lines. A possible slippery
sequence for ribosomal +1 frameshifting is colored blue. The stop codon of ORF1 and the start codon
of ORF2 are colored red and yellow, respectively. Free energy was calculated by mFOLD and is
shown below.

RdRPs have a conserved catalytic structure, which contains a set of seven motifs
A-G [63]. These seven motifs were identified from the protein structure of NoNRV1-ZJ
RdRP modeled by Phyre2 (Figure 2B). Sequence alignment showed that these motifs
are conserved to differing extents across these seven mycoviruses (Figure 2B), whose
ORF1s have a sequence similarity to that of NoNRV1. Out of these seven viruses, three
viruses (UvNV-1, UvNV-2, PlNV-1) have been proposed to express their RdRP as a fusion
protein together with ORF1 via a +1 ribosomal frameshift [64]. PlNV-1 and UvNV-2 have
the same slippery sequence context (CCC_UUU_UAG), in which the slippery sequence
has one base overlapping with the stop codon of ORF1 (Figure 2C). Sequence analysis
showed that the same slippery sequence context is also present in the unknown, proposed
partitivirus species isolate H1 (Figure 2C), which was determined by metatranscriptomic
reconstruction in a soil sample [65]. Here, we found that NoNRV1 has a slightly different
slippery sequence context, where five bases are inserted between the slippery sequence
(CCC_UUU_C) and the stop codon of ORF1 (Figure 2C). This context is the same as that
present in the virus UvNV-1 (Figure 2C). Thus, we speculate that NoNRV1 would use
the slippery sequence to translate the ORF2 via ribosomal +1 frameshifting, producing an
approximately 105 kDa fusion protein between ORF1 and ORF2. It is worth mentioning
that the intergenic sequence between the two ORFs is translatable via +1 frameshifting in
the five viruses mentioned above.

The 5′ untranslated region (5′ UTR) and 3′ UTR of the NoNRV1-ZJ genome are 34 nt
and 56 nt in length, respectively. The 5′ UTR sequence was predicted to form two short
hairpins with a ∆G value of –3.90 kcal/mol (Figure 2D). The 3′ UTR sequence was folded
into two hairpins with perfect base paring in their stems (Figure 2D). Such hairpin structures
are common in the UTRs of other dsRNA mycoviruses [32,43–45,66,67] and are presumed
to play an important role in viral replication and assembly [32,46,47]. The IGR sequence
between ORF1 and ORF2 is 58 nt long and forms two hairpins that are separated by a
9 nt stretch (Figure 2D). The stop codon UAG of ORF1 is positioned at the 5′ base of the
upstream hairpin and the slippery sequence is just 7 nt upstream of the hairpin structure. A
stable hairpin structure immediately downstream of the slippery sequence is essential for
induction of ribosomal-1 frameshifting. We do not know yet whether the presence of the
hairpin structure(s) in the IGR is required for the slippery sequence to stimulate ribosomal
+1 frameshifting.

3.3. Phylogenetic Analyses of the ORF1- and ORF2-Encoded Proteins

To determine the relationship of NoNRV1-ZJ with other mycoviruses, we constructed
both phylogenetic trees based on the ORF1 or ORF2 proteins of selected viruses. It is
worth noting that only seven viruses were included in the phylogenetic analysis of ORF1
because no other mycoviruses reported so far have an equivalent ORF1. These seven
viruses are unassigned, non-segmented mycoviruses, with the exception of a partitivirus
species isolate H1. The phylogenetic tree showed that NoNRV1 forms a clade with PlNV-1,
UvNV-1, UvNV-2, and the partitivirus species (Figure 3A). Interestingly, in the phylogenetic
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tree of ORF2 (RdRP), NoNRV1 clustered together with six other unassigned non-segmented
viruses (Figure 3B), suggesting that ORF1 evolved with less restriction than RdRP among
the unassigned, non-segmented dsRNA mycoviruses.

Figure 3. Phylogenetic analysis of NoNRV1-ZJ with other mycoviruses. (A) Phylogenetic tree of the
ORF1-encoded protein from seven unassigned non-segmented dsRNA mycoviruses. (B) Phylogenetic
tree of the RdRP protein encoded by five different groups of mycoviruses with dsRNA genomes.
NoNRV1-ZJ (OK166809.1) identified in this work is highlighted by a red rectangle.

