

Acts Author Charles

Highly Active and Stable CH_4 Oxidation by Substitution of Ce^{4+} by Two Pd^{2+} lons in $CeO_2(111)$

Ya-Qiong Su, Jin-Xun Liu,[®] Ivo A. W. Filot,[®] Long Zhang, and Emiel J. M. Hensen^{*®}

Laboratory of Inorganic Materials Chemistry, Schuit Institute of Catalysis, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Supporting Information

ABSTRACT: Methane (CH₄) combustion is an increasingly important reaction for environmental protection, for which Pd/CeO₂ has emerged as the preferred catalyst. There is a lack of understanding of the nature of the active site in these catalysts. Here, we use density functional theory to understand the role of doping of Pd in the ceria surface for generating sites highly active toward the C–H bonds in CH₄. Specifically, we demonstrate that two Pd²⁺ ions can substitute one Ce⁴⁺ ion, resulting in a very stable structure containing a highly coordinated unsaturated Pd cation that can strongly adsorb CH₄ and dissociate the first C–H bond with a low energy barrier. An important aspect of the high activity of the stabilized isolated Pd cation is its ability to form a strong σ -complex with CH₄, which leads to effective activation of CH₄. We show that also other transition metals like Pt, Rh, and Ni can give rise to similar structures with high activity toward C–H bond dissociation. These insights provide us with a novel structural view of solid solutions of transition metals such as Pt, Pd, Ni, and Rh in CeO₂, known to exhibit high activity in CH₄ combustion.

KEYWORDS: CH₄ activation, Pd-doped CeO₂, solid solutions, density functional theory, mechanism, DFT+U

INTRODUCTION

Methane (CH_4) is a significant greenhouse gas with a global warming potential ca. 20 times higher than that of CO_2 Accordingly, it is desirable to develop technologies to remove residual CH₄ present from the exhaust of increasingly popular natural gas engines.²⁻⁶ The challenge is to develop highly active catalysts that can operate at the relatively low temperatures of the exhaust gas. The high Pd loading in the current generation of preferred Pd/CeO₂ catalysts poses a cost challenge, requiring a deeper understanding of the nature of the active sites. $^{1,7-9}$ In automotive three-way catalysis, Pd is already extensively used to catalyze hydrocarbon oxidation. $^{10-13}$ The function of CeO₂ in these catalysts is mainly to store and release oxygen, while more recently its ability to maintain a high dispersion of transition metals has been emphasized.^{14–16} Although the importance of a close interaction between Pd and CeO2 in catalytic oxidation chemistry has been clearly demonstrated,^{1,3,7,17} the exact structure of the active Pd species remains unclear. It has for instance been shown that isolated PdO_x species on the surface of CeO₂ are crucial for the low-temperature CO oxidation performance in Pd/CeO₂.¹⁸

Several studies mention the importance of bulk PdO for high CH₄ combustion activity.^{1,3,7,11,19} Computational studies support this by showing that the (101) surface termination of PdO contains under-coordinated Pd atoms able to form a strong σ -adsorption complex with CH₄.^{11,19-22} Conventionally, CH₄ dissociation on metal surfaces relies on high CH₄ translational energies to enhance the sticking probability. In the context of low-temperature CH₄ activation, a Langmuir– Hinshelwood mechanism for CH_4 combustion is preferred. A recent study of Weaver and co-workers also showed that CH_4 adsorbs strongly on under-coordinated Ir atoms in the $IrO_2(110)$ surface, resulting in low-temperature C–H bond activation.²³

However, the activity of PdO alone is not sufficient to explain the Pd-CeO₂ synergy observed for CH₄ activation. Cargnello et al. showed that PdO species at the Pd-ceria interface account for the high CH₄ combustion activity, while PdO reduction into metallic Pd at T > 850 °C is causing deactivation.¹ Trovarelli and co-workers proposed that highly dispersed Pd, specifically Pd in a PdO₄ square-planar coordination environment, is the most likely active site for CH₄ oxidation.³ Lu and co-workers showed that removal of PdO nanoparticles from a PdO/Ce_{1-x}Pd_xO_{2- σ} catalyst significantly improves CH₄ oxidation, emphasizing the important role of a solid solution of Pd in CeO₂.⁷ The relevance of such solid solutions in ceria-based catalysis is increasingly recognized.^{24–27} Recent literature also suggests that solid ceria solutions of Pt, Pd, Ni, and Rh may be crucial to explain CH₄ combustion at low temperature.^{7,17,28–30}

Usually, doping of transition metals in ceria is modeled by replacing a surface cerium atom by a transition metal atom. For Pd-doped CeO₂(111), we recently considered a conventional octahedral configuration as well as a novel and more stable square-planar configuration for CH₄ oxidation.²⁷ The

Received:
 April 15, 2018

 Revised:
 May 27, 2018

 Published:
 June 6, 2018

predicted CH₄ dissociation rates on these models were lower than on PdO(101) due to weak CH_4 adsorption. 24,27 Earlier, Janik and co-workers considered models in which more than one Pd atom are embedded in the ceria lattice and which can lead to facile CH₄ activation in combination with PdO clusters.^{26,31} We emphasize that these models including the thermodynamically stable (111)-3Pd²⁺ configuration also cannot explain the experimentally observed high CH₄ oxidation activity of Pd-CeO2 solid solutions. Janik and coworkers proposed that the $Pd^{2+} \leftrightarrow Pd^{4+}$ transitions contribute to the high activity of Pd-CeO₂ solid solution.^{26,31} However, structures containing Pd⁴⁺ (e.g., (111)-1Pd⁴⁺/2Pd²⁺) are thermodynamically unstable under reaction conditions. Thermodynamically stable models will only contain Pd²⁺,²⁷ in agreement with experimental XPS and XRD data on Pd- CeO_2 solid solution.^{3,32}

An important corollary of previous data for single-Pd-atom modified CeO₂ surfaces is that CH₄ bonding is extremely weak, i.e., only physical adsorption occurs.^{24,27} Accordingly, adsorbed CH_4 is not effectively activated by Pd^{2+} in these configurations. As a result, the computed energy barriers for CH₄ dissociation are higher than 0.9 eV and the dissociative adsorption of CH₄ is endothermic.²⁷ Thus, from a computational point of view models considered hitherto cannot explain the high catalytic activity of transition metal doped CeO2. 24-27,31,35 In the present work, we show for the first time that one Ce ion is substituted by two Pd ions, resulting in a very thermodynamically stable configuration which is not only sinter-stable but also very reactive toward the C-H bonds in CH₄. One of the Pd ions is 3-fold coordinated by lattice O atoms, while the other is 4-fold coordinated by lattice O atoms. The coordinative unsaturation of this Pd atom results in strong CH₄ chemisorption and activation. We will demonstrate the broader applicability of this concept by computing stability and reactivity of other transition-metal-doped CeO₂ surfaces. These insights are in good agreement with available experimental data.

