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Abstract

Multiple satellite-based earth observations and traditional station data along with the Soil & Water 

Assessment Tool (SWAT) hydrologic model were employed to enhance the Lower Mekong River 

Basin region’s hydrological decision support system. A nearest neighbor approximation 

methodology was introduced to fill the Integrated Multi-satellite Retrieval for the Global 

Precipitation Measurement mission (IMERG) grid points from 2001 to 2014, together with the 

Tropical Rainfall Measurement Mission (TRMM) data points for continuous precipitation forcing 

for our hydrological decision support system. A software tool to access and format satellite-based 

earth observation systems of precipitation and minimum and maximum air temperatures was 

developed and is presented. Our results suggest that the model-simulated streamflow utilizing 

TRMM and IMERG forcing data was able to capture the variability of the observed streamflow 

patterns in the Lower Mekong better than model-simulated streamflow with in-situ precipitation 

station data. We also present satellite-based and in-situ precipitation adjustment maps that can 

serve to correct precipitation data for the Lower Mekong region for use in other applications. The 

inconsistency, scarcity, poor spatial representation, difficult access and incompleteness of the 
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available in-situ precipitation data for the Mekong region make it imperative to adopt satellite-

based earth observations to pursue hydrologic modeling.
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1. Introduction

The complexity of managing water resource, e.g., the Mekong River, stems from the fact 

that there are many competing interests, such as societal, cultural, economic, and 

environmental interests, that all need to be synchronized to achieve the goal of prosperity 

and sustainability [1–6]. Sivapalan and Blöschl [7] argued that the role of finer resolution 

remote sensing data and models that represent catchments as complex systems and that link 

time scales, is the notion that is most common in the current era (2010–2030) to address 

contemporary hydrological challenges. Growing populations, sustaining socio-economic 

activities (e.g., fishery), ecological needs, the effects of climate change, and energy security 

are some of the complex challenges experienced in the Mekong River Basin [8–13]. As a 

consequence, utilizing newly-developed remote sensing products and modeling to address 

the Mekong River is vital.

This work integrates multiple satellite-based earth observation systems, in-situ station data 

and spatial data with the Soil & Water Assessment Tool (SWAT) hydrologic model 

employed in the Mekong River Basin region to improve the Lower Mekong River Basin 

region’s hydrological decision support system, based on both hydrological flow and total 

water demand/use. The scarcity and the incompleteness of the data observations from many 

stations make it imperative to use satellite-based remote sensing data when modeling the 

hydrological fluxes in the Lower Mekong River Basin (LMRB). This work has developed a 

comprehensive suite of hydrological data products that can be used to improve water 

accounting and floodplain management using hydrological cycle variables such as runoff, 

evapotranspiration, and precipitation in the LMRB. The main objective of this work is the 

improvement of the hydrological decision support system for the Lower Mekong River 

Basin. This work explores streamflow simulation for the Lower Mekong River by examining 

the usability of satellite-based remote sensing data products, comparing them to the 

traditional in-situ station data. Overall, our work aims to assess the value-added information 

from the simulation of hydrological processes in the LMRB by using SWAT with 

climatological forcing data from satellite-based earth observations as an alternative to scarce 

in-situ station data.

2. Materials and Methods

2.1. Study Area

The Mekong River originates in the high altitudes of the Tibetan Plateau in China and flows 

south through five countries (Myanmar, Lao People’s Democratic Republic (PDR), 

Thailand, Cambodia, and Vietnam) ending in a large delta before exiting to the South China 
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Sea. The Mekong River Basin is divided into upper and lower basins. The Lower Mekong 

River Basin begins when the Mekong River leaves the Chinese province of Yunnan and 

enters the Golden Triangle, where the borders of Thailand, Lao PDR, China and Myanmar 

come together (Figure 1).

2.2. Spatial Data

A digital elevation model (DEM) with 1” (one arcsec) grid resolution for the study area was 

obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) Global Digital Elevation Model (https://doi.org/10.5067/ASTER/ASTGTM.002). 

