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Brain-computer interfaces (BCIs) based on motor imagery (MI) utilizing

multi-channel electroencephalogram (EEG) data are commonly used to

improve motor function of people with motor disabilities. EEG channel

selection can enhance MI classification accuracy by selecting informative

channels, accordingly reducing redundant information. The sequential

backward floating search (SBFS) approach has been considered as one of

the best feature selection methods. In this paper, SBFS is first implemented

to select the optimal EEG channels in MI-BCI. Further, to reduce the time

complexity of SBFS, the modified SBFS is proposed and applied to left and

right hand MI tasks. In the modified SBFS, based on the map of EEG channels

at the scalp, the symmetrical channels are selected as channel pairs and

acceleration is thus realized by removing or adding multiple channels in

each iteration. Extensive experiments were conducted on four public BCI

datasets. Experimental results show that the SBFS achieves significantly higher

classification accuracy (p < 0.001) than using all channels and conventional MI

channels (i.e., C3, C4, and Cz). Moreover, the proposed method outperforms

the state-of-the-art selection methods.

KEYWORDS

electroencephalogram (EEG), channel selection, sequential backward floating search
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1. Introduction

Brain-computer interface (BCI) refers to a complete system that processes signals

from human brain to control different communication devices (Gao et al., 2021).

With the advantages of non-invasiveness, portability, low cost, and high temporal

resolution, electroencephalogram (EEG) is widely used in BCI systems (Padfield

et al., 2019). Potential signals that are commonly used in EEG-based BCI system

mainly include P300 evoked potentials (Picton, 1992; Li et al., 2010), steady state

visually evoked potentials (SSVEP) (Wang et al., 2008; Zhang et al., 2018), and event-

related desynchronization/synchronization (ERD/ERS) (Pfurtscheller and Da Silva,

1999; Pfurtscheller and Neuper, 2006).
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Compared with stimuli-based BCI, the potential signals

for motor imagery (MI) (Ang and Guan, 2016; Yang et al.,

2020) can be easier acquired without external stimulus. MI

tasks can bring out cortical rhythm amplitude suppression

(ERD) and enhancement (ERS) over primary sensorimotor areas

(Taniguchi et al., 2000; Neuper et al., 2005). According to

ERD/ERS phenomenon, the corresponding imagery category

can be determined. Therefore, it is of great significance to

select brain area with active neural activities as signal sources to

improve the quality of EEG signals. Excessive channels not only

deteriorate the portability of BCI system, but also increase the

difficulty of signal analysis (Handiru and Prasad, 2016). Selecting

appropriate EEG channels for different subjects can improve the

performance of MI-based BCI system.

According to the prior knowledge of neurology, C3, C4,

and Cz electrodes and their surrounding channels contain

the most information related to MI, for which these specific

channels are commonly selected. Although the experience-

dependent artificial channel selection is easy for preparation

and implementation, it could be not sufficient for each subject.

The popular channel selection schemes (Alotaiby et al., 2015)

for MI can be mainly divided as embedded techniques,

filtering techniques (Baig et al., 2020), wrapper techniques, etc.

Embedded techniques integrate the channel selection processes

with the model training process, such as recursive channel

estimation with the training of support vector machine (SVM)

(Lal et al., 2004; Schröder et al., 2005). Filtering techniques are

usually based on EEG signal statistics such as common spatial

pattern (CSP) filter coefficients (Tam et al., 2011) and specific

criteria such as mutual information (Ang et al., 2012). Wrapper

techniques typically adopt wrapper approachs with complete

(Kamrunnahar et al., 2009), random (Wei and Wang, 2011) or

sequential (Qiu et al., 2016) search strategies for subset channel

selection (Arvaneh et al., 2010). In addition, neural network

genetic method (Yang et al., 2012) and bispectrum-based

method (Jin et al., 2020) were investigated for EEG channel

selection. Recently, neurophysiological approaches based on

correlation (Jin et al., 2019) and Granger causality (Varsehi and

Firoozabadi, 2021) have also been used in MI channel selection.

However, the EEG channel selection methods of existing studies

have either shown unsatisfactory performance or can only be

used for specific types of data (Varsehi and Firoozabadi, 2021).

Sequential backward floating search (SBFS) is a well-known

feature selection method which has been used to process various

physiological signals (Tork et al., 2013; Karnaukh et al., 2018;

Ahirwal, 2021) and to perform body state assessments (Dreißig

et al., 2020). In this paper, SBFS is utilized in EEG channel

selection for MI-based BCI. The main contributions of this

paper are as follows:

1) To the best of our knowledge, this is the first time SBFS

has been utilized for EEG channel selection.

2) The modified SBFS was proposed and applied to left and

right hand MI tasks to reduce the time complexity of SBFS.

3) Extensive experiments were conducted on four datasets to

confirm the effectiveness of the proposed method.

The remainder of this paper is detailed as follows. Section 2

describes the data used in this paper and the proposed methods.

Section 3 presents the results. The discussion is provided in

Section 4, and finally we conclude the paper in Section 5.

2. Materials and methods

2.1. Datasets

In this work, four common public datasets were used to

evaluate the proposed methods. All EEG data were collected

from the subjects’ brain through acquisition equipments rather

than artificially generated.