COMPUTATIONAL DETAILS

Density Functional Theory (DFT) Calculations. We carried out spin-polarized calculations within the DFT framework as implemented in the Vienna Ab initio Simulation Package (VASP).³⁶ The ion-electron interactions were represented by the projector-augmented wave (PAW) method³⁷ and the electron exchange-correlation by the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional.³⁸ The Kohn-Sham valence states were expanded in a planewave basis set with a cutoff energy of 400 eV. The Ce(5s,5p,6s,4f,5d), O(2s,2p), Pd(4d5s), and C(2s,2p) electrons were treated as valence states. We have used the DFT+Uapproach, in which U is a Hubbard-like term describing the onsite Coulombic interactions.³⁹ This approach improves the description of localized states in ceria, where standard LDA and GGA functionals fail. For Ce, a value of U = 4.5 eV was adopted, which was calculated self-consistently by Fabris et al.⁴⁰ using the linear response approach of Cococcioni and de Gironcoli⁴¹ and which is within the 3.0-6.0 eV range that provides localization of the electrons left upon oxygen removal from ceria.⁴² For the calculations of TM-doped CeO₂(111) (TM = transition metal = Pd, Pt, Ni, Rh, Cu and Zn), we used a periodic slab with a (4×4) supercell in which one of the surface Ce atoms was substituted by one TM atom. The

CeO₂(111) slab model is three Ce–O–Ce layers thick and the vacuum gap was set to 15 Å. The atoms in the bottom layer were frozen to their bulk position and only the top two Ce–O–Ce layers were allowed to relax. The bulk lattice constant (5.49 Å) as previously calculated using the PBE+U (U = 4.5 eV) functional was used.⁴³ For the Brillouin zone integration, a Monkhorst–Pack $1 \times 1 \times 1$ mesh was used. To examine the influence of the size of the Monkhorst–Pack grid, we computed the CH₄ adsorption energy on a Pd₁/Pd-dop-II model at Monkhorst–Pack $1 \times 1 \times 1$ and $2 \times 2 \times 2$ meshes. Both the absolute and CH₄ adsorption energies are the same for both mesh sizes. Accordingly, we computed all energies in the Γ -point. The climbing image nudged-elastic band (CI-NEB) algorithm^{44,45} was used to identify the transition states for the CH₄ activation and dissociation on selected models.

Microkinetic Model. The dissociation of CH_4 from a molecularly adsorbed precursor state was described by the following kinetic scheme^{23,46}

$$CH_4 + * \underset{k_{des}}{\overset{k_{ads}}{\leftrightarrow}} CH_4 *$$
$$CH_4 * + [O] \xrightarrow{k_r} CH_3 * + H - [O]$$

Here, [O] is a lattice oxygen atom neighboring a Pd atom. To compute the reaction rate of CH₄ dissociation, we follow a Langmuir–Hinshelwood type kinetic model,⁴⁷ in which we assume that the C–H bond dissociation step is slower than the adsorption/desorption steps of CH₄ (i.e., adsorption of CH₄ is quasi-equilibrated). CH₄ dissociation is usually considered to be irreversible. The equilibrium constant *K* for molecular CH₄ adsorption is given by

$$K = \frac{k_{\rm ads}}{k_{\rm des}} = \frac{\theta_{\rm CH_4}}{\theta_* P_{\rm CH_4}} \tag{1}$$

in which $k_{\rm ads}$ and $k_{\rm des}$ are the adsorption and desorption rate constants, $P_{\rm CH_4}$ is the methane partial pressure and $\theta_{\rm CH_4}$ and θ_* are the coverage with CH₄ and the fraction of empty sites, respectively. The site balance leads to the following expression for the coverage of molecularly adsorbed CH₄

$$\theta_{\rm CH_4} = \frac{KP_{\rm CH_4}}{1 + KP_{\rm CH_4}}$$
(2)

The equilibrium constant can be written as

$$K = e^{-\Delta G(T,P)/k_{\rm B}T} = e^{-[E_{\rm ads} - \mu(T,P)]/k_{\rm B}T}$$
(3)

where $\Delta G(T,P)$, E_{ads} , and $\mu(T,P)$ are the Gibbs free energy change due to molecular CH₄ adsorption, the DFT-computed adsorption energy of molecularly adsorbed CH₄ and the chemical potential of gaseous CH₄ at the temperature *T* and pressure *P*, respectively. The chemical potential of methane was given as below

$$\mu(T, P) = \mu(T, P^{\theta}) + RT \ln\left(\frac{P_{CH_4}}{P^{\theta}}\right)$$
$$= [H(T, P^{\theta}) - H(0K, P^{\theta})] - T[S(T, P^{\theta}) - S(0K, P^{\theta})]$$
$$+ RT \ln\left(\frac{P_{CH_4}}{P^{\theta}}\right)$$

(4)

where P^{θ} is the standard atmospheric pressure, and the enthalpy *H* and entropy *S* of methane were obtained from standard thermodynamic tables.⁴⁸

The rate for CH₄ dissociation can then be written as

$$r = k_{\rm r} \theta_{\rm CH_4} = \frac{k_{\rm r} K P_{\rm CH_4}}{1 + K P_{\rm CH_4}} \tag{5}$$

in which the rate constant k_r is computed from the computed activation barrier for C–H bond dissociation in adsorbed CH₄ according to

$$k_{\rm r} = \frac{k_{\rm B}T}{h} e^{-E_{\rm a}/k_{\rm B}T} \tag{6}$$

RESULTS AND DISCUSSION

Focusing first on Pd, its substitution for Ce in the CeO₂ surface is energetically favorable and lowers the energy to remove an oxygen surface atom, which creates an oxygen vacancy (V_O) .^{26,27} While most theoretical studies assume an octahedral Pd coordination arising from the Pd for Ce substitution (retaining the initial octahedral coordination of Ce⁴⁺ in the surface), we demonstrated that a stable structure exists with nearly the same energy in which Pd adopts a square-planar configuration.²⁷ This structure is much more active in CO oxidation than the octahedral structure. The conventional octahedral (Pd-dop-I) and the alternative square-planar (Pddop-II) models for Pd-doped CeO₂ are shown in Figure 1a.