The DEM map with 90-m resolution was used to derive the slope and aspect grids for the 

LMRB model input. The slope class of 2–8% covers about 40% of the watershed area. The 

LMRB topography ranges from 2838 m above sea level in the Annamese Cordillera 

mountains range, Laos (the Mekong River and the South China Sea are boundaries) to 89 m 

below sea level (outlet) with a mean elevation over the basin of 479 m.

The study area soil information data was obtained from the Harmonized World Soil 

Database (HWSD) [15]. The LMRB soil texture is mainly sandy clay loam and covers 

approximately 42% of the basin.

The land use/land cover (LULC) data was obtained from a 2010 LULC map at a spatial 

resolution of a 0.25 km for the Lower Mekong Basin using 2010 Moderate Resolution 

Imaging Spectroradiometer (MODIS) monthly Normalized Difference Vegetation Index 

(NDVI) data as the primary data source [16].

The study watershed LULC areas are mainly forest and agricultural lands. Rice is farmed on 

about 26% of the watershed area, while forest land cover constitutes about 30% of the 

watershed area [16].

2.3. In-Situ Data

The discharge data for this work was obtained from the Mekong River Commission (MRC, 

www.mrcmekong.org). Updated discharge data was interpolated from recent observed level 

data obtained from the Asian Preparedness Disaster Center (ADPC, www.adpc.net). Data for 

existing dams within the LMRB were obtained from the Greater Mekong Consultative 

Group for International Agricultural Research (CGIAR) Research Program on Water, Land 

and Ecosystems [17]. In Figure 1, we depict dams within the LMRB that are either already 

commissioned or still under construction and have a maximum reservoir area greater than or 

equal to 280 km2, similar to the MRC Mekong River model setup. The surface area of the 

reservoirs behind the various dams that we included in this study as well as the geographic 

annotations for the in-situ stations depicted in Figure 1, are visualized interactively with the 

compressed keyhole markup language files (KMZ) Supplementary Materials of this 

manuscript.

Daily precipitation and minimum and maximum air temperature data was obtained from the 

Mekong River Commission data respiratory. Figure 2 depicts the in-situ data availability in 

the Lower Mekong Basin. We note that precipitation data are available for some sites since 
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1920 and started to cover the whole basin around 1990s. Air temperature data (minimum 

and maximum) are available at fewer sites than precipitation.

2.4. Meteorological Data

Daily cumulative precipitation data was obtained from the Global Precipitation 

Measurement mission (GPM) and the Tropical Rainfall Measurement Mission (TRMM) 

remote sensing data and used as inputs for the LMRB model. The Integrated Multi-satellite 

Retrieval for the Global Precipitation Measurement mission (IMERG) dataset used for this 

work was the GPM_3IMERGDF (https://pmm.nasa.gov/data-access/downloads/gpm). Since 

IMERG data products are only available from 12 March 2014 to present, we used the 

TRMM rainfall data (3B42RT) for time periods earlier than 12 March 2014. A nearest 

neighbor methodology was used to fill the IMERG data points with the TRMM data points 

as an approximation during the 1 March 2000 to 11 March 2014 time period, because the 

TRMM and IMERG data do not have the same spatial resolution (i.e., 0.25 and 0.1 degree 

respectively). The Euclidean or great circle distance was calculated between the TRMM and 

IMERG cell centroids to achieve filling data points. The minimum distance between the 

IMERG and TRMM points was used for the filling assignment. A layout showing part of the 

IMERG and TRMM cell points within the LMRB, labelled with identification numbers that 

reflect the assignment, is illustrated in Figure 3.

Minimum and maximum daily air temperature data was calculated from the air temperature 

records obtained from the Global Land Data Assimilation System (GLDAS) simulation data 

products [18]. For this work, we used the GLDAS_NOAH025_3H.2.1 data products 

retrieved from https://disc.gsfc.nasa.gov/. The wind speed, relative humidity, and solar 

radiation data needed for our modeling work was estimated using the global reanalysis 

weather data from the National Centers for Environmental Prediction (NCEP, http://

www.ncep.noaa.gov/), and the Climate Forecast System Reanalysis (CFSR).