1) BCI Competition IV-dataset 1: This dataset recorded 59

channels of EEG signals from 7 healthy subjects (Tangermann

et al., 2012). We only used the data collected from subject a, b,

f, and g, since the other data were artificially generated. Each

subject participated in two classes (from the three classes left

hand, right hand, and foot) of MI tasks. Each data included two

runs, where each run contained 100 trials. In these two runs,

arrows pointing left, right or down were displayed on the screen

for visual cues. Cues were shown for a period of 4 s, during which

the subjects were asked to perform the MI task. After and before

the task, there were 2 s of blank and 2 s of display with a fixation

cross presented in the center of the screen. Namely, the fixation

cross was superimposed on the cues for 6 s. Each trial for the

EEG data acquisition is illustrated in Figure 1A. The EEG signals

were downsampled to 100 Hz.

2) BCI Competition III-dataset IIIa:The dataset was recorded

from 3 subjects (k3, k6, and l1) in 60 channels with a sampling

rate of 250 Hz (Blankertz et al., 2006). The subjects performed

imagery left hand, right hand, foot or tongue movements

according to a cue of random order. When a trial began, the

first 2 s were quiet black-screen. Then an acoustic stimulus and

a cross “+” were presented at t = 2 s. From t = 3 s an arrow

pointing to left, right, up or down was shown for 1 s. In the

meantime, the subjects imagined the movement corresponding

to the arrow until t = 7 s. Each trial for the EEG data acquisition

is shown in Figure 1B. The number of trials per class was 90 or

60 for different subjects. We only use the left and right hand MI

trials in this study.

3) BCI Competition III-dataset IVa: The dataset was recorded

from 5 healthy subjects (aa, al, av, aw, and ay) (Blankertz et al.,

2006). The subjects performed one of the left hand, right hand

and right foot MI within 3.5 s of the occurrence of the visual

cues. Target cues were presented at random intervals (1.75–2.25

s), during which subjects could relax. Each trial for the EEG data

acquisition is presented in Figure 1C. Each subject participated

in 280 trials. The EEG signals were recorded with 118 channels

and were downsampled at 100 Hz.
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FIGURE 1

Time interval of one trial. (A–D) is for dataset 1), 2), 3) and 4),

respectively.

4) BCI competition IV-dataset 2a: The dataset recorded

the EEG data of 9 subjects (A01–A09) who participated in

the 4-class (left hand, right hand, both feet, and tongue) MI

experiments (Tangermann et al., 2012). Raw data were collected

at 22 channels and 250Hz sampling rate. Each subject’s data were

recorded in 2 sessions, each session consisted of 6 runs, and each

run contained 48 trials. i.e., each session was composed of 288

trials in 4 classes, and each class contained 72 trials. We only

classified the trials of left hand and right hand in Session 1. The

timeline for a trial is about 7.5 s, as detailed in Figure 1D. At

the beginning (t = 0 s), a cross “+” appeared on the black screen.

After 2 s (t = 2 s), an arrow pointing either to the left, right, down

or up appeared and stayed on the screen for 1.25 s. The subjects

performed the desired MI tasks until t = 6 s. After a short break,

the screen went black again.

2.2. Data preprocessing

The acquired EEG data were refined in the preliminary

analysis prior to channel selection, feature extraction,

and classification. A portion of Figure 2 shows the

preprocessing procedure.

1) Filtering: A third-order butterworth filter was applied to

raw EEG data in the filtering part. The EEG data from each trial

were filtered between 8 and 30 Hz.

2) Segmentation: The filtered EEG data were segmented

by extracting data segments related to event types. MI events

mainly consist of two intervals: MI and other states (rest or black

screen). For dataset 1), 2), 3) and 4), we used fixed time windows

FIGURE 2

Block diagram of the proposed framework.

of 2–6 s, 3–6 s, 0–3 s, and 3–6 s, respectively. More details exhibit

in Figure 1.

2.3. Channel selection

2.3.1. SBFS-based channel selection

The purpose of channel selection is to identify important

channels and remove redundant and irrelevant channels. The

SBFS starts with a complete set, which is based on a top-down

approach (Pudil et al., 1994). We investigated the SBFS method

for EEG channel selection in MI classification. In this study,

Y denotes the entire channel set. Xk denotes the subset of

channels containing k channels. J(Xk) denotes the classification

performance of a subset Xk. The SBFS algorithm for channel

selection is given in Algorithm 1.

The advantage of applying the update strategy to SBFS in

EEG channel selection is the possibility to increase the value

of optimal accuracy or decrease the number of channels of

optimal accuracy. It is described as follows: the SBFS algorithm

pursues the maximum accuracy under the current number of

channels, and the intermediate (Inclusion) process of the later

channel selectionmay result in the increase of the accuracy of the

previous number of channels. Our update strategy is to replace

with the maximum accuracy each time.
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Input: the set of all channels, Y = {y1, y2, ..., yd}

• The SBFS algorithm takes the entire channel

as input.

Output: Xk = {xj|j = 1, 2, ..., k; xj ∈ Y}, where k = (0, 1, 2, ..., d)

• SBFS returns a subset of channels; the

number of selected channels k, where k < d.

Initialization: Xk = Y , k = d

• We initialize the algorithm with the given

channel set such that k = d.

Step 1(Exclusion):

x− = arg max J(Xk − x),where x ∈ Xk

Xk−1 = Xk − x−

k = k− 1

Go to Step 2

• In step 1, we remove a channel x− from the

channel subset Xk.

• x− is the channel that maximizes our

criterion function upon removal, that is, the

