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Introduction

Cyclosporine is a lipophilic cyclic peptide of 11 amino

acids, while tacrolimus is a macrolide antibiotic. Both

drugs have been isolated from fungi and possess similar

suppressive effects on cell mediated and humoral

immune responses. Patients treated with the calci-

neurin inhibitors are at high risk of developing renal

injury
1)

. Calcineurin inhibitor nephrotoxicity includes

acuteazotemia, chronic progressive renal disease, and

tubular dysfunction. Although renal insufficiency

induced by calcineurin inhibitors has received the most

attention, tubular dysfunctions are also clinically im-

portant and will be briefly reviewed in this article.

Calcineurin inhibitor-associated tubular dysfunction is

manifested by metabolic acidosis, hyperkalemia, cal-

cium, phosphate wasting, and magnesium loss.

Metabolic acidosis

Metabolic acidosis is common in patients with kidney

transplantation. The first case report with post-trans-

plant renal tubular acidosis was described by Massry et

al. almost three decades ago
2)

. Renal tubular acidosis

(RTA) is non-anion gap metabolic acidosis and is

generally mild and a symptomatic in kidney recipients
3)

.

The reported prevalence of calcineurin inhibitor-as-

sociated RTA is 13-17% intransplanted patients
4-6)

.

Calcineurin inhibitor-associated RTA can be both
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proximal and distal RTA. The former form of acidosis is

characterized by bicarbonate wasting due to the toxic

effects of calcineurin inhibitors. In contrast, distal or

type IV RTA is characterized by the inability to excrete

hydrogen ions
6)

.

Use of calcineurin inhibitor cyclosporine can fre-

quently cause type 4 RTA, a mild hyperchloremic

acidosis, sometimes with elevated potassium. This may

be reflecting decreased aldosterone activity and sup-

pression of ammonium excretion by hyperkalemia
7)

.

There are some reports now that provide some insight

as to how that might occur. Collecting ducts have 2 types

of intercalated cells - the acid or hydrogen ion-

secreting alpha-intercalated cells and the bicarbonate-

secreting beta-intercalated cells (Fig. 1). The prepon-

derance of which cell dominates rests on the type of diet.

An acid diet leads to more alpha-intercalated cells,

whereas an alkaline diet leads to more expression of

beta-intercalated cells. These cells can interconvert

according to the acid-base status. It has been reported

that protein hensin is actually important in mediating

transformation between beta-and alpha-intercalated

cells. Metabolic acidosis normally induces the poly-

merization of the extracellular protein called hensin
8)

.

Deposition of hensin leads to the conversion of bicar-

bonate-secreting beta-intercalated cells into the acid-

secreting alpha-intercalated cell. FK506 and cyclo-

sporine inhibit polymerization of hens in protein. Con-

sequently acid-secreting cells will be less abundant and

risk for amild normal anion gap metabolic acidosis will

increase
8, 9)

(Fig. 2). Aldosterone resistance is usually

responsible for hyperkalemia induced by calcineurin

inhibitor
10, 11)

.

Treatment of calcineurin inhibitor-associated acido-

sis is mainly with oral supplement of bicarbonate
4, 12)

.

Synthetic mineralo corticoid is apotential treatment

option, but has more frequent side effects
10)

.

Hyperkalemia is a recognized complication of cy-

closporine and tacrolimus. Reported incidence of

hyperkalemia is 5-40% among calcineurin inhibitor-

treated patients
13, 14)

.

An elevation in plasma potassium concentration due

to reduced efficiency of urinary potassium excretion is

common in calcineurin inhibitor-treated patients. It

may be severe and potentially life-threatening with

concurrent administration of an angiotensin converting

enzyme inhibitor or angiotensin receptor blocker.

Cyclosporine may reduce potassium excretion by

altering the function of several transporters, decreasing

the activity of the renin-angiotensin-aldosterone

system, and impairing tubular responsiveness to

aldosterone
15, 16)

.