3.4. Ribavirin Treatment Removed NoNRV1-ZJ from Its Host N. oryzae

To obtain a NoNRV1-free N. oryzae, an attempt was made to remove the virus in the
isolate 9-1 by culturing the fungus on Ribavirin-containing PDA plates with five successive
passages. Afterwards, total RNAs were extracted from untreated (9-1) and Ribavirin-treated
(9-1C) mycelia and used for detection of the positive and minus strands of the viral genome
by RNA gel blot analysis. Here, the total RNA extracted from cucumber mosaic virus



Viruses 2022, 14, 795 8 of 16

(CMV)-infected plants was used as an RNA ladder after hybridization with a CMV-specific
probe. In the 9-1 sample, both positive and negative strands of NoNRV1-ZJ were detected
markedly at the position slightly below CMV RNA2 (3038 nt), which is consistent with the
genome size of NoNRV1-ZJ (Figure 4A). In addition, one faint unknown band (indicated
by an asterisk) positioned between CMV RNA3 (2198 nt) and RNA4 (1008 nt) was detected
in both hybridization reactions. Strikingly, both positive and negative strands of the viral
RNA were undetectable in the drug-treated mycelia (9-1C) (Figure 4A). Detection of the
viral RNA by RT-PCR showed that a DNA band with a size corresponding to that of ORF1
was detected in 9-1 but not in 9-1C (Figure 4B). Both data indicate that the drug treatment
with Ribavirin successfully removed NoNRV1-ZJ from the host mycelia and provided a
NoNRV1-free strain (9-1C).

Figure 4. N. oryzae 9-1 was cured of NoNRV1-ZJ infection via Ribavirin treatment. (A) Detection
of the positive and negative strands of NoNRV1-ZJ in untreated (9-1) and Ribavirin-treated (9-1C)
mycelia by RNA gel blot. Total RNAs extracted from 9-1 and 9-1C were detected by positive strand-
and negative strand-specific DNA probes. Cucumber mosaic virus (CMV) was used as an RNA
ladder. The size of each CMV RNA is shown. An asterisk (*) indicates an unknown band. Ethidium
bromide-stained ribosomal RNAs were used as loading controls. (B) Detection of NoNRV1-ZJ in
9-1 and 9-1C mycelia by RT-PCR. Total RNAs used for RNA gel blot (A) were used as templates for
the synthesis of viral cDNAs, followed by PCR, with the primers targeting the ORF1 sequence of
NoNRV1-ZJ. PCR products were separated on a 1% agarose gel. Arrow indicates the target band
with expected size.

3.5. Infection of NoNRV1-ZJ Promoted Pigmentation of Host Cells

To investigate the potential effects of NoNRV1 infection on host growth and morphol-
ogy, we compared the growth of 9-1 and 9-1C on PDA plates. Their colonial diameters
were not statistically different at 24, 48, 72, or 96 h post inoculation (Figure 5A), indicating
no discernable effects of virus infection on the growth rate of its host. Interestingly, an
obvious difference in colony morphology appeared at 7 dpi. The 9-1 colonies showed
a broad yellowish zone with scattered dark patches in the area surrounding the central
inoculum, while the 9-1C colonies just had a much smaller yellowish area with limited
dark patches (Figure 5B, upper panel). Microscopic observation of hyphae collected at the
equivalent position in both plates showed that the 9-1 hyphae were much darker than those
of 9-1C, and no spores were observed in either culture (Figure 5B, lower panel), suggesting
that NoNRV1 infection promoted host hyphal pigmentation. Such a difference was also
observed in 22-day-old liquid cultures (Figure 5C, top panel). The liquid culture of 9-1 was
dark but that of 9-1C was yellow, like the original color of the PDA media. After vacuum
filtration, the filtered liquid of 9-1 was dark (Figure 5C, middle panel), as observed in its
liquid culture, suggesting that the black substance produced by 9-1 was soluble in liquid
media. Microscopic observation of the hyphae recovered from the liquid culture showed
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that both hyphae of 9-1 and 9-1C were quite transparent, while the 9-1 cells contained
many vesicle structures (Figure 5C, bottom panel). Taken together, our results demonstrate
that NoNRV1 infection has no marked impact on host growth rate but promotes host
cell pigmentation. The cell pigmentation might be caused by a hydrophilic secondary
metabolite, the biosynthesis regulated by NoNRV1 infection.

Figure 5. Infection with NoNRV1-ZJ promoted pigmentation of host cells. (A) Colonial sizes of
9-1 and 9-1C on PDA plates 4 days after inoculation. n.s. indicates no statistical difference at a
certain time point. (B) Macroscopic and microscopic views of 9-1 and 9-1C on PDA plates at 7 days
post inoculation. Upper panel: mycelium morphologies of 9-1 and 9-1C on PDA plates. Lower
panel: microscopic observation of hyphae collected from both plates, as indicated by red rectangles.
(C) Cultivation of 9-1 and 9-1C in liquid PDA media for 22 days. Top panel: liquid cultures; middle
panel: filtered liquid from the liquid cultures; bottom panel: microscopic observation of the hyphae
recovered from the liquid cultures.