Figure 1. (a) Optimized configurations of Pd atoms dispersed on $CeO_2(111)$. (color code: white = Ce; gray = O; red = O neighboring Pd; cyan = Pd); (b) chemical potential μ of Pd atoms dispersed on $CeO_2(111)$ (dashed lines) and Pd NPs on $CeO_2(111)$ as a function of the nanoparticle radius *R* (full line). The chemical potential of bulk Pd is set to zero: $\mu_{bulk} = 0$.

CH₄ adsorption is however weak on these Pd-doped surfaces, resulting in a low rate of C–H bond dissociation,²⁷ orders of magnitude lower than experimentally observed rates.⁷ Given the importance of under-coordinated surface atoms in PdO, we should also consider atomically dispersed Pd atoms on the CeO₂(111) surface (Pd₁/CeO₂(111) in Figure 1a) as candidate active sites. However, a previous computational

study showed that these isolated Pd atoms on $CeO_2(111)$ will easily agglomerate into larger clusters via Ostwald ripening.⁴⁹ Therefore, we explored an alternative structure in which we added a Pd atom to the single Pd-doped CeO₂.

Figure 1a also shows the surface obtained by adding a Pd atom to the Pd-dop-II surface model (denoted as Pd₁/Pd-dop-II). Adding a Pd atom is favorable ($\Delta E = -1.66 \text{ eV}$) with respect to bulk Pd, which indicates that the surface Pd atom is very stable in this position. This is further confirmed by the much higher diffusion barrier to an adjacent CeO₂ surface site of 3.37 eV (Figure S2) in comparison to the value of 0.14 eV for Pd₁/CeO₂.⁴⁹ When we add a Pd atom to the Pd-dop-I model, the resulting structure spontaneously relaxed to $Pd_1/$ Pd-dop-II during geometry optimization in Figure S3. Adding another Pd atom to Pd₁/Pd-dop-II is unfavorable ($\Delta E = +1.51$ eV with respect to bulk Pd). Figure 1b shows the chemical potential of the different models in comparison to the chemical potential of supported Pd metal clusters as a function of their size.⁵⁰ While Pd₁/CeO₂(111) and Pd₂/Pd-dop-II are less stable compared to ceria-supported Pd clusters, Pd-dop-II and Pd₁/Pd-dop-II are favored over supported Pd clusters and bulk Pd. Pd₁/Pd-dop-II is also stable with respect to the O stoichiometry under typical reaction conditions. The removal of surface O atoms bound to the 3-fold and 4-fold Pd atoms from this structure costs 2.48 and 2.72 eV, respectively. Thus, the O atoms are more strongly bound to the Pd atoms than the O atoms in the stoichiometric CeO₂ surface.⁵¹ It is also important to mention that adsorption of an O atom on the coordinatively unsaturated Pd atom of Pd1/Pd-dop-II is very weak (-0.10 eV). Taken together, these results imply that Pd₁/Pd-dop-II is the thermodynamically expected structure under typical oxidative reaction conditions. In essence, the structure is the result of the substitution of one Ce⁴⁺ ion by two Pd²⁺ ions, which is in line with the much larger radius of Ce^{4+} (0.97 Å) compared to Pd^{2+} (0.64 Å).^{33,52-54} The ionic radii are shown in Table 1, while Figure 2 highlights the

Figure 2. Illustration of the replacement of (left) one lattice Ce^{4+} ion by (right) two Pd^{2+} ions (ionic radii of Ce^{4+} and Pd^{2+} used).

possibility to replace a Ce⁴⁺ ion by two Pd²⁺ ions. Table 1 also shows that other transition metals can lead to similar structure and this topic will be discussed below. For the Pd case, one of the Pd atoms is coordinated by four lattice O atoms, while the other one is coordinated by three O atoms. We emphasize that this structure is very different from earlier proposed doping models.^{24–27,31,35} The unusual aspect of the novel model is

metal	cerium		nick	el	palladi	um	platinum		rhodium			copper		zinc
ion	Ce ³⁺	Ce ⁴⁺	Ni ²⁺	Ni ⁴⁺	Pd ²⁺	Pd ⁴⁺	Pt ²⁺	Pt ⁴⁺	Rh ²⁺	Rh ³⁺	Rh ⁴⁺	Cu^+	Cu ²⁺	Zn^{2+}
R (Å)	1.04	0.97	0.69	0.48	0.64	0.63	0.80	0.62	0.72	0.67	0.615	0.46	0.62	0.74

Figure 3. (a) Initial, transition, and final states of CH_4 dissociation by the Pd_1/Pd -dop-II structure; (b) energy profiles of CH_4 adsorption and dissociation by various Pd-containing models; (c) computed CH_4 dissociation rates (T = 300-1000 K, $P_{CH_4} = 0.1$ atm).

that, unlike earlier models, it contains a stable threecoordinated Pd ion, which we expect to strongly adsorb CH_4 . Therefore, we explored in the following the adsorption and activation of CH_4 on the Pd₁/Pd-dop-II structure.