2.5. Hydrological Model—SWAT

The SWAT is a conceptual watershed-scale hydrological model designed to address 

challenges related to water management, sediment, climate change, land use change, and 

agricultural chemical yield [19–24]. The SWAT applications range from the field scale to the 

watershed scale [25] to the continental scale [26,27]. The SWAT model components are 

hydrology, weather, sedimentation, soil temperature, crop growth, nutrients, pesticides, and 

agricultural management. The hierarchical structure for modeling units in SWAT is set to be 

multiple sub-watersheds, which are then further subdivided into hydrological response units 

(HRUs) that consist of homogeneous land use, management, and soil characteristics. The 

SWAT simulates the overall hydrological balance for each HRU and model output is 

available in daily, monthly, and annual time steps. SWAT meteorological inputs include daily 

precipitation, maximum and minimum temperature, solar radiation, humidity and wind 

speed. The version of SWAT used in this work was SWAT2012 rev. 635 [28]. The Penman–

Monteith method was used to simulate potential evapotranspiration for this work. The SWAT 

Calibration and Uncertainty Procedures (SWAT-CUP) software package with the Sequential 

Uncertainty Fitting (SUFI2) method [29] was used for model calibration. The watershed 

stream network and sub-basins were generated using the Arc SWAT software (http://
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swat.tamu.edu/software/arcswat/) watershed analysis module (watershed delineator) with a 

contributing area threshold of 253.5 km2, resulting in 1138 sub-basins. Applying the HRU 

module in the Arc SWAT software with 10% land use percentage over the sub-basin area, 

10% soil class percentage over the land use area, and 10% slope class percentage over the 

soil area, we obtained 10,096 HRUs for the LMRB model.

3. Results and Discussion

This study highlights the benefit of satellite-based earth observations data for hydrological 

modeling in regions that experience poor spatial in-situ earth observations data 

representation. It has been well established in literature that climate forcing data is the 

dominant contributor in determining the hydrologic response. The ability of our developed 

hydrological model to represent the variability of the observed discharge at multiple sites 

along the Lower Mekong River when driven by satellite-based earth observation data 

corroborates the role of quality climate forcing as one of the main determinants in 

hydrologic modeling.

We assessed the performance of satellite-based data products (TRMM and GPM) in 

estimating precipitation and streamflow over the Lower Mekong River Basin. We noticed 

that the quality of the satellite-based remote sensing precipitation data, especially in the 

southern part of the LMRB (i.e., close to the delta) was better than elsewhere in the basin. 

This finding could be used for the further refinement of satellite-based remote sensing 

products in the Lower Mekong region. It is worth mentioning here that although our 

calibration and validation work (Cal/Val) was done for years before the onset of GPM data, 

the simulated discharge results driven by the GPM precipitation data using the precipitation 

adjustment parameters obtained by the Cal/Val work were promising and matched the 

observed discharge values along the Lower Mekong River.

3.1. LMRB Water Balance

The average annual precipitation in the study watershed during 2001–2015 was 1.9 m 

(satellite-based remote sensing data products). The average maximum annual air 

temperature in the study watershed during 2001–2015 was 27 °C, while the average 

minimum annual air temperature during 2001–2015 was 18 °C (GLDAS data products). We 

also note here there is about 2 °C difference between air temperature estimates using 

GLDAS data products and in-situ station data products. We believe that in-situ air 

temperature station data does not represent the entire watershed accurately, since there is a 

bias attributed to location and availability. We summarize the precipitation and air 

temperature annual information for the study watershed from 1985–2015 in Figure 4.

Table 1 gives various statistical measures for the Lower Mekong River annual discharge 

using calendar years at different gauges along the main stem river and upstream tributaries. 