3.6. NoRV1-ZJ Reduced N.oryzae Heat Tolerance

Previous work reported that the pigment melanin protects fungi from hostile environ-
mental stresses, such as high temperatures [68,69], heavy metals [70,71], and high radiation
levels [22]. Thus, we wondered whether the increased pigmentation of N. oryzae caused
by infection with NoNRV1 confers any benefits on the fungus against various abiotic
stresses. Here, we tested the growth of 9-1 and 9-1C on the PDA plates containing different
concentrations of osmotic (NaCl, sorbitol) or oxidative (H2O2) chemicals. Each chemical at
a high concentration showed obvious inhibition of the growth of both fungal cultures, and
9-1 had no growth advantages over 9-1C on the chemical-containing plates (Figure 6A),
suggesting that pigmentation caused by the virus infection does not improve host tolerance
to these abiotic stresses.
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Figure 6. Effect of NoNRV1-ZJ infection on the growth of fungal hosts under different stress condi-
tions. (A) The growth of 9-1 and 9-1C in the PDA plates containing different concentrations of NaCl,
sorbital, or H2O2. The schematic diagram shown at the top right indicates the inoculating pattern of
both cultures in plates. (B) The growth of 9-1 and 9-1C in the PDA plate or the liquid media under
28 ◦C or 37 ◦C. All the plates were photographed at 4 dpi, and the liquid cultures were photographed
at 7 dpi.

Then, we tested the effects of incubating temperatures on both 9-1 and 9-1C. Both
cultures grew well and almost the same on PDA plates at 28 ◦C (Figure 6B, upper panel).
However, their growth differed completely at 37 ◦C (Figure 6B, lower panel). The 9-1
isolate could not grow, while 9-1C grew as well as it did at 28 ◦C. Experiments with liquid
media further demonstrate that 9-1C, but not 9-1, could grow at 37 ◦C (Figure 6B, lower
panel). In the liquid cultures, it seems that 9-1C produced more biomass than 9-1 at 28 ◦C.
However, we did not see much difference in biomass between them in a biological repeat
(Supplementary Figure S2). Thus, it can be concluded that 9-1C does not produce biomass
more than 9-1. All these data demonstrate that N. oryzae itself is thermotolerant at 37 ◦C,
while NoNRV1 infection compromises its tolerant capability in such harsh conditions.

3.7. NoRV1-ZJ Caused Hypovirulence to N. oryzae

N. oryzae has been reported to be a cotton-infecting pathogen, causing disease symp-
toms [36,72]. To investigate the plausible effects of NoNRV1 infection on the pathogenicity
of N. oryzae, we tested infection of 9-1 and 9-1C on wounded cotton leaves. As reported,
both 9-1 and 9-1C caused brown necrotic lesions on all the tested leaves at 12 dpi (Figure 7A).
Interestingly, the lesions caused by 9-1C were significantly larger than those caused by 9-1
(Figure 7B), indicating that the infection with NoRV1-ZJ led to hypovirulence of the fungal
host in the cotton leaves.
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Figure 7. NoNRV1-ZJ caused hypovirulence to N.oryzae in cotton leaves. (A) Local lesion diseases
of cotton leaves with inoculation of 9-1 or 9-1C. Mock was the wounded cotton leaves treated with
water. The disease symptoms were photographed at 12 dpi. Bar represents 1 cm. (B) Statistic analyses
of local lesion areas between 9-1 and 9-1C. ** indicates a p-value < 0.01, calculated by Student’s t-test.

4. Discussion

In this work, we determined the infection of NoNRV1 in the fungus N. oryzae and
successfully removed the virus from the isolated fungus by drug treatment, which provided
us with an ideal tool to investigate the impact of NoNRV1 infection on the fungal host. By
comparing the original and virus-cured strains, our results demonstrated that NoNRV1
infection promotes host cell pigmentation, makes its host lose viability at high temperatures
(37 ◦C), and alleviates host virulence in cotton leaves. Our work provides phenotypic
evidence that uncovers the biological impacts of NoNRV1 infection on fungal hosts.

