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Abstract: The aim of this study was to evaluate the effect of broccoli leaf powder (BLP) incorporation
on the technological properties, sensory quality and volatile organic compounds (VOCs) of durum
wheat pasta. Incorporation of BLP increased cooking loss; however, all pasta samples were found
to be in the acceptable range of 8 g/100 g. The addition of BLP decreased optimal cooking time
and water absorption but increased the swelling index. Firmness and total shearing force decreased
with increased BLP content. The obtained pasta was greener than the control, with a higher content
of minerals, and an increasing tendency with respect to protein was observed. The VOC profile of
enriched pasta was richer and contained compounds typical of broccoli (e.g., dimethyl sulphide),
affecting its aroma. The sensory evaluation results indicate that the addition of BLP did not affect
the overall acceptance of pasta. Up to 5% BLP content afforded an interesting, more nutritious pasta
without compromising its technological and sensory quality.

Keywords: broccoli leaves; by-products; valorisation; pasta; sensory analysis; volatile compounds

1. Introduction

The Western diet is rich in highly processed products, which can contribute to the
development of noncommunicable diseases. Consumers are becoming increasingly aware
of the importance of diet with respect to the maintenance of a healthy lifestyle and the
development of noncommunicable diseases. Nevertheless, the consumption of vegetables
does not meet the dietary guidelines very often [1,2]. Therefore, solutions that promote an
increase in vegetable intake are in demand. Wheat-based products, due to their high daily
consumption, have been repeatedly proposed for functional food development. Among
cereal products, pasta seems to be a good vehicle for the incorporation of nutritional
ingredients, as it is a basic product commonly eaten worldwide by members of all social
groups and is also eagerly selected by children. Moreover, pasta has a low price and
relatively long shelf life and can maintain acceptable physical and sensory properties
when new ingredients are added [3–6]. In the recent years, many studies have focused
on the incorporation of various ingredients into pasta, including vegetables, legumes,
pseudo-cereals and animal proteins [7–10]. In general, the obtained results have shown
an improvement in nutritional properties and antioxidant activity of the final, functional
products. However, the replacement of semolina is still a challenge for the food industry,
as modification in the formulation can affect pasta quality in terms of texture, colour,
technological quality and sensory properties [11].

The fruit and vegetable processing industry is one of the largest producers of by-
products [12]. Many by-products from fruit and vegetable processing can be used as
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sources of nutrients and functional ingredients, increasing the added value of products
without increasing production costs [13–18]. Each year, a significant portion of cruciferous
crops are not harvested or utilized [19]. With respect to broccoli, only 10–15% of the
total aerial biomass of the plant is consumed. The possible consumption of stems and
leaves could facilitate the management of vegetable processing waste and increase the
productivity and sustainability of the global broccoli crop [19]. Although broccoli leaves
are rarely acceptable for consumption, studies have reported that similarly to the edible
parts, leaves are rich sources of bioactive compounds (glucosinolates and polyphenols)
and other essential nutrients, such as vitamins E and K [19–21]. Broccoli by-products have
been used traditionally as an animal feedstuff and as antimicrobial agents for foodborne or
soilborne bacteria [19]. However, broccoli leaves have gained scientific attention in recent
years, mainly due to their bioactive compounds [20,22–24]. The successful incorporation
of broccoli leaves has been reported in recently developed gluten-free mini sponge cakes,
gluten-free bread and beverages [20,25,26]. However, to the best of our knowledge, broccoli
leaves have never been used to enrich pasta products.

Therefore, we attempted to incorporate broccoli leaf powder (BLP) into another type of
product obtained from different ingredients and processed differently, namely durum pasta.
Compared to bakery goods, lower temperatures are applied for pasta production, which
can potentially preserve the bioactive and aroma compounds in fortified pasta products.
The aim of this study was to evaluate the effect of BLP on the technological properties,
sensory quality and volatile organic compounds (VOCs) of durum wheat pasta.

2. Results and Discussion

In this study, three formulations were compared, including control (C; not fortified
with BLP; B2.5, fortified with 2.5% BLP; and B5, fortified with 5% BLP (Table 1).

Table 1. Formulations of control and fortified pasta. C (control pasta); B2.5 pasta fortified with
2.5% broccoli leaf powder; B5 (pasta fortified with 5% broccoli leaf powder).

C B2.5 B5

Semolina [g] 400.0 400.0 400.0
Water [g] 140.0 140.0 140.0

Olive oil [g] 15.0 15.0 15.0
Salt [g] 2.0 2.0 2.0
BLP [g] 0.0 10.0 20.0

2.1. Cooking Properties

Cooking quality is an important attribute affecting consumer acceptance. The cooking
properties of the investigated pasta products are shown in Table 2. In terms of optimal
cooking time (OCT) and cooking losses, C and B5 pasta were very similar. Pasta B2.5
had significantly shorter OCT and higher values of cooking loss. A decreasing trend was
observed in terms of water absorption; however, the differences were not statistically
significant. Control pasta had a significantly lower swelling index (SI) compared to BLP-
fortified pasta.

In this study, the OCT varied between 3.0 and 3.6 min, which is a relatively small range.
Incorporation of BLP resulted in a reduction in OCT, which can be explained by the high
water absorption index of freeze-dried BLP [27]. Significant changes were observed only in
pasta B2.5, probably due to higher moisture content and, consequently, faster rehydration.
Similar results were observed by Michalak-Majewska et al. [11], who reported that pasta
fortified with onion skin powder had a shorter OCT compared to control pasta. Silva
et al. [3] reported that the OCT of fresh pasta enriched with concentrations of broccoli up
to 30% varied between 2.5 and 4.5 min, which is a wider range than that observed in this
study. Water absorption also decreased with the addition of BLP, although the differences
were not statistically significant. This could be attributed to shorter cooking times, which
can reduce the water absorption of pasta [11].
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Table 2. Proximate composition, colour characteristics, cooking and texture properties of BLP and
experimental pasta expressed as mean ± standard deviation (SD).