The upper basin inlet discharge record for the years 2008 and onward, required for our 

modeling work, were regressed from the nearby station (Chiang Sean) discharge record. The 

Vientiane (Lao PDR) station # 011901, which has the longest available monitoring record 

compared to the other stations studied (1913–2016), has a mean annual discharge of 4476 

m3/s. Minimum, maximum, different quantiles, standard deviation, and coefficient of 
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variation values for annual discharge at different stations are presented. Discharge station 

skewness values suggest the location and the shape of the probability distribution (i.e., 

positive or negative). In Table 1, we also provide the Hurst coefficient [30,31]. The Hurst 

coefficient is an indicator of a serial correlation or dependence for the annual discharge time 

series studied. Across the multiple discharge stations studied in the Lower Mekong, the 

Hurst coefficient for annual flow was greater than 0.5, suggesting that high flow will most 

likely be followed by another high flow in the future. Multiple works have presented various 

LMRB discharge statistics [14,32]. However, Table 1 adds new information—the coefficient 

of variation, skewness, and persistence and autocorrelation explained by the Hurst 

coefficient for the Lower Mekong River. Discharge statistics at nine streamflow gauges 

representing the outlets of eight sub-basins in the Lower Mekong River Basin, in addition to 

the Upper Mekong River inlet, are provided in Table 1. The geographic locations of these 

nine streamflow gauges are referenced in Figure 1 with a green filled circle symbol.

3.2. Calibration and Verification of the LMRB Model Using TRMM

SWAT uses many parameters to describe typical soil, plant growth, land cover, reservoir, and 

agricultural management characteristics. In this work, the LMRB model was calibrated to 

the monthly average discharge at the LMRB sub-basin outlets during the 2005 and 2006, 

with a few parameters as outlined in Table 2. The reason for selecting 2005 and 2006 as the 

calibration years was based on the fact that the precipitation amounts in these two years 

were close to the average annual precipitation over the Lower Mekong River basin. The 

validation of the LMRB model was performed at the LMRB sub-basin outlets during the 

time period 2001–2004, and in 2007. The validation time period was picked so that a 

common time period for the available satellite-based remote sensing and in-situ climate 

forcing data exists. The availability of remote-sensing, satellite-based and in-situ air 

temperature and precipitation forcing data is depicted in Figure 4. The parameters used and 

suggested range values for the LMRB model calibration were consulted and obtained from 

SWAT developers (R. Srinivasan, personal communication) and the previous works of 

Neitsch et al. [33] and Rossi et al. [14]. All other parameters in the LMRB model were left 

at their default values. In Table 2, we provide parameter-calibrated values for the two models 

that we performed (model forced with satellite-based remote sensing precipitation and in-

situ precipitation). Three groups of parameters related to precipitation, high flow, and base 

flow are presented in Table 2. The range of the correction factor to grid precipitation shown 

in Table 2 are the values used in SWAT-CUP to adjust the forcing precipitation data (i.e., 

increment). The calibrated values for the soil evaporation compensation factor parameter 

(ESCO = 0.6 and 0.75) were found to be lower than the previous values reported by Rossi et 

al. [14] for the LMRB. Generally, as the value for ESCO is reduced, the SWAT model is able 

to extract more of the evaporative demand from lower soil layers. We argue here that the 

newer soil data used in this work has influenced a newer ESCO value for the LMRB that is 

different from the default value previously used (i.e., ESCO = 0.95). The parameters listed in 

Table 2 are among many parameters that describe the SWAT soil physical characteristics and 

influence the movement of water and air through the soil profile and shallow aquifer 

underneath it, thus they have a major impact on the cycling of water within the SWAT 

modeling unit (HRU).
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Our hydrological model showed higher sensitivity to parameters related to correction 

adjustment factors for precipitation forcing inputs. Figure 5 provides the LMRB model 

precipitation forcing adjustment factor layout for the in-situ and remote-sensing, satellite-

based precipitation datasets. This layout could be used to guide the correction of TRMM and 

GPM earth observations for future applications in the region. Polygons with no change in 

precipitation forcing adjustment (i.e., shown in white color) indicate the non-existence of 

rain stations or rain station exclusion due to the incompleteness of data records (Figure 5a). 