CH₄ adsorption and dissociation are the crucial steps in the CH_4 combustion process.^{23,55} The adsorption energy of CH_4 on the Pd₁/Pd-dop-II model is -0.59 eV, which is slightly higher than the value of -0.47 eV computed for the PdO(101) surface. CH₄ adsorbs only weakly on Pd-dop-II. The adsorption energy of -0.15 eV is nearly similar to the adsorption energy on the stoichiometric CeO₂ surface.²⁷ From this difference, we infer that the presence of a coordinated unsaturated Pd²⁺ ion leads to stronger adsorption. Figure 3a shows the initial adsorption structure of CH₄ as well as the transition and final states for its dissociation into CH₃ and H, resulting in Pd-CH₃ and OH fragments. The potential energy surfaces for CH₄ adsorption and dissociation of CH₄ on this and other models are depicted in Figure 3b. The activation barrier for CH₄ dissociation on Pd₁/Pd-dop-II is 0.60 eV. The adsorption energies of CH4 on most other models are significantly lower than for Pd1/Pd-dop-II with comparable or higher barriers (e.g., 0.64 eV for PdO(101) and 0.70 eV for $Pd_1/CeO_2(111)$). The exception is Pd-dop-II, on which CH_4 can be activated with an energy barrier of only 0.27 eV. As discussed before, the low barrier is due to the high activity of the surface O radical.²⁷ The Pd-dop-II structure is however not stable, and the reactive O atom is spontaneously removed to form the thermodynamically much more stable Pd-dop-II-Vo structure. The activation energy of CH₄ dissociation on this stable surface is 0.99 eV.²⁷

In order to compare C–H bond dissociation for the different surface models, we considered a Langmuir–Hinshelwood kinetic scheme in which gaseous CH_4 is quasiequilibrated with adsorbed CH_4 , followed by the slow C–H bond dissociation step, resulting in Pd-CH₃ (CH₃*) and O–H (H*) species.²³ This kinetic model together with the computed DFT-energetics predicts that CH_4 dissociation proceeds with the highest rate on Pd₁/Pd-dop-II and then decreases in the order Pd-dop-II > PdO(101) > Pd(211) > Pddop-II-V_O (Figure 3c). Although the activation barrier for the C–H bond dissociation on Pd-dop-II is the lowest among the models investigated, the weak adsorption of CH_4 results in a very low CH_4 coverage and, henceforth, a low overall reaction rate. The thermodynamically preferred structure Pd-dop-II-V $_{\rm O}$ has the lowest overall reaction rate.

We compare these data to the work of Janik's group on Pd/ CeO2 for CH4 activation, who studied doping of ceria with multiple Pd atoms.^{26,31} Considering only Pd-doping of ceria, a higher activity than PdO(101) is only predicted for their (111)-1Pd⁴⁺/2Pd²⁺ structure.²⁶ However, according to their ab initio phase diagram this structure is not stable under relevant reaction conditions, while the most stable (111)-3Pd²⁺ structure exhibits a more than 2 orders of magnitude lower activity than PdO(101). We also note that the C-H bond distance in the transition states for CH₄ dissociation presented by Janik and co-workers is longer than 2 Å. This distance is too long to represent a C-H bond as one would expect to exist in the transition state for C-H bond dissociation of CH₄. For instance, the C-H distance in the transition states of CH₄ dissociation shown in Figure 3a is around 1.4 Å, close to values reported in the literature.^{22,23,27,30} Detailed configurations and the potential energy surface for CH₄ dissociation on Pd₁/Pddop-II are shown in Figure S6. Janik and co-workers also investigated PdO clusters supported on Pd-doped ceria.³¹ The computed reactivity of these models for CH₄ dissociation are much lower than that of PdO(101).³¹ Thus, we can firmly conclude that our proposed model composed of two Pd²⁺ ions in the $CeO_2(111)$ surface as a model for a solid Pd-CeO₂ solution can provide a good explanation for the experimentally observed high CH₄ dissociation activity after removal of PdO from a catalyst containing PdO clusters on a Pd-CeO₂ solid solution.7 In essence, the coordinatively unsaturated Pd cation in Pd₁/Pd-dop-II is highly reactive toward methane's C-H bonds due to the formation of a strong σ -complex similar to the complex proposed for CH_4 adsorption on $IrO_2(110)$.²

We compared in more detail the (electronic) structure of CH_4 adsorbed on Pd_1/Pd -dop-II and PdO(101). In both surfaces, the Pd cation is 3-fold coordinated (Figure 4). Charge analysis shows that CH_4 adsorption on Pd_1/Pd -dop-II leads to an increase of the Pd cation charge, while the reverse holds for the Pd cation in PdO(101) (Table S3). The latter is in line with an earlier computational study.¹¹ Electron density difference plots before and after CH_4 adsorption on the two surfaces in Figure 4 show that there is a redistribution of electron density between CH_4 and the surface. Moreover, there is clear evidence for the formation of a σ -complex in Pd_1/Pd-dop-II. A density-of-state analysis indicates that 4d-electrons

Figure 4. (a,b) Adsorption and transition states of CH_4 by Pd_1/Pd dop-II. (c,d) Adsorption and transition states of CH_4 by PdO(101). (e,f) Electron density difference contours of CH_4 adsorption on Pd_1/Pd dop-II and PdO(101). (Color code: cyan = Pd; red = O; off-white = Ce; gray = C; white = H).

from the Pd surface cation in Pd₁/Pd-dop-II effectively overlap with the 1t₂ frontier molecular orbitals of CH₄ and henceforth strengthen the adsorption of CH₄ (Figure S8). This type of interaction is absent in the CH₄ adsorption complex with PdO(101). Figure 4 also shows that the local coordination environment around CH₄ adsorbed on Pd₁/Pd-dop-II is more favorable for the formation of an O–H bond during C–H bond cleavage. Notably, the C–H bond that will finally dissociate is elongated more in the CH₄ adsorption complex with Pd₁/Pd-dop-II (1.13 Å) than in the corresponding complex with PdO(101) (1.09 Å). This result is important as it shows that a Pd cation at the interface with Pd-doped CeO₂ can strongly adsorb and activate CH₄.

We investigated the feasibility of complete CH_4 oxidation on the Pd_1/Pd -dop-II model. Figure 5 shows the potential energy diagram for the complete catalytic cycle. After CH_4 Research Article

dissociation, the resulting CH₃* species can be further dehydrogenated to Pd-CH₂ (CH₂*) species and another O-H species (Int2 \rightarrow Int3). This process is endothermic by 0.55 eV and requires overcoming an activation barrier of 1.05 eV. The CH₂ species on the 3-fold Pd atom will migrate to a neighboring lattice O atom to form a CH₂O species ($\Delta E =$ -1.79 eV) with a barrier of only 0.48 eV. Next, an O₂ molecule will adsorb on the 3-fold Pd atom (Int4 \rightarrow Int5, $E_{ads} = -0.86$ eV). The reaction then further proceeds via a sequence of facile H-transfer steps on the surface forming OOH species that are involved in C-H bond dissociation and H₂O formation. The third C-H bond dissociation step in CH₂O is highly exothermic ($\Delta E = -3.09 \text{ eV}$). After H₂O desorption (Int7 \rightarrow Int8), rotation of OCHO occurs, enabling further O₂ adsorption (Int9 \rightarrow Int10), C–H bond cleavage and formation of CO₂. CO₂ desorption costs 0.52 eV, leaving one oxygen vacancy (Int11 \rightarrow Int12). Dissociation of OOH heals this vacancy (Int12 \rightarrow Int13), while the other OH fragment reacts with the remaining H atom to form another H₂O molecule (Int13 \rightarrow Int14). H₂O desorption ($\Delta E = +1.55 \text{ eV}$) completes the catalytic cycle.