BLP C B2.5 B5

Moisture (%) - 61.04 ± 0.26 a* 63.64 ± 0.01 b 60.75 ± 0.15 a

Ash (%) 10.94 ± 0.04 0.88 ± 0.01 a 1.00 ± 0.03 b 1.19 ± 0.01 c

Protein (%) 25.66 ± 0.27 13.06 ± 0.21 a 13.17 ± 0.21 a 13.26 ± 0.07 a

Fat (%) 3.94 ± 0.21 3.94 ± 0.15 a 4.79 ± 0.04 c 4.45 ± 0.10 b

Carbohydrate (%) 59.46 ± 0.07 21.08 ± 0.5 a 17.41 ± 0.18 b 20.23 ± 0,16 a

L* 46.18 ± 0.03 87.51 ± 0.01 a 76.05 ± 0.03 b 67.61 ± 0.02 c

A* −9.33 ± 0.03 −0.12 ± 0.01 a −6.25 ± 0.02 b −6.26 ± 0.02 b

B* 27.39 ± 0.06 14.05 ± 0.02 a 28.14 ± 0.03 b 31.48 ± 0.02 c

WI 38.89 ± 0.05 81.20 ± 0.02 a 62.52 ± 0.03 b 54.41 ± 0.02 c

BI 66.67 ± 0.29 16.99 ± 0.02 a 38.20 ± 0.07 b 52.57 ± 0.06 c

OCT (min) - 3.56 ± 0.08 a 3.03 ± 0.04 b 3.44 ± 0.10 a

Cooking loss (%) - 5.96 ± 0.38 b 7.47 ± 0.19 a 5.95 ± 0.05 b

Water absorption (%) - 62.26 ± 1.36 a 55.55 ± 5.65 a 60.45 ± 3.88 a

Swelling index (%) - 0.82 ± 0.04 b 1.08 ± 0.05 a 1.07 ± 0.04 a

Firmness (kg) - 13.37 ± 0.17 a 12.09 ± 0.10 b 11.96 ± 0.24 b

TSF (kg s−1) - 87.30 ± 4.11 a 76.09 ± 1.52 b 73.90 ± 5.53 b

(*) Different letters in the same line indicate a significant difference (p < 0.05). C: control pasta; B2.5: pasta
fortified with 2.5% broccoli leaf powder; B5: pasta fortified with 5% broccoli leaf powder; WI: whiteness index; BI:
browning index; OCT: optimal cooking time; TSF: total shearing force.

Another parameter defining cooking properties analysed in this study is cooking
loss. Cooking loss represents the amount of solid material lost in the cooking water and
is one of the most important parameters determining the quality of pasta [10]. In this
study, the highest cooking loss was observed for B2.5 pasta, whereas control and B5 had
significantly lower cooking losses. Importantly, none of the experimental pasta exceeded
the technologically acceptable limit of 8% [10], indicating that incorporation of BLP into
pasta does not decrease the quality of pasta. Michalak-Majewska et al. [11] reported that
cooking losses remained below 8% for pasta fortified with 2.5%, 5% and 7.5% onion by-
product. These findings suggest that adding vegetable by-products in these concentrations
might be a good option to enrich pasta products with vegetables without compromising
pasta quality. In contrast, the incorporation of fruit by-products, namely 5% mango peel
powder, resulted in cooking losses of more than 8%, which could result from the high sugar
content in mango peel powder itself [28].

SI of pasta is a good indicator of the integrity of the protein matrix, which restricts
water penetration and depends on competition between the starch and protein for water
absorption [5,6]. In this study, pasta C had the lowest SI among all analysed pasta. The
addition of BLP did not inhibit the swelling of the starch granules, but it seems that
BLP contributed to the formation of a protein network, which increased the supply of
water for swelling and gelatinisation of starch granules. A previous study showed that
the incorporation of protein into the pasta formulation resulted in a reduction in SI [6].
On the other hand, some studies reported a significant increase in the SI with increased
concentrations of dietary fibre [29]. Although the content of dietary fibre was not evaluated
in this work, based on the results of a previous study reporting high content of dietary fibre
in broccoli leaves [27], it can be assumed that it could also affect the SI of experimental pasta.

2.2. Texture

Textural parameters of experimental pasta are shown in Table 2. Fortification of pasta
with BLP resulted in a decrease in firmness and total shearing force (TSF) with increased
BLP percentage. No significant differences were observed between B2.5 and B5 samples;
however, a decreasing tendency was observed.

The texture of pasta is an important parameter influencing consumer acceptance. Pasta
firmness is defined as the peak force attained during the first compression and is closely
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related to the strength and integrity of the protein matrix developed during the cooking
process, whereas TSF is defined as the force to cut/shear [10,30]. The present study showed
that the incorporation of BLP into pasta decreased both textural parameters. Firmness can
be reduced as a result of a higher SI [6], which was observed in BLP-fortified pasta. Similar
findings were reported by Gull et al. [31], who noted a decrease in the pasta firmness after
the incorporation of carrot pomace. Based on the results reported by Silva et al. [3], who
showed that the biggest changes in texture were observed after the addition of 20% to 30%
of broccoli floret, it can be assumed that the concentration of BLP used in this study does
not compromise the texture quality of pasta.

2.3. Proximal Composition

The proximate chemical composition of BLP and experimental pasta products is shown
in Table 2. BLP was found to be a rich source of protein and minerals. The fat content of
BLP was relatively low, accounting for approximately 4%. The obtained results are similar
to those obtained by other authors [20,27].

The incorporation of BLP into pasta resulted in a gradual increase in mineral content,
together with an increasing percentage of BLP. The protein content of fortified pasta
also increased; however, the differences were not statistically valid. Pasta B2.5 had the
highest content of fat, followed by B5 and C. The moisture of the experimental pasta was
significantly higher in B2.5, whereas that of B5 and C were similar. As a consequence of
changes in other fractions, the estimated carbohydrate content was the lowest in B2.5.