This matches earlier observation seen in Figure 1 that there are a few number of rain stations 

over the LMRB. We note here that a sequential calibration procedure was performed starting 

from sub-basin outlet 1 and going downstream till sub-basin outlet 6 (sub-basins 7 and 8 are 

the western tributary outlets for the Mekong River and are draining to sub-basin 5). This has 

resulted in the production of the correction adjustment factor layout in polygons 

corresponding to sub-basin outlets. Figure 5 serves as a quality check for the precipitation 

forcing data in the LMRB when applied in hydrological applications. Precipitation forcing 

data from satellite-based remote sensing tend to be more skewed in the northern part of the 

LMRB in comparison with the southern part. In general, we found that running our model 

without satellite-based remote sensing precipitation data adjustments tended to overestimate 

the simulated discharge by about 13%.

Figure 6 depicts the LMRB model performance during the calibration years (2005, 2006), 

driven by satellite-based remote sensing earth observations (blue rectangle) and in-situ (red 

circle) meteorological data at six watershed outlets within the Lower Mekong Basin. The 

simulated discharge results obtained from satellite-based remote sensing data were able to 

explain more than 91% of the variance observed in the monthly discharge during the 

calibration years (i.e., the Nash–Sutcliffe Efficiency (NSE) varied from 0.91 to 0.96 from 

sub-basin 1 to 6). The LMRB model performance when driven with in-situ data was able to 

explain from 68% to 91% of the variance observed in the monthly discharge during the 

calibration years. The LMRB model overestimated the monthly discharge by about 5% at 

sub-basin 5 and underestimated the monthly discharge by about 2% at sub-basin 6 during the 

calibration years when driven by satellite-based remote sensing data. Table 3 provides the 

calibration metrics used to assess the performance of the LMRB model when driven by 

satellite-based remote sensing and n-situ data. The percent error (Qerr) between the monthly 

mean simulated and observed discharge and the NSE performance metrics are tabulated for 

the LMRB model under satellite-based remote sensing and in-situ data (Table 3). We note 

here that the results shown in Figure 6 and Table 3 suggest that the simulated model 

discharges utilizing satellite-based remote sensing data inputs are able to capture the 

variability of the observed streamflow patterns in the Lower Mekong better than simulated 

model discharges forced with in-situ data. We also note that the Qerr at SB5 and SB6 

(LMRB outlet) were higher than other outlets examined in the LMRB calibration work 

(Table 3). We think that the differences in Qerr among the sub-basins can be attributed to the 

sequential calibration method that we used in this work, and the interaction of the dam 

release rules observed in the basin. In summary, our LMRB model evaluation results are 

similar to previous attempts presented by Rossi et al. [14], who reported Nash–Sutcliffe flow 

monthly efficiency values ranging between 0.8 and 1.0 at mainstream monitoring stations.
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Figure 7 provides monthly observed and simulated discharge for the study watershed for the 

validation of the LMRB model over five years (2001–2004, and 2007). Black circles and red 

rectangles were used to distinguish between the simulated discharges generated using 

satellite-based remote sensing and in-situ data as forcing inputs. In general, the model 

captured the timing of the onset and end of seasonal discharge but was slightly off in some 

estimates of peak flow. The NSE metrics during the validation time period for our model 

driven by satellite-based remote sensing climate data (RS) and in-situ climate data (In-Situ) 

are provided in Table 4. We note that the NSE performance metrics for our model varied 

between 0.88 and 0.98 when driven by satellite-based remote sensing climate data and 

between 0.75 to 0.97 when driven by in-situ climate data. The model had about 3.85% error 

on average in estimating monthly flows during the validation time period.