Overall, the reaction pathway for complete CH₄ oxidation for the novel Pd₁/Pd-dop-II model appears to be feasible. Weaver and co-workers reported that the formation of the CH₂ intermediate is the most difficult step ($E_a = 1.44 \text{ eV}$) for CH₄ oxidation on PdO(101).²¹ The highest barrier for our model is significantly lower ($E_a = 1.05$ eV). Taking into account entropy, we computed that the rate of this C-H bond activation step at 623 K is still 2 orders of magnitude higher than the overall process of adsorption and dissociation of CH₄. The reaction energy diagram also emphasizes the influence of competitive adsorption of O2 and H2O. This will shift the operating window of this catalyst to a temperature regime where vacant Pd sites are available. We can compare the O_2 and H_2O adsorption energies of, respectively, -0.82 and -1.55eV to those for PdO(101), i.e. -1.58 and -1.01 eV, respectively. Thus, while O2 inhibition is alleviated in our model with respect to PdO(101), competition with H_2O is

Figure 5. Energy diagram for the reaction $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$ on Pd_1/Pd -dop-II. The structure of selected intermediates (Int) are depicted (all structures in the Supporting Information). The active site * is the 3-fold Pd atom of Pd_1/Pd -dop-II; [O] represents a surface lattice O atom involved in the reaction; V_0 represents the oxygen vacancy. (color code: white = Ce; gray = O; red = lattice O neighboring Pd or O of molecular O_2 , H_2O or CO_2 ; cyan = Pd; blue = H).

Table 2. Insertion Energy of	t the First TM Atom into	One Lattice Ce Position	Atom $(E_{ads}-TMT)$ and	the Second TM Ato	om
$(E_{ads}$ -TM2) with Respect to	Corresponding TM Bulk	t Atoms ^a			

TM ₁ /TM-dop-II	Ni	Pd	Pt	Cu	Rh	Zn
$E_{\rm ads}$ (TM1, eV)	-4.79	-3.62	-4.04	-4.20	-4.24	-4.79
$E_{\rm ads}$ (TM2, eV)	-2.03	-1.66	-0.61	-1.22	-1.21	-3.65
$E_{\rm ads}$ (CH ₄ , eV)	-0.42	-0.59	-0.81	-0.41	-0.46	-0.17
$E_{\rm a}~({\rm eV})$	0.62	0.60	0.49	0.75	0.52	1.10
ΔE (eV)	-0.42	-0.49	-0.77	-0.70	-0.55	0.52
$r \text{ (molecules} \cdot \operatorname{site}^{-1} \cdot \operatorname{s}^{-1})$	1.41×10^{0}	5.57×10^{1}	3.30×10^{4}	9.42×10^{-2}	2.12×10^{1}	1.04×10^{-6}

^{*a*}Adsorption energy E_{ads} , activation energy E_a , reaction energy ΔE of CH₄ dehydrogenation, and the rate of CH₄ dissociation by TM₁/TM-dop-II. $P_{CH_4} = 0.1$ atm, and T = 623 K.

more prominent. Based on the gas phase entropy of H_2O , we can predict that the free energy of H_2O desorption is lower than the highest barrier at around 500 K. The occurrence of these competitive effects has been experimentally demonstrated by Weaver and co-workers in a TPD study for PdO(101).⁵⁶ The systematic study for PdO(101) by Bossche and Gronbeck showed that CH_4 oxidation is inhibited by molecular H_2O adsorbed on under-coordinated Pd sites at low temperature.¹⁹ Summarizing, Pd₁/Pd-dop-II provides a model on which CH_4 can be activated in a facile manner and a complete reaction cycle leading to CO_2 and H_2O is possible.

Encouraged by these insights, we also investigated the effect of modification of CeO2 with Ni, Pt, Rh, Cu, and Zn, because the former three give rise to active CH4 combustion catalysts ^{2,29,30} while the latter two are expected to be in solid solutions,¹ low active catalysts. The substitution of all of these transition metals in the $CeO_2(111)$ surface is favorable against the bulk of the corresponding transition metal (Table 2). Except for Pt, these transition metals adopt the same square-planar configuration as Pd (Figure S11).²⁷ The most stable configuration for Pt is the octahedral one, which is likely related to the larger size of Pt in comparison with the other substituents (Table S2). Placement of another like transition metal atom on the doped site is also exothermic, showing the generality of the stabilization of transition metal atoms on doped CeO₂. Next, we investigated CH₄ adsorption on these structures. The adsorption energy is highest on Pt₁/Pt-dop and decreases in the order Pt_1/Pt -dop > Pd_1/Pd -dop > Rh_1/Rh dop > Ni_1/Ni -dop $\approx Cu_1/Cu$ -dop > Zn_1/Zn -dop. The electron density difference plots for CH₄ adsorbed on Pt₁/ Pt-dop and Zn₁/Zn-dop in Figure S13 show an effective σ complex formation for the Pt case similar to Pd, while it is absent for Zn. The activation barrier for C-H bond dissociation follows roughly the reverse trend with Zn₁/Zndop having the highest activation barrier and Pt₁/Pt-dop the lowest.