In this study, a significant increase in ash content was observed as a result of a higher
mineral content delivered by BLP, which is in agreement with a previous study showing
that broccoli leaves had a higher content of ash compared to florets [27]. The incorporation
of broccoli has been previously reported to increase protein, fat and mineral contents in
bread [25,32]. Although BLP was found to be a good source of protein, in this study, only
an insignificant increase was observed, which can be explained by the fact that semolina
used for pasta production is itself a good source of protein; because the BLP contribution to
the pasta formulation was small, it was not possible to notice its effect. On the other hand,
the content of ash in semolina is low; thus, the addition of mineral-rich BLP caused a more
pronounced effect. Notably, the addition of BLP to the pasta also resulted in a significant
increase in fat content. In general, broccoli is considered a low-fat product. However, it has
been reported that broccoli leaves are a rich source of polyunsaturated fatty acids, mainly
α-linolenic, linoleic and palmitic acids [27]. The profile of fatty acids was not analysed in
this study, mainly due to the low fat content in broccoli; however considering the increase
in fat content in enriched pasta, it is worth considering fatty acid content in future studies.

2.4. Pasta Colour

The colour characteristics of BLP and experimental pasta are presented in Table 2. As
expected, BLP was the greenest among the analysed samples. Fortification of pasta with
BLP significantly decreased lightness (L* value) and increased yellowness (b* value) and
greenness (a* value). No statistically significant difference in terms of greenness was noted
between B2.5 and B5 pasta, although B5 seemed to be greener (Figure 1). The whiteness
index (WI) significantly decreased with increased addition of BLP, whereas the browning
index (BI) significantly increased.

Pasta colour is an important factors influencing consumer acceptance and is associated
with product freshness and flavour expectations [33]. In recent years, pasta products
with unconventional colours have gained attention, and the use of natural colourants is
increasingly accepted by consumers [33]. In this study, the lightness (L* value) of pasta
samples decreased with increased BLP content, which is in agreement with other studies
on the fortification of semolina-based products with plant-based ingredients [4,33]. The
addition of BLP to pasta also resulted in a decrease in a* values. This was expected, as the
−a* parameter represents the greenness of the analysed sample, and BLP is characterized
by high green intensity (a* = −9.33 ± 0.03). As a consequence, in L* and a* parameters,
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the WI significantly decreased, and BI increased with the addition of BLP. Although the
green appearance of pasta could cause some concern for consumers not used to purchasing
this kind of product, the current tendency towards “healthier” foods may represent an
opportunity to introduce green pasta to the market [4].
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2.5. Sensory Analysis

The results of the sensory evaluation of experimental pasta types using the quantitative
descriptive analysis (QDA) method are presented in Figure 2. Panellists did not notice any
difference in the hardness or chewiness of pasta. However, the degree of adhesiveness
significantly increased, and elasticity decreased with increased BLP content. Cabbage-like
odour and taste increased with increased BLP content; however, it did not negatively affect
panellists’ perception of the pasta. The incorporation of BLP did not affect the overall
acceptance of experimental pasta products, which were rated very high (9 on a 10-point
scale). Based on the obtained results, it can be concluded that pasta fortified with up to 5%
BLP remains acceptable by consumers in terms of taste, odour, appearance and texture.
According to a study by Silva et al. [3], the incorporation up to 20% broccoli florets in pasta
did not deteriorate its acceptability. The authors reported that the intensity of the vegetable
flavour increased with increased broccoli content, which was also observed in this study.
On the contrary, incorporation of BLP (even 2.5%) as a starch replacement in gluten-free
sponge cakes reduced the overall acceptance [20]. This could be due to the fact that the
sweet pastry products may not associate well with vegetables.

The results of sensory analysis in terms of texture corresponded to the results of
instrumental texture analysis. The highest firmness was noted for pasta C, which resulted
in the highest hardness as evaluated by the sensory panel. The incorporation of BLP
resulted in a decrease in firmness/hardness of experimental pasta, although the values
were not significant. It can be assumed that fortification of pasta with higher BLP content
could cause more substantial changes; for example, Silva et al. [3] reported a significant
decrease in hardness after incorporation of up to 30% broccoli florets.

Chewiness and adhesiveness can be associated with cooking properties, specifically
with OCT and cooking loss, respectively [5]. Although OCT differed between the samples,
the changes were not considerable enough to affect the chewiness. On the contrary, the
incorporation of chickpea flour as a substitute for semolina resulted in a decrease in
chewiness of pasta [7]. The adhesiveness of the experimental pasta increased with increased
BLP content, which is in agreement the increased cooking loss observed in pasta B2.5.
However, increased BLP content cannot explain changes in adhesiveness reported in
pasta B5, which exhibited a similar cooking loss to pasta C. This can be explained by the
higher SI of pasta B5 and the increment of starch gelatinisation, as well as the consequent
adhesiveness [29]. The obtained results are in agreement with a those of a previous study
showing that the incorporation of up to 7.5% onion by-products into pasta decreased the
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adhesiveness [11]. On the contrary, Silva et al. [3] concluded that incorporation of up to
30% broccoli did not affect the stickiness of pasta.
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The decrease in the elasticity of pasta with increasing BLP content could be associ-
ated with lower TSF values. Previous studies showed that dietary fibre supplementation
decreased pasta elasticity [6]. For instance, the addition of brewers’ spent grains (the
main by-product of the brewing industry) to pasta significantly decreased the elasticity of
the dough [34]. Although the content of fibre was not evaluated in this study, it is likely
that BLP has a higher fibre content than semolina, which could explain the decrease in
pasta elasticity.

2.6. Volatile Organic Compounds

Aroma has a considerable influence on consumer acceptability [35]. VOCs contribute
to the flavour and aroma of food products and are key factors determining perceived
quality. Therefore, the profiling of secondary metabolites, such as VOCs, by analytical
techniques is widely used in food quality assessment [36]. In this study, VOC composition
was investigated both in BLP and in cooked pasta using solid-phase microextraction (SPME)
with gas chromatography-mass spectrometry (GC-MS).