3.3. Verification of the LMRB Model Using GPM

Figure 8 depicts the ability of the LMRB model to simulate discharge at various sub-basin 

outlets using GPM-IMERG precipitation as the forcing climate data. The simulated 

discharge results in Figure 8 were able to explain between 71% to 96% of the variance 

observed in monthly discharge during the year 2015 (sub-basin 1 to sub-basin 6). We note 

here that there is a slight difference in the LMRB model performance results when we 

compare the LMRB model forced with GPM-IMERG and TRMM-3B42RT (Figures 6 and 

8). We attribute the model performance difference to the adjustments that we made to the 

precipitation forcing data to calibrate the LMRB model. We think that the adjustments we 

made to the TRMM-3B42RT forcing data during calibration years and verified in the 

verification years could be also used reasonably by the LMRB model when forced with 

GPM-IMERG data.

3.4. Nasaaccess Tool

We developed a ‘nasaaccess’ package (version 1.2) within the R software framework [34] to 

streamline the accessing and processing of the National Aeronautics and Space 

Administration (NASA) earth observation data products (i.e., TRMM, GPM, and GLDAS). 

Our package incorporates the methods we introduced (Figure 3) to address the spatial scale 

issues seen between TRMM and GPM. The ‘nasaaccess’ package creates weather input 

definition tables as well as station data files in a format readable by the SWAT model or any 

other rainfall/runoff model. The ‘nasaaccess’ package can be expanded to include other earth 

observation data products needed in the future. For the time being, ‘nasaaccess’ generates 

the daily rainfall and minimum and maximum air temperature gridded data and gridded data 

definition files needed to serve as a setup to run any basic SWAT/other model. The core 

functionality of the ‘nasaaccess’ package can be summarized by the following steps:

i. Access the NASA Goddard Space Flight Center (GSFC) servers to download 

earth observation data,

ii. Clip needed grids based on a user study watershed input shapefile,

iii. Handle temporal and spatial issues (e.g., the GLDAS product has 3-h temporal 

resolution),
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iv. Generate daily climate gridded data files and definition files compatible with 

SWAT/other models.

In summary, the inputs needed for the various functions within the ‘nasaaccess’ package are: 

start and end dates for the user’s required earth observation data, a shapefile for the study 

area of interest, and a DEM grid for the area of interest. The ‘nasaaccess’ package was used 

effectively in this work to process the meteorological input data for the LMRB model.

4. Conclusions and Recommendations

In this work, we showed that earth observation data enabled us to develop a regional 

hydrological decision support system application for the Lower Mekong River Basin. The 

inconsistency, scarcity, poor spatial representation, as well as difficult access and 

incompleteness of the available in situ data in the Mekong region make it absolutely 

imperative to adopt earth observation data products to pursue hydrological modeling for the 

Lower Mekong River Basin. We also introduced a smoothing technique method to address 

the spatial scale issues observed in the TRMM and GPM earth observation data. We also 

produced a software tool that can be used to access and process earth observation data 

products on a global scale.

The use of satellite and field data has helped us to evaluate and improve a hydrological 

decision support system model and parameterization for the Lower Mekong River Basin. For 

example, we were able to report new parameter values needed to estimate evaporation in the 

SWAT modeling environment (e.g., a soil evaporation compensation factor parameter or 

ESCO).

We think that our work can serve to improve weather, climate, and hydrological modeling 

and prediction in the Mekong region. We here call for further research efforts in employing 

remotely-sensed, satellite-based products for hydrological modeling experiments. Future 

research should emphasize providing proper guidance for climate forcing data corrections. 