Using the kinetic model for CH₄ adsorption and dissociation, we found that the computed rates decreases in the order Pt₁/Pt-dop \gg Pd₁/Pd-dop > Rh₁/Rh-dop > Ni₁/Ni-dop > Cu₁/Cu-dop > Zn₁/Zn-dop in Figure 6a. At a temperature of 623 K and a CH₄ pressure of 0.1 atm, the dissociation rate is higher for the Pt-doped structure than the Pd-doped one. Figure 6b emphasizes the strong correlation between the activation barrier and the distance between the surface and CH₄ in the adsorbed state. The decreasing activity at high temperature is because the free energy for desorption is higher than the activation barrier for CH₄ dissociation. The free energy change for CH₄ adsorption is given by $\Delta E_{ads} - T\Delta S_{ads}$, in which ΔE_{ads} and $T\Delta S_{ads}$ represent the enthalpy and entropy contributions. The activation free energy barrier is

Figure 6. (a) Computed CH₄ dissociation rates for various TM₁/TMdop-II structures as a function of temperature with $P_{CH_4} = 0.1$ atm and (b) relation between CH₄ dissociation barrier and the distance between the reactive TM atom and the H atom of the activated C–H bond in CH₄ in the adsorbed state.

roughly equal to the activation barrier, as the entropy change during CH₄ dissociation starting from the σ -complex is negligible in comparison with the entropy change during adsorption or desorption. The predicted high activity computed for Pt₁/Pt-dop-II provides a good explanation for the experimentally reported high activity of a Ce_{1-x}Pt_xO_{2- σ} solid solution.^{28,57} In a similar manner, Ni- and Rh-promoted CeO₂ catalysts have also been noted for their promising activity in CH₄ combustion.^{58–62}

CONCLUSIONS

We investigated a novel structure of a solid solution of Pd in CeO₂ with the purpose of explaining the high activity of Pd-CeO₂ solid solutions toward CH₄ activation. We show that two Pd^{2+} ions can substitute one Ce^{4+} ion in the stable $CeO_2(111)$ surface, resulting in a structure that is stable under oxidative conditions. CH₄ will strongly adsorb as a σ -complex on the Pd cation that is coordinatively unsaturated. The CH₄ adsorption energy is higher on this novel structure than on PdO(101). Consequently, the activation barrier for dissociation of the adsorbed CH₄ molecule is lower for Pd₁/Pd-dop-II. Kinetic simulations show that CH_4 dissociation proceeds with the highest rate on this structure. We also show that similar structures can be obtained by doping the $CeO_2(111)$ surface with Pt, Ni, Rh, Cu, and Zn. Specifically, the more reactive transition metals Pt, Ni, and Rh can lead to strong CH₄ adsorption complexes, low C-H activation barriers, and a high CH₄ dissociation activity. The concept of substituting two transition metal ions for one Ce4+ ion in ceria is important as it results in a very stable structure containing a highly reactive coordinatively unsaturated transition metal. We expect that this insight opens up new possibilities to rationally design active and stable catalysts of surface doped oxides.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b01477.

(1) Chemical potential calculations; (2) ab initio thermodynamic analysis, additional structural information, electron density difference analysis, and simulated STM; and (3) complete catalytic cycle of CH_4 oxidation and the configurations of relevant intermediates (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: e.j.m.hensen@tue.nl.

ORCID [©]

Jin-Xun Liu: 0000-0002-7499-4197 Ivo A. W. Filot: 0000-0003-1403-8379 Emiel J. M. Hensen: 0000-0002-9754-2417

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge financial support for the research from The Netherlands Organization for Scientific Research (NWO) through a Vici grant and Nuffic funding. Access to supercomputing facilities was provided by NWO.

REFERENCES

(1) Cargnello, M.; Jaén, J. D.; Garrido, J. H.; Bakhmutsky, K.; Montini, T.; Gámez, J. C.; Gorte, R.; Fornasiero, P. Exceptional Activity for Methane Combustion over Modular Pd@CeO₂ Subunits on Functionalized Al_2O_3 . *Science* **2012**, *337*, 713–717.

(2) Taifan, W.; Baltrusaitis, J. CH_4 Conversion to Value Added Products: Potential, Limitations and Extensions of a Single Step Heterogeneous Catalysis. *Appl. Catal., B* **2016**, *198*, 525–547.

(3) Colussi, S.; Gayen, A.; Farnesi Camellone, M.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A. Nanofaceted Pd_O Sites in Pd_Ce Surface Superstructures: Enhanced Activity in Catalytic Combustion of Methane. *Angew. Chem., Int. Ed.* **2009**, *48*, 8481–8484.

(4) Gélin, P.; Primet, M. Complete Oxidation of Methane at Low Temperature over Noble Metal Based Catalysts: a Review. *Appl. Catal., B* **2002**, *39*, 1–37.

(5) Hu, Z.; Li, B.; Sun, X.; Metiu, H. Chemistry of Doped Oxides: the Activation of Surface Oxygen and the Chemical Compensation Effect. *J. Phys. Chem. C* **2011**, *115*, 3065–3074.

(6) Shin, T. H.; Ida, S.; Ishihara, T. Doped $CeO_2-LaFeO_3$ Composite Oxide as an Active Anode for Direct Hydrocarbon-type Solid Oxide Fuel Cells. J. Am. Chem. Soc. **2011**, 133, 19399–19407.

(7) Meng, L.; Lin, J. J.; Pu, Z. Y.; Luo, L.-F.; Jia, A.-P.; Huang, W. X.; Luo, M. F.; Lu, J. Q. Identification of Active Sites for CO and CH_4 Oxidation over PdO/Ce_{1-x}PdxO_{2- δ} Catalysts. *Appl. Catal., B* **2012**, *119*, 117–122.

(8) Colussi, S.; Trovarelli, A.; Vesselli, E.; Baraldi, A.; Comelli, G.; Groppi, G.; Llorca, J. Structure and Morphology of Pd/Al_2O_3 and $Pd/CeO_2/Al_2O_3$ Combustion Catalysts in Pd–PdO TransformationHysteresis. *Appl. Catal., A* **2010**, 390, 1–10.

(9) Hoffmann, M.; Kreft, S.; Georgi, G.; Fulda, G.; Pohl, M.-M.; Seeburg, D.; Berger-Karin, C.; Kondratenko, E. V.; Wohlrab, S. Improved Catalytic Methane Combustion of Pd/CeO₂ Catalysts via Porous Glass Integration. *Appl. Catal.*, B **2015**, *179*, 313–320. (10) Martin, N. M.; Van den Bossche, M.; Hellman, A.; Grönbeck, H.; Hakanoglu, C.; Gustafson, J.; Blomberg, S.; Johansson, N.; Liu, Z.; Axnanda, S.; et al. Intrinsic Ligand Effect Governing the Catalytic Activity of Pd Oxide Thin Films. *ACS Catal.* **2014**, *4*, 3330–3334.