The NoNRV1 genome encodes two separated ORFs. It is a mystery how the 3′ proximal
ORF2 is translated. Non-canonical translational strategies, including translation stop/restart,
and ribosomal −1 or +1 frameshifting have been identified as the molecular mecha-
nisms used by some mycoviruses to translate 3′ proximal ORFs [73–77]. NoNRV1 could
not use the stop/restart mechanism since it lacks a typical stop/restart motif such as
AUGA or UAAUG (underlined: ORF1 stop codon; italicized: ORF2 start codon) at the
ORF1/ORF2 junction that has been illustrated well in the Helminthosporium victoriae virus
190S [75,76]. It has been reported that Totiviruses have a well characterized slippery
sequence for ribosomal-1 frameshifting that causes a fusion event between gag and pol pro-
teins [66,67,74]. Interestingly, NoNRV1 has a similar slippery sequence (CCC_UUU_C) to
other unassigned mycoviruses (PlNV-1, UvNV-1, UvNV-2), just 5 nt ahead of the ORF1 stop
codon (Figure 2C). We also found that such a slippery sequence is present in a proposed
partitivirus species isolate H1 (Figure 2C). Moreover, influenza A virus was reported to use
the slippery sequence for +1 frameshifting to express the PA-X gene [78]. Thus, we specu-
late that +1 frameshifting is the molecular tactic used by these unassigned, non-segmented
mycoviruses (including NoNRV1) for production of their RdRP protein. However, we
did not find a +1 slippery sequence in PCUV-1 or CRNV-1, which are genetically close to
these unassigned mycoviruses (Figure 3B). The absence of such a sequence suggests that
both unassigned, non-segmented viruses PCUV-1 and CRNV-1 use a different molecular
mechanism to produce their RdRP.

Here, we reported the interesting phenomenon that NoNRV1 infection promoted pig-
mentation in host hyphae on solid media (Figure 5B). A similar impact has been reported
previously in C. protuberata with infection by CThTV [32]. CThTV infection markedly
increases melanin content in host cells, leading to darkened mycelia. Generally, the brown-
black pigments produced by microorganisms are melanin or melanin-like pigments [79,80].
However, two lines of our experimental data make us uncertain that the enhanced pigmen-
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tation of N. oryzae mycelia in the presence of NoNRV1 is the outcome of increased melanin.
Firstly, melanin is important for fungi to protect themselves from adverse stresses [81],
while NoNRV1 infection accompanied with increased pigmentation does not improve
its host’s abilities to withstand osmotic or oxidative stresses (Figure 6A). Secondly, as a
class of polymerized and hydrophobic pigments with high molecular weight, melanin
is completely insoluble in almost all solvents [82]. However, we observed that the black
substance produced by the strain 9-1 in liquid culture is hydrophilic (Figure 6B), which
is inconsistent with the physical property of melanin. Another speculation concerning
the promoted pigmentation is that NoNRV1 infection alters host metabolism to produce
a specific secondary metabolite that causes host cell pigmentation. Thus, it would be
interesting to determine the black substance in the liquid culture as this will shed light on
the underlying basis of how NoNRV1 infection promotes pigmentation in host cells.

Hypovirulence is one of the most fascinating phenomena occurring through interac-
tions between mycoviruses and fungal hosts. Recently, two mycoviruses (Pestalotiopsis theae
chrysovirus-1, PtCV1; Sclerotinia sclerotiorum hypovirulenceassociated DNA virus 1, SsHADV-1)
were reported to be hypovirulence-inducing agents which convert their pathogenic fungal
hosts into non-pathogenic, even beneficial endophytes [83–85]. Hypovirulence may be
associated with alterations in the morphology, pigmentation, sporulation, and growth rate
of fungal hosts. It can be explained simply as the direct outcome of resource appropriation
between mycoviruses and hosts during viral replication [86]. Zhang et al. [85] reported that
SsHADV-1 compromises host virulence by repressing the expression of key pathogenesis
factor genes in host cells. Here, we have reported a similar phenotype—that NoNRV1
reduced N. oryzae pathogenicity in cotton leaves (Figure 7)—but the underlying mechanism
remains to be investigated.

The relationship between mycovirus and fungal heat-resistance is complicated. Previ-
ously, CThTV has been reported to enhance fungal host heat-tolerance [20], which could be
associated with fungal melanin, osmoprotectants, and heat shock proteins [21]. Recently,
Olivé et al. [87] reported an inhibitory impact of Colletorichum higginsianum non-segmented
virus (ChNRV1) on its fungal host at a high temperature (32 ◦C). This is similar to our
finding that NoNRV1 infection made its host completely lost thermotolerance at 37 ◦C
(Figure 6B). Strikingly, the NoNRV1-free N. oryzae isolate (9-1C) grew as well at 37 ◦C as did
at 28 ◦C, suggesting that N. oryzae itself is extremely thermotolerant. Exposure to high tem-
perature is a useful way to cure mycoviruses in their hosts [88,89]. Thus, we hypothesize
that NoNRV1 impairs host heat-resistance to prevent the generation of a virus-free strain
under high temperatures, which would be beneficial for maintaining symbiosis between
the virus and its hosts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14040795/s1, Figure S1: Molecular identification of the isolated
fungus 9-1. The DNA sequence of internal transcribed spacer 1 of 9-1 (A), and top 10 homologous
sequences in NCBI GenBank via BLAST search (B). Figure S2: Liquid cultures of 9-1 and 9-1C in PDA
media at 7 dpi.
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