In this study, only VOCs with identity of the highest threshold and that could be associ-
ated with odour descriptors [37] were included in the analysis (Table 3). In total, 66 aroma-
active compounds were identified, including 21 aldehydes, 15 ketones, 14 alcohols, 2 sulphur
compounds, 6 terpenes, 2 alkanes, 4 furan derivatives and 2 other compounds. BLP was
characterized by a rich profile of VOCs (52 compounds), including 16 aldehydes, 14 ketones,
8 alcohols, 2 sulphur compounds, 5 terpenes, 2 alkanes and 4-(2-propenyl)-phenols. The most
abundant VOCs in BLP were (E,E)-3,5-octadien-2-one, 1-penten-3-ol, 6-methyl-5-hepten-2-one
and (Z)-2-penten-1-ol. Compared to the C pasta, the total abundance of VOCs in BLP was
8.5 times higher. Only 29 VOCs were detected in C pasta, with aldehydes being the most nu-
merous group (12 compounds). The most abundant VOCs in C pasta were hexanal, 1-hexanol,
limonene and 2-pentyl-furan. In pasta fortified with BLP, the presence of 59 compounds was
detected, including 30 VOCs derived from BLP, all originating exclusively from C (14 VOCs),
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whereas 15 compounds were present in both C and BLP. Consequently, the odour descrip-
tions of cabbage, pungent, sulphur, rancid, malty and spicy could be assigned to BLP and
fortified pasta but not to C pasta. The most abundant VOCs in B2.5 were hexanal, 1-hexanol,
1-octen-3-ol and limonene, whereas in B5, the same compounds were the most abundant but
in a different order (hexanal > limonene > 1-hexanol > 1-octen-3-ol). Statistical comparison
showed that the abundance of 19 compounds, including 8 aldehydes, 5 ketones, 4 terpenes
and 2 furan derivatives, increased with the increased addition of BLP, which resulted in a
significant increase in the total peak area in pasta B5 (Table 3). The odour descriptions of these
compounds were mainly sulphurous, green, rancid, fruity and floral.

Table 3. VOCs of previously reported aroma activity identified in broccoli leaf powder (BLP),
control (C) and experimental pasta (B2.5; B5). Data are expressed as the peak area [×106]. Statistical
analysis was performed to compare pasta samples (C, B2.5 and B5); different letters in a row indicate
statistically significant (p-value < 0.05) differences between the samples.

Volatile
Compound RIExp * RILit ** BLP C B2.5 B5 Odour

Description ***

Aldehydes

Propanal 817 801 4.85 ± 0.45 ND **** 5.17 ± 0.55
a***** 5.89 ± 0.25 a fresh, fruity, malty

Butanal 891 883 2.01 ± 0.13 ND ND 0.40 ± 0.04 malty, sweaty
2-Methylbutanal 922 915 5.48 ± 0.42 ND 0.19 ± 0.02 b 0.30 ± 0.03 a malty
3-Methylbutanal 927 920 7.87 ± 0.49 ND 0.41 ± 0.05 a 0.54 ± 0.09 a malty

Pentanal 987 983 ND 2.22 ± 0.19 b 2.74 ± 0.15 a 2.98 ± 0.08 a green, fatty, mouldy
Hexanal 1087 1093 50.83 ± 0.98 53.66 ± 4.91 a 31.91 ± 1.53 b 28.05 ± 1.98 b green grass, fatty

(E)-2-Methyl-2-
butenal 1097 1098 12.81 ± 1.15 ND 0.53 ± 0.28 b 2.14 ± 0.31 a green, fruity,

aromatic
(E)-2-Pentenal 1139 1140 20.12 ± 0.2 0.13 ± 0.00 c 1.49 ± 0.11 b 2.24 ± 0.07 a oily, fatty, fruity

Heptanal 1189 1188 ND 5.29 ± 0.39 a 3.97 ± 0.61 b 4.78 ± 0.15 a, b fatty, citrus-like

(E)-2-Hexenal 1227 1220 30.85 ± 0.53 1.38 ± 0.11 c 4.01 ± 0.22 b 5.28 ± 0.21 a green apple-like,
bitter almond-like

(Z)-4-Heptenal 1251 1235 13.92 ± 0.07 ND 0.87 ± 0.24 b 1.45 ± 0.16 a fish-like, train oil-like
Octanal 1293 1291 3.38 ± 0.11 1.73 ± 0.29 b 5.48 ± 0.62 a 4.63 ± 0.40 a citrus-like, green
Nonanal 1398 1390 7.47 ± 0.13 2.39 ± 0.33 b 4.01 ± 0.29 a 4.88 ± 0.65 a citrus-like, soapy

(E)-2-Octenal 1440 1437 2.76 ± 0.1 3.01 ± 0.18 b 6.59 ± 0.66 a 6.52 ± 0.77 a fatty, nutty
(E,E)-2,4-

Heptadienal 1477 1497 26.15 ± 0.47 ND 1.04 ± 0.11 b 1.65 ± 0.18 a green, fatty, flowery

Benzaldehyde 1538 1530 37.59 ± 0.92 2.26 ± 0.94 a 1.32 ± 0.10 a 1.95 ± 0.34 a bitter almond-like,
marzipan-like

(E)-2-Nonenal 1547 1543 ND 1.96 ± 0.15 c 3.78 ± 0.45 b 5.10 ± 0.48 a fatty
(E,Z)-2,6-

Nonadienal 1598 1596 2.05 ± 0.71 ND 0.26 ± 0.04 b 0.55 ± 0.06 a green, cucumber-like

Safranal 1661 1648 4.71 ± 0.78 ND 0.36 ± 0.06 b 0.53 ± 0.04 a herbal
(E,E)-2,4-

Nonadienal 1716 1691 ND 0.29 ± 0.03 a 0.11 ± 0.04 b 0.10 ± 0.04 b fatty, green

(E,E)-2,4-
Decadienal 1779 1786 ND 0.64 ± 0.07 a 0.88 ± 0.07 a 0.84 ± 0.09 a fatty, deep-fried