In addition, investigations into high-resolution soil information data products as well as land 

use and land cover data are needed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Lower Mekong River Basin. Streamflow gauges (described in Table 1) follow the 

Lower Mekong River Basin subareas, as presented by Rossi et al. [14]. Cities with 

population classes obtained from the Environmental Systems Research Institute, Inc. (ESRI) 

World Populated Places layer (https://www.arcgis.com/home, accessed on 25 May 2018) are 

depicted in red (greater than 5 million), orange (1–5 million), and light green (0.5–1 

million).
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Figure 2. 
(a) Precipitation (81 stations), and (b) air temperature (10 stations) in situ data availability at 

the Lower Mekong Basin. The dark blue color (value of 0 or 0%) refers to a complete data 

record, while the beige color (value of 1 or 100%) refers to a complete missing data records 

during a specific year for a specific site.
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Figure 3. 
A schematic showing a layout of the Tropical Rainfall Measurement Mission (TRMM) 

(rectangle in red color at a spatial resolution of 0.25 deg.) and the Integrated Multi-satellite 

Retrievals for the Global Precipitation Measurement mission (IMERG) (circular in black 

color at a spatial resolution of 0.1 deg.) grids labelled with numbers illustrating nearest 

neighbor connectivity. TRMM data from March 2000 to March 2014 were used to fill the 

IMERG grids following the joining methodology explained.
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Figure 4. 
The Lower Mekong River Basin time series data. Annual aggregated weighted average 

precipitation in meters over the LMRB using satellite-based remote sensing (RS) and in-situ 

data. Mean annual aggregated weighted air temperature pattern (maximum and minimum air 

temperatures) in degrees Celsius using remote-sensing-calculated products and in-situ data.
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Figure 5. 
Precipitation data adjustment layout for (a) in-situ station, and (b) satellite-based remote 

sensing (RS) model input. The precipitation data adjustment equals to 1+increment, as 

outlined in Table 2.
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Figure 6. 
The LMRB model calibration. Monthly mean observed and simulated discharge in m3/s at 

six sub-basin watersheds in calibration of the LMRB model. The calibration time period is 

from 2005 to 2006. The red circles are simulated discharge with satellite-based, remote-

sensing precipitation data input, while the blue rectangles are simulated discharge with in-

situ meteorological data input. Here SB stands for sub-basin.

Mohammed et al. Page 17

Remote Sens (Basel). Author manuscript; available in PMC 2018 June 20.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 7. 
The LMRB model verification. Scatterplot of monthly observed and simulated discharge in 

m3/s for the Lower Mekong River at six sub-basin watersheds in validation of the LMRB 

model for 2001–2004, and 2007. Black circles indicate simulated discharge with satellite-

based remote sensing meteorological data input, while red rectangles indicate simulated 

discharge with in-situ precipitation and air temperature data input.
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Figure 8. 
Monthly mean observed and simulated discharge in m3/s at six sub-basin watersheds with 

the use of the LMRB model for 2015. The IMERG precipitation data used to drive the 

LMRB model. The Nash–Sutcliffe Efficiency (NSE) performance metrics are depicted for 

each sub-basin. Here SB stands for sub-basin.
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Table 3

The LMRB model calibration metric results. The percent error (Qerr) between the monthly mean simulated 

and observed discharge and the Nash–Sutcliffe Efficiency (NSE) performance metrics are depicted for each 

sub-basin corresponding to satellite-based remote sensing (RS) and in-situ data input, respectively.

SUB-BASIN

Qerr (%) NSE

RS In-Situ RS In-Situ

SB1 0.81 0.53 0.96 0.91

SB2 −0.29 2.02 0.94 0.70

SB3 0.88 −3.31 0.91 0.75

SB4 0.79 −3.41 0.93 0.78

SB5 4.76 5.74 0.94 0.68

SB6 −1.90 −1.64 0.94 0.83
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Table 4

The LMRB model validation metric results. The LMRB model Nash–Sutcliffe Efficiency (NSE) performance 

metrics are depicted for each sub-basin corresponding to satellite-based remote sensing (RS) and in-situ data 

input, respectively.

Sub-Basin
NSE

RS In-Situ

SB1 0.98 0.97

SB2 0.91 0.83

SB3 0.94 0.79

SB4 0.90 0.83

SB5 0.89 0.75

SB6 0.88 0.84
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