(11) Hellman, A.; Resta, A.; Martin, N.; Gustafson, J.; Trinchero, A.; Carlsson, P.-A.; Balmes, O.; Felici, R.; van Rijn, R.; Frenken, J.; et al. The Active Phase of Palladium During Methane Oxidation. *J. Phys. Chem. Lett.* **2012**, *3*, 678–682.

(12) Weaver, J. F. Surface Chemistry of Late Transition Metal Oxides. *Chem. Rev.* **2013**, *113*, 4164–4215.

(13) Weng, X.; Ren, H.; Chen, M.; Wan, H. Effect of Surface Oxygen on the Activation of Methane on Palladium and Platinum Surfaces. *ACS Catal.* **2014**, *4*, 2598–2604.

(14) Zheng, T.; He, J.; Zhao, Y.; Xia, W.; He, J. Precious Metal-Support Interaction in Automotive Exhaust Catalysts. *J. Rare Earths* **2014**, *32*, 97–107.

(15) Jen, H.-W.; Graham, G.; Chun, W.; McCabe, R.; Cuif, J. P.; Deutsch, S.; Touret, O. Characterization of Model Automotive Exhaust Catalysts: Pd on Ceria and Ceria–Zirconia Supports. *Catal. Today* **1999**, *50*, 309–328.

(16) Yao, H.; Yao, Y. Y. Ceria in Automotive Exhaust Catalysts: I. Oxygen Storage. *J. Catal.* **1984**, *86*, 254–265.

(17) Zhu, Y.; Zhang, S.; Shan, J. J.; Nguyen, L.; Zhan, S.; Gu, X.; Tao, F. In Situ Surface Chemistries and Catalytic Performances of Ceria Doped with Palladium, Platinum, and Rhodium in Methane Partial Oxidation for the Production of Syngas. *ACS Catal.* **2013**, *3*, 2627–2639.

(18) Spezzati, G.; Su, Y. Q.; Hofmann, J. P.; Benavidez, A. D.; Delariva, A. T.; McCabe, J.; Datye, A. K.; Hensen, E. J. M. Atomically dispersed Pd-O species on $CeO_2(111)$ as highly active sites for low-temperature CO oxidation. *ACS Catal.* **2017**, *7*, 6887–6891.

(19) Bossche, M. V. d.; Grönbeck, H. Methane Oxidation over PdO(101) Revealed by First-Principles Kinetic Modeling. J. Am. Chem. Soc. 2015, 137, 12035–12044.

(20) Kinnunen, N. M.; Hirvi, J. T.; Suvanto, M.; Pakkanen, T. A. Role of the Interface Between Pd and PdO in Methane Dissociation. *J. Phys. Chem. C* 2011, *115*, 19197–19202.

(21) Antony, A.; Asthagiri, A.; Weaver, J. F. Pathways and Kinetics of Methane and Ethane C-H Bond Cleavage on PdO (101). *J. Chem. Phys.* **2013**, *139*, 104702.

(22) Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. Consequences of Metal–Ooxide Interconversion for C–H Bond Activation During CH_4 Reactions on Pd Catalysts. J. Am. Chem. Soc. **2013**, 135, 15425–15442.

(23) Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Low-Temperature Activation of Methane on the $IrO_2(110)$ Surface. *Science* **2017**, 356, 299–303.

(24) Mayernick, A. D.; Janik, M. J. Methane oxidation on Pd–Ceria: A DFT Study of the Mechanism over $Pd_xCe_{1-x}O_2$, Pd, and PdO. *J. Catal.* **2011**, 278, 16–25.

(25) Mayernick, A. D.; Janik, M. J. Methane Activation and Oxygen Vacancy Formation over CeO₂ and Zr, Pd Substituted CeO₂ Surfaces. *J. Phys. Chem. C* 2008, *112*, 14955–14964.

(26) Senftle, T. P.; van Duin, A. C.; Janik, M. J. Role of Site Stability in Methane Activation on $Pd_xCe_{1-x}O_{\delta}$ Surfaces. ACS Catal. **2015**, *5*, 6187–6199.

(27) Su, Y. Q.; Filot, I. A. W.; Liu, J. X.; Hensen, E. J. M. Stable Pd-doped Ceria Structures for CH_4 Activation and CO Oxidation. ACS *Catal.* **2018**, *8*, 75–80.

(28) Jin, J.; Li, C.; Tsang, C.-W.; Xu, B.; Liang, C. Catalytic Combustion of Methane over Pt–Ce Oxides under Scarce Oxygen Condition. *Ind. Eng. Chem. Res.* **2016**, *55*, 2293–2301.

(29) Liu, Z.; Grinter, D. C.; Lustemberg, P. G.; Nguyen-Phan, T. D.; Zhou, Y.; Luo, S.; Waluyo, I.; Crumlin, E. J.; Stacchiola, D. J.; Zhou, J.; et al. Dry Reforming of Methane on a Highly-Active Ni-CeO₂ Catalyst: Effects of Metal-Support Interactions on C- H Bond Breaking. *Angew. Chem., Int. Ed.* **2016**, *55*, 7455–7459. (30) Tang, W.; Hu, Z.; Wang, M.; Stucky, G. D.; Metiu, H.; McFarland, E. W. Methane Complete and Partial Oxidation Catalyzed by Pt-doped CeO₂. *J. Catal.* **2010**, *273*, 125–137.

(31) Senftle, T. P.; van Duin, A. C.; Janik, M. J. Methane Activation at the Pd/CeO₂ Interface. *ACS Catal.* **2017**, *7*, 327–332.

(32) Hiley, C. I.; Fisher, J. M.; Thompsett, D.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Incorporation of Square-Planar Pd^{2+} in Fluorite CeO₂: Hydrothermal Preparation, Local Structure, Redox Properties and Stability. J. Mater. Chem. A **2015**, 3, 13072–13079.

(33) Gulyaev, R.; Kardash, T. Y.; Malykhin, S.; Stonkus, O.; Ivanova, A.; Boronin, A. The Local Structure of $Pd_xCe_{1-x}O_{2-x-\delta}$ Solid Solutions. *Phys. Chem. Chem. Phys.* **2014**, *16*, 13523–13539.

(34) Neitzel, A.; Figueroba, A.; Lykhach, Y.; Skála, T. s.; Vorokhta, M.; Tsud, N.; Mehl, S.; Sevcikova, K.; Prince, K. C.; Neyman, K. M.; et al. Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. *J. Phys. Chem. C* **2016**, *120*, 9852–9862.