Ketones
Acetone 838 813 8.08 ± 0.32 ND 0.30 ± 0.09 ND pungent, sweet

2-Butanone 909 905 1.31 ± 0.3 ND 0.49 ± 0.05 a 0.26 ± 0.04 b ethereal, fruity

1-Penten-3-one 1030 1024 2.23 ± 0.12 ND 0.17 ± 0.09 a 0.25 ± 0.06 a green, pungent,
mustard

3-Penten-2-one 1136 1123 5.75 ± 0.08 ND ND ND fruity, pungent
4-Methyl-2-
hexanone 1188 NA 3.41 ± 0.33 0.28 ± 0.06 b 0.75 ± 0.15 a 0.35 ± 0.06 b ethereal, bitter

almond-like
6-Methyl-2-
heptanone 1246 1228 6.19 ± 0.23 ND 0.61 ± 0.11 b 1.16 ± 0.06 a fruity, sour

2-Octanone 1291 1287 0.87 ± 0.04 ND 0.33 ± 0.08 ND soapy, fruity
6-Methyl-5-hepten-

2-one 1348 1341 88.61 ± 0.55 0.85 ± 0.11 c 6.31 ± 0.83 b 9.63 ± 0.46 a citrus

3,5,5-Trimethyl-2-
cyclohexen-1-one 1413 1544 10.77 ± 0.16 ND 1.39 ± 0.35 b 1.96 ± 0.28 a woody

3-Octen-2-one 1416 1408 ND 1.06 ± 0.12 a 1.73 ± 0.05 a 1.26 ± 0.26 a flowery, spicy
(E,E)-3,5-octadien-

2-one 1531 1569 188.13 ± 4.64 ND 2.22 ± 0.3 b 4.42 ± 0.32 a fruity, musty, fatty
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Table 3. Cont.

Volatile
Compound RIExp * RILit ** BLP C B2.5 B5 Odour

Description ***

4-Acetyl-1-
methylcyclohexene 1568 1570 3.26 ± 0.39 ND ND ND seasoning

(E)-6-Methyl-3,5-
heptadien-2-one 1606 1582 11.24 ± 0.86 ND 0.43 ± 0.07 a 0.73 ± 0.17 a spicy

Acetophenone 1668 1660 2.76 ± 0.69 0.29 ± 0.05 a 0.22 ± 0.01 a 0.30 ± 0.09 a
fruity, foxy, bitter

almond-like,
rubber-like

6,10-Dimethyl-5,9-
undecadien-2-one 1865 1867 10.57 ± 0.51 ND 0.67 ± 0.07 b 1.23 ± 0.16 a floral

Alcohols
Ethanol 944 934 2.26 ± 0.12 ND ND ND alcoholic

1-Butanol 1152 1125 19.18 ± 0.38 ND 0.24 ± 0.12 b 0.42 ± 0.04 a malty
1-Penten-3-ol 1167 1175 105.58 ± 2.07 ND 3.00 ± 0.18 a 0.77 ± 0.11 b pungent, milk-like

1-Pentanol 1256 1252 10.77 ± 0.24 3.38 ± 0.46 a 3.01 ± 0.3 a,b 2.24 ± 0.21 b fruity, ethereal
(E)-2-Penten-1-ol 1317 1313 3.88 ± 0.25 ND ND ND green
(Z)-2-Penten-1-ol 1326 1323 69.57 ± 0.76 ND 1.16 ± 0.17 ND musty, compost-like

1-Hexanol 1358 1360 ND 14.63 ± 2.09 a,b 15.00 ± 1.47 a 11.38 ± 0.05 b herbal, grassy,
marzipan-like

(Z)-3-Hexen-1-ol 1369 1386 ND 0.38 ± 0.03 b 0.96 ± 0.09 a 1.01 ± 0.04 a green

1-Octen-3-ol 1455 1446 15.77 ± 0.17 3.74 ± 0.48 b 14.45 ± 2.81 a 13.16 ± 1.52 a earthy,
mushroom-like

Heptanol 1459 1456 ND 1.12 ± 0.09 a 1.05 ± 0.11 a 1.02 ± 0.02 a fruity, soapy
3-Octanol 1472 1423 ND 0.17 ± 0.02 a 0.18 ± 0.02 a 0.16 ± 0.02 a citrus-like, soapy

2-Ethyl-1-Hexanol 1492 1490 2.66 ± 0.06 1.57 ± 0.17 a 1.58 ± 0.18 a 1.67 ± 0.06 a ethereal, fruity
(E)-2-Octen-1-ol 1621 1618 ND 0.41 ± 0.08 b 4.30 ± 1.01 a 4.17 ± 0.74 b soapy

1-Nonanol 1664 1665 ND 0.48 ± 0.03 a 0.66 ± 0.13 a 0.57 ± 0.02 a soapy, fruity
Sulphur compounds
Dimethyl sulphide 715 720 4.62 ± 0.36 ND 0.42 ± 0.03 a 0.41 ± 0.03 a cabbage-like, sulphur

Dimethyl
sulphoxide 1587 1584 5.2 ± 1.03 ND ND ND alliaceous

Terpenes
Limonene 1198 1190 24.94 ± 1.12 13.04 ± 0.72 a 10.35 ± 1.24 b 12.69 ± 0.42 a,b citrus-like
Linalool 1553 1545 ND 0.28 ± 0.05 c 1.26 ± 0.13 b 2.17 ± 0.06 a citrus-like, flowery

Beta-cyclocitral 1637 1617 51.08 ± 2.21 ND 1.63 ± 0.22 b 3.45 ± 0.14 a tropical, fruity
β-ionone 1955 1898 34.98 ± 0.64 ND 0.99 ± 0.08 b 2.16 ± 0.17 a floral

β-ionone-5,6-
epoxide 2011 2008 27.37 ± 0.33 ND 0.74 ± 0.10 b 1.61 ± 0.21 a fruity

Dihydroactinidiolide 2385 2332 35.45 ± 1.65 ND 0.55 ± 0.06 b 1.35 ± 0.23 a fruity
Alkanes

Dodecane 1194 1227 6.51 ± 0.13 ND ND ND alkane
Tetradecane 1396 1400 11.93 ± 1.25 ND ND ND waxy

Furan derivatives

2-ethylfuran 962 955 2.41 ± 0.37 ND 0.43 ± 0.06 b 0.69 ± 0.21 a sweet, burnt, earthy,
malty

2-pentylfuran 1234 1249 1.96 ± 0.33 5.52 ± 0.84 a 1.02 ± 0.31 b 2.23 ± 0.32 b fruity
cis-Linalool oxide 1451 1513 7.48 ± 0.25 ND 0.08 ± 0.04 b 0.20 ± 0.02 a earthy

5-Ethyl-2(5H)-
furanone 1781 1757 4.04 ± 0.38 ND 0.16 ± 0.04 a 0.15 ± 0.03 a sweet, spicy

Miscellaneous
Styrene 1264 1273 ND 0.38 ± 0.03 a 0.63 ± 0.16 a 0.62 ± 0.12 a balsamic

4-(2-Propenyl)-
phenol 1748 2342 3.47 ± 0.3 ND 0.19 ± 0.05 a 0.34 ± 0.06 a sweet, burned

Total peak area 1038.02 ± 6.67 122.51 ± 9.33 c 140.97 ± 9.85 b 162.4.16 ± 4.16 a

(*) Experimental retention index; (**) retention index from literature; (***) odour descriptions adapted from the online
database; (****) not detected; (*****) Different letters in the same line indicate a significant difference (p < 0.05).

Although the VOCs in Brassica vegetables have been widely studied [38–41], in this
study, the profile of broccoli leaves was analysed for the first time. Previous studies
showed that the analysis of fresh vegetables resulted in a high abundance of sulphur
compounds, including isothiocyanates derived from glucosinolates, which are responsible
for a cabbage-like aroma [38,39]. On the contrary, in this study, no isothiocyanates were
detected. Isothiocyanates are products of the enzymatic hydrolysis of glucosinolates;
therefore, a lack of these compounds can be explained by the inactivation of myrosinase
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during the blanching step in BLP preparation. Moreover, isothiocyanates are high volatility
and could possibly be evaporated during freeze drying. It should also be noted that analysis
of isothiocyanates by SPME is challenging and possible only in high abundances.

Various odour descriptors could be associated with compounds detected in BLP, with
fruity and green being the most frequent. An important compound responsible for sulphur
aroma is dimethyl sulphide. Although its abundance was low in BLP and did not differ
between pastas B2.5 and 5, this compound was previously reported to be one of the key
odorants in Brassica vegetables [41]. Importantly, the odour threshold of dimethyl sulphide
is very low and was estimated as 0.0008–0.03 and 0.0003–0.16 mg kg−1 in water and air,
respectively [42]. Low odour thresholds indicate odours are detectable at extremely low
concentrations—very often below the limit of detection [41]. Therefore, despite its low
abundance, it can be assumed that this compound was responsible for the cabbage-like aroma
detected by the sensory panel. On contrast, the odour thresholds in water for the most
abundant compounds in BLP were estimated as 0.15, 0.40, 0.05–8.2 and 0.72 for (E,E)-3,5-
octadien-2-one, 1-penten-3-ol, 6-methyl-5-hepten-2-one and (Z)-2-penten-1-ol, respectively.

Semolina and pasta are usually not considered for their aromatic properties. Nev-
ertheless, a total of 29 VOCs were identified in cooked C pasta, and the most frequently
associated odours were citrus and fatty. Aldehydes and alcohols were the major chemical
groups present, which is in agreement with results reported by Beleggia et al. [35], who
investigated the VOCs of cooked pasta. In that research, 29 VOCs were identified, but
only 12 were common to those identified in the present study, which highlights the exist-
ing differences between semolina and olive oil used to produce pasta. However, in both
studies, hexanal was the most abundant aldehyde in cooked pasta samples. The presence
of hexanal, which has been associated with oxidation of unsaturated fatty acids [35], can
result from the olive oil added to pasta formulations. Oxidation of fatty acids is also the
source of other aldehydes, ketones and alcohols detected in this study, which suggests
that these compounds were formed during thermal processing of olive oil and pasta [43].
An interesting phenomenon was observed with respect to hexanal when all the pasta
formulations were compared. Although BLP was found to be a rich source of hexanal itself,
the level of this compound decreased with increased BLP percentage. This can be explained
by the presence of other compounds in B2.5 and B5 formulations, which contributed to a
richer headspace. It should be noted that SPME is a competitive method with an observed
problem of the replacement of polar compounds with non-polar VOCs, which are highly
abundant in food matrices with saturation effects [44]. Therefore, the observed difference in
the level of hexanal in this study does not necessarily mean that its concentration decreased
but that it could be extracted with lower efficiency due to the presence of other compounds.

2-pentylfuran exhibits a medium-strength fruity, green, earthy, beany, vegetable-
like odours [45], and it has been reported to be frequently present in samples of cooked
pasta [35]. This compound, as well as hexanal, nonanal and benzaldehyde, has a low
odour threshold and contributes to not intensive pasta flavour [43]. Notably, limonene was
detected in higher concentrations in cooked pasta than in BLP. Because terpenes are known
to have distinctive aromatic properties [35], limonene could also contribute to the flavour of
pasta. (E)-2-nonenal and (E,E)-2,4-decadienal, both with a fatty odour, have been reported
as the most potent odours in bread crumb [36]. In the present study, these compounds
were detected in all types of cooked pasta but not in BLP, which may suggest that these
aldehydes are volatiles associated with cereal products. Gaggiotti et al. [45] concluded that
pasta of high quality should contain higher content of hexanal, nonanal and 2-nonenal
compared to 2-hexenal and pentenal, as the latter are typical of low-quality pasta. This
suggests that the pasta obtained in the present study was of high quality.

In pasta fortified with BLP, compounds described as fruity and green were most
frequently detected, confirming the contribution of BLP to the overall aroma. The profile of
VOCs was strongly affected by the incorporation of BLP, as 30 VOCs derived exclusively
from BLP were detected in fortified pasta. These compounds contributed to the appearance
of odours, such as cabbage-like, sulphur, pungent, rancid, malty and spicy. Moreover,
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as shown in Table 3, the abundance of many compounds increased proportionally to the
percentage of BLP. Notably, some of compounds were detected at higher concentrations in
B2.5 than in B5, which can be partly explained by the difficulties in analysis of food matrices
containing high concentrations of non-polar VOCs, which can result in a displacement
effect [44].

Multivariate analysis confirmed that the most VOCs were associated with BLP
(Figure 3A). The following 15 compounds contributed most to the separation between
groups: 2-octanone, linalool, 2-pentylfuran, octanal, propanal, hexanal, 1-octen-3-ol,
(E)-2-nonenal, (E)-2-octenal, (E)-2-octen-1-ol, (E,E)-2,4-nonadienal, nonanal, 1-hexanol
and (Z)-3-hexen-1-ol (Figure 3B). Compounds associated with BLP and experimental
pasta are presented in Figure S1.
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and BLP (R2X = 0.966; R2Y = 0.960; Q2 = 0.810). (A) biplot presenting the association between VOCs
and samples; (B) variable importance in projection (VIP) score. A VIP value > 1.00 indicates the
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2.7. Association between Sensory Analysis and Volatile Organic Compounds

Orthogonal partial least-squares discriminant analysis (OPLS-DA) was performed to
evaluate the overall association between the aroma-active VOCs and sensory descriptors in
experimental pasta (Figure 4). Pasta C was located on the right side of the plot and was
associated with sensory descriptors (elasticity, hardness, creamy colour, flour odour, flour
and sweet taste) and three VOCs (hexenal, 2-pentylfuran and (E,E)-2,4-nonadienal). Pasta
B2.5 was located in the upper-left quadrant and correlated only with alcohols and ketones
(2-octanone, (Z)-2-penten-1-ol, acetone, 1-penten-3-ol, 1-nonanol and 4-methyl-2-hexanone).
Most VOCs, as well as several sensory descriptors (green colour, chewiness, adhesiveness,
aftertaste, cabbage odour and cabbage taste), were associated with pasta B5, which was
located in the lower-left quadrant.
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Figure 4. OPLS-DA score plot (R2X = 0.866; R2Y = 0.991; Q2 = 0.963) obtained for aroma-active VOCs
and sensory attributes in experimental pasta. C: control pasta; B2.5: pasta fortified with 2.5% broccoli
leaf powder; B5: pasta fortified with 5% broccoli leaf powder.

Cabbage flavour detected in pasta B5 could be attributed to the presence of dimethyl
sulphide, which was reported to have a high flavour dilution (FD), suggesting that even a
small concentration of this compounds contributes to its overall aroma. Because panellists
detected a difference in the intensity of cabbage-like aroma between pasta B2.5 and B5,
it can be assumed that other sulphur compounds, which usually have relatively low
odour thresholds, could be present below the limit of detection [41]. The absence of high-
molecular-weight sulphides, such as dimethyl, tri- and tetrasulphides, may be related to the
fact that the SPME technique, as an absorption method, is more suitable for the extraction
of low-molecular-weight compounds.

3. Materials and Methods
3.1. Broccoli Leaf Powder

The preparation of BLP was previously described by Drabińska et al. [20]. Briefly,
the leaves of broccoli (Brassica oleracea L. var. italica cv. Sebastian) without any sign of
mechanical damage were selected and washed in tap water to remove soil residues. Leaves
were blanched in boiling water for 1 min to inactivate enzymes. The petioles and the main
midribs were removed, and the material was freeze-dried and ground into a fine powder
with a particle size ≤ 0.60 mm. The BLP was stored in a refrigerator in a tightly closed
container until analyses.
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3.2. Pasta Preparation

The pasta was prepared with durum semolina flour, water, olive oil and salt purchased
from local stores. The percentage composition of control and fortified pasta is shown
in Table 1. BLP was added to the standard control pasta formulation as an additional
ingredient in the following concentrations: 0% (C), 2.5% (B2.5) and 5% (B5). The ingredients
were mixed for 5 min in an electric pasta maker (Ariete Pastamatic 1581, Florence, Italy)
and extruded through a penne-forming die with the same equipment.

Both fresh and cooked pasta samples were freeze-dried, ground into a fine powder
with a particle size ≤ 0.60 mm and stored in a refrigerator in a tightly closed container until
chemical and colour analyses.

3.3. Cooking Properties

The cooking properties were determined according to the American Association of
Cereal Chemists Official Methods [46]. To evaluate cooking properties, 20 g of pasta was
cooked in 300 mL of boiling distilled water.

3.3.1. Optimal Cooking Time

OCT (or al dente point) is defined as the time required to observe the disappearance
of the starchy white core, indicating that the starch at the centre has gelatinized in pasta
manually squeezed between two glass plates.

3.3.2. Cooking Loss

Cooking loss indicates the amount of dry matter lost in the cooking water. Cook-
ing water was collected in a beaker and dried in an air oven at 105 ◦C until completely
evaporated. Cooking loss was calculated according to the following equation to evaluate
the presence of dry matter from pasta and expressed as a percentage of the mass of the
starting material.

Cooking loss =

(
mass of dry residue in cooking water

mass of uncooked pasta

)
×100%

3.3.3. Water Absorption

Water absorption was determined as the percentage of weight increase in relation to
uncooked pasta and was calculated according to the following equation:

Water absorption =

(
mass ofcooked pasta − mass of uncooked pasta

mass of uncooked pasta

)
×100%

3.3.4. Swelling Index

The SI was determined by drying a cooked pasta sample to constant weight in a drying
oven for 24 h and calculated according to the following equation:

SI =
(

mass ofcooked pasta − mass of cooked pasta after drying
mass of cooked pasta after drying

)
×100% (1)

3.4. Textural Properties

Textural properties of BLP-fortified pasta were assessed after cooking the pasta at OCT.
Textural parameters of firmness and TSF were determined using a TA.HD Plus texture
analyser (Stable Micro Systems Ltd., Godalming, UK) equipped with a 5 kg load cell. The
pasta samples were compressed at a constant rate of 1.0 mm/s.

3.5. Colour Analysis

The colour of freeze-dried and finely ground pasta samples was evaluated using a
HunterLab ColorFlex instrument (Hunter Associates Laboratory, Inc., Reston, VA, USA).
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The colour was expressed in accordance with the CIELab system and the parameters were
determined as follows: lightness: L* = 0 (black) − 100 (white); chromatic components:
a* = –a* (greenness) – + a* (redness); and b* = –b* (blueness) – + b* (yellowness). Values
are presented as the mean of at least nine replicates. The whiteness index (WI) and the
browning index (BI) were calculated according to the following equations:

WI = 100 −
√
(100 − L∗)2 + a∗2 + b∗2

BI =
100·(x − 0.31)

0.17
where

x =
a∗ + 1.75L∗

5.645L∗ + a∗ − 3.012b∗

3.6. Proximate Composition

The proximate composition was determined using standard methods in freeze-dried
samples [47]. Mineral content (ash) was determined using the gravimetric method by burn-
ing in a muffle furnace for 1 h at 585 ◦C (AOAC 923.03). The protein content was analysed
using the Kjeldahl method (N ×6.25 for nitrogen to protein conversion) (AOAC 979.09). Fi-
nally, the fat content was determined using Soxhlet extraction with hexane (AOAC 923.03).
The total carbohydrate content was estimated by subtracting the protein, fat and ash content
from 100%.

3.7. Sensory Analysis

The sensory quality of products was evaluated by the QDA method according to ISO
standard [PN-EN ISO 13299:2016]. In terms of procedure, a list of all descriptors of smell,
appearance, taste and texture was prepared (Table S1). All attributes were defined to equal
understanding by assessors. A 10 centimetre scale with arbitrary units was used for the
evaluation of each attribute. All scales of odour and taste had edge definitions, which
were “not intensive–very intensive”. Additionally, the overall quality of the investigated
products was estimated as the summary of all evaluated attributes. The edge definitions
for a given attribute were “poor quality–very good quality”.

Assessment of the products was carried out by a previously sensory panel (6 persons),
who had been trained and monitored according to ISO guidelines [PN-EN ISO 8586: 2014].
Assessments were carried out in a sensory laboratory room, which fulfils the requirements
of the ISO standards [PN-EN ISO 8589:2010]. A computerised sensory program, FIZZ
(Biosystemes, Counternon, France), was used for analysis and graphical presentation of the
collected results.

3.8. Volatile Organic Compounds Analysis

VOCs were extracted using the SPME method described in [38], with slight modifi-
cations. Briefly, 4 g of sample pasta cooked at OCT was placed in 20 mL headspace vials
closed with an aluminium crimp cap and a silicone/PTFE septum. Extraction was manually
performed using Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS)
fibre (Supelco, Bellefonte, PA, USA) and a thermomixer (MultiTherm shaker, Benchmark
Scientific, Edison, NJ, USA). Samples were equilibrated for 5 min at 60 ◦C at 500 rpm,
and the fibre was exposed for 30 min at 60 ◦C at 500 rpm. The VOCs were desorbed for
10 min with the injector port set at 250 ◦C in a splitless mode in a 7890 A gas chromato-
graph coupled with a 5975 C mass-selective detector (Agilent Technologies, Santa Clara,
CA, USA). VOCs were separated using a capillary SupelcoWAX 10 column (30 m length,
250 µm internal diameter, 0.25 µm film thickness, Supelco, Bellefonte, PA, USA). The oven
temperature was initially set at 40 ◦C for 2 min, then increased to 240 ◦C at 6 ◦C/min and
held for 2 min. Helium was used as carrier gas at a constant flow rate of 1 mL/min. The
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detector was operated in electron impact (EI) ionization mode at 70 eV. The scan range was
from 35 to 550. The ion source temperature was at 240 ◦C.

Compounds were tentatively identified by comparison of the mass spectra with the
NIST/EPA/NIH Mass Spectral Library (version 2.2, 2014, Gaithersburg, MD, USA) for
records with a matching score above 70% and confirmed by comparing the Kovats retention
indices. For the detected compounds, the odour descriptions were assigned based on the
online database [37].

3.9. Statistical Analysis

All chemical and technological analyses were performed in triplicate. The results were
subjected to a one-way analysis of variance (ANOVA) with Fisher’s LSD as a post hoc test
using IBM® SPSS™ Statistics 27 (Armonk, NY, USA) and STATISTICA version 13.3 software
(Statsoft, Tulsa, OK, USA). The significance of differences between the samples was set at
a p-value < 0.05. To identify the differences between the VOC distribution between the
BLP and pasta products, as well as the differences between pasta products based on VOC
and sensory analyses, orthogonal partial least squares discriminant analysis (OPLS-DA)
was used. To assess the contribution of each variable to the model and group separation,
variable importance in projection (VIP) scores were measured. Multivariate analysis was
performed using SIMCA 16 software (Umetrics, Umeå, Sweden).

4. Conclusions

In this study, the suitability of BLP as an ingredient in the manufacture of fortified
wheat pasta was investigated based on analysis of the technological, nutritional and sen-
sory properties of the developed product. The obtained results indicate that BLP can be
successfully used as an additive in pasta products. Incorporation of BLP enhanced the
mineral content of pasta and improved its appearance without compromising the cooking,
texture and sensory features. Addition of up to 5% of BLP into pasta products was found
not to deteriorate the quality of durum pasta nor its sensory quality, which was rated as
high. However, as an increase in cabbage-like aroma and the content of VOCs was noted
with increased BLP concentration, the concentration of BLP additive cannot be too high.

In summary, BLP-enriched pasta can be used to increase vegetable consumption in the
general public without substantial changes in the daily diet. Moreover, the utilization of
broccoli leaves in new product development could facilitate the management of vegetable
processing waste.
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associated with BLP and experimental pasta.
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