Renal potassium excretion is primarily derived from

Fig. 1. Intercalated cells of collecting ducts. Collecting
ducts have 2 types of intercalated cells: acid or hydro-
gen ion secreting alpha intercalated cell and bicar‐ ‐ -
bonate secreting beta intercalated cell.‐ ‐

Fig. 2. Presumed mechanism of cyclosporine induced‐
metabolic acidosis. Cyclosporine inhibits polymerization
of hensin protein, consequently acid secreting cells will‐
be less and then become at risk for mild normal anion
gap metabolic acidosis.
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potassium secretion in the distal cortical nephron via

potassium channels in the luminal membrane. This

process is stimulated by sodium reabsorption, aldo-

sterone, and the basolateral Na ,K -ATPase pump. In

vitro studies suggest that cyclosporine may directly

impair the function of the potassium secreting cells in the

cortical collecting tubule by affecting each of these

steps: reduced activity of the Na ,K -ATPase pump

17-19)
, inhibition of the luminal potassium channel

20)
, and

increased chloride reabsorption
16)

. Sodium reabsorption

creates a lumen-negative electrical gradient that pro-

motes potassium secretion. Cyclosporine increases pa-

racellular or transcellular chloride reabsorption, which

prevents generation of lumen-negative potential that

drives potassium secretion. Calcineurin inhibitors inhi-

bit luminal potassium channels and increase chloride

reabsorption via alteration of WNK kinases
21)

(Fig. 3).

Cyclosporine may also have a secondary effect on

potassium homeostasis in patients concurrently treated

with a beta-blocker. In this setting, there is often a

modest and transient elevation in the plasma potassium

concentration due to movement of potassium out of cells

into the extracellular fluid
22)

. Why this occurs is not

known.

Treatment is similar to that of hyperkalemia in

chronic kidney disease: reduction in potassium intake,

adjustment in medications, and so forth. One exception

occurs in the early posttransplant period, in which renal

insufficiency also contributes to the impairment in

potassium excretion. Administration of a cation ex-

change resin increases the risk of intestinal necrosis at

this time
23)

. Hydration and a low-potassium diet are

preferred during that period.

Urinary phosphate wasting induced by calcineurin

inhibitors can cause hypophosphatemia. Cyclosporine

inhibits the type IIa sodium phosphate cotransporter

and probably the type IIb sodium phosphate cotrans-

porter of the intestine
24)

.

Many patients have hypophosphatemia during the

first 6 months after transplant. This is due to increased

urinary excretion of phosphate and probably decreased

intestinal absorption. Post-transplant hypophopha-

temia is usually asymptomatic, but can rarely be severe

enough to cause severe muscle weakness, including

weakness of respiratory muscle. Phosphate supplemen-

tation should be prescribed for severe or symptomatic

cases.

The calcineurin inhibitors cause hypomagnesemia by

suppressing reabsorption of magnesium from renal

tubules. Several case reports suggest that hypomag-

nesemia may contribute to calcineurin inhibitor-in-

duced encephalopathy
25-27)

. Hypomagnesemia has also

been implicated as a contributor to the nephrotoxicity

associated with cyclosporine
28)

.

It is known that cyclosporine treatment induces high

bone-turnover osteopenia and hypercalciuria. Both cy-

Fig. 3. Chloride shunt theory and clacineurin inhibitors.
Calcineurin inhibitors inhibit the luminal potassium
channel and increase chloride reabsorption.
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closporine and tacrolimus are associated with hyper-

calciuria. Animal studies suggest that hypercalciuria

induced by cyclosporine administration is associated

with an inhibition of calbindin D28k expression, re-

sulting in calcium transport defect in the distal tubule
29)

.

In conclusion, attention must also be paid to the

calcineurin inhibitor associated renal tubular dysfunc-

tion such as renal magnesium wasting, calcium and

phosphate wasting, distal tubular acidosis, and impaired

renal potassium excretion, in addition to the well known

side effects, such as tubulointerstitial fibrosis and

glomerular or vascular damage.
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