(35) Krcha, M. D.; Mayernick, A. D.; Janik, M. J. Periodic Trends of Oxygen Vacancy Formation and C–H Bond Activation over Transition Metal-doped $CeO_2(111)$ Surfaces. *J. Catal.* **2012**, 293, 103–115.

(36) Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal—Amorphous-Semiconductor Transition in Germanium. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1994**, *49*, 14251.

(37) Blöchl, P. E. Projector Augmented-Wave Method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953.

(38) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.

(39) Dudarev, S.; Botton, G.; Savrasov, S.; Humphreys, C.; Sutton, A. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+ U Study. *Phys. Rev. B: Condens. Matter Mater. Phys.* **1998**, 57, 1505.

(40) Fabris, S.; de Gironcoli, S.; Baroni, S.; Vicario, G.; Balducci, G. Reply to "Comment on 'Taming Multiple Valency with Density Functionals: A Case Study of Defective Ceria'. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2005**, *72*, 237102.

(41) Cococcioni, M.; De Gironcoli, S. Linear Response Approach to the Calculation of the EffectiveInteraction Parameters in the LDA+ U Method. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2005**, *71*, 035105.

(42) Castleton, C.; Kullgren, J.; Hermansson, K. Tuning LDA+U for Electron Localization and Structure at Oxygen Vacancies in Ceria. *J. Chem. Phys.* **2007**, *127*, 244704–2447040.

(43) Da Silva, J. L.; Ganduglia-Pirovano, M. V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid Functionals Applied to Rare-Earth Oxides: The Example of Ceria. *Phys. Rev. B: Condens. Matter Mater. Phys.* **2007**, *75*, 045121.

(44) Henkelman, G.; Jónsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. *J. Chem. Phys.* **2000**, *113*, 9978–9985.

(45) Sheppard, D.; Terrell, R.; Henkelman, G. Optimization Methods for Finding Minimum Energy Paths. J. Chem. Phys. 2008, 128, 134106.

(46) Weaver, J. F.; Carlsson, A. F.; Madix, R. J. The Adsorption and Reaction of Low Molecular Weight Alkanes on Metallic Single Crystal Surfaces. *Surf. Sci. Rep.* **2003**, *50*, 107–199.

(47) Liu, J. X.; Su, H. Y.; Sun, D. P.; Zhang, B. Y.; Li, W. X. Crystallographic Dependence of CO Activation on Cobalt Catalysts: HCP versus FCC. J. Am. Chem. Soc. **2013**, 135, 16284–16287.

(48) Stull, D. R.; Prophet, H. JANAF Thermochemical Tables; National Standard Reference Data System: Washington, DC, 1971.

(49) Su, Y. Q.; Liu, J. X.; Filot, I. A. W.; Hensen, E. J. M. Theoretical Study of Ripening Mechanisms of Pd Clusters on Ceria. *Chem. Mater.* **2017**, *29*, 9456–9462.

(50) Liu, J. C.; Wang, Y. G.; Li, J. Toward Rational Design of Oxide-Supported Single-Atom Catalysts: Atomic Dispersion of Gold on Ceria. J. Am. Chem. Soc. **2017**, 139, 6190–6199. (51) Su, Y. Q.; Filot, I. A. W.; Liu, J.-X.; Tranca, I.; Hensen, E. J. M. Charge Transport over the Defective $CeO_2(111)$ Surface. *Chem. Mater.* **2016**, *28*, 5652–5658.

(52) Orera, V.; Merino, R.; Pena, F. $Ce^{3+} \leftrightarrow Ce^{4+}$ Conversion in Ceria-Doped Zirconia Single Crystals Induced by Oxido-Reduction Treatments. *Solid State Ionics* **1994**, *72*, 224–231.

(53) Sun, C.; Xue, D. Size-Dependent Oxygen Storage Ability of Nano-sized Ceria. Phys. Chem. Chem. Phys. 2013, 15, 14414-14419.

(54) Shannon, R. T.; Prewitt, C. T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. **1969**, 25, 925–946.

(55) Zhao, C.; Zhao, Y.; Li, S.; Sun, Y. Effect of Pd Doping on CH_4 Reactivity over Co_3O_4 Catalysts from Density-Functional Theory Calculations. *Chin. J. Catal.* **2017**, *38*, 813–820.

(56) Zhang, F.; Hakanoglu, C.; Hinojosa, J. A., Jr; Weaver, J. F. Inhibition of Methane Adsorption on PdO(101) by Water and Molecular Oxygen. *Surf. Sci.* **2013**, *617*, 249–255.

(57) Mueller, V. H.; Duduković, M. P.; Lo, C. S. The Role of Metal-Support Interaction on Catalytic Methane Activation. *Appl. Catal*, A **2014**, 488, 138–147.

(58) Lee, M.; Nam, J.; Seo, J. Synthesis of Ni-CeO₂ Catalyst for the Partial Oxidation of Methane using RF Thermal Plasma. *Chin. J. Catal.* **2016**, 37, 743–749.

(59) Pal, P.; Singha, R. K.; Saha, A.; Bal, R.; Panda, A. B. Defect-Induced Efficient Partial Oxidation of Methane over Nonstoichiometric Ni/CeO₂ Nanocrystals. *J. Phys. Chem. C* **2015**, *119*, 13610– 13618.

(60) Duarte, R.; Krumeich, F.; van Bokhoven, J. Structure, Activity, and Stability of Atomically Dispersed Rh in Methane Steam Reforming. ACS Catal. 2014, 4, 1279–1286.

(61) Yisup, N.; Cao, Y.; Feng, W.-L.; Dai, W.-L.; Fan, K.-N. Catalytic Oxidation of Methane over Novel Ce–Ni–O Mixed Oxide Catalysts Prepared by Oxalate Gel-Coprecipitation. *Catal. Lett.* **2005**, *99*, 207–213.

(62) Boullosa-Eiras, S.; Zhao, T.; Chen, D.; Holmen, A. Effect of the Preparation Methods and Alumina Nanoparticles on the Catalytic Performance of $Rh/Zr_xCe_{1-x}O_2-Al_2O_3$ in Methane Partial Oxidation. *Catal. Today* **2011**, *171*, 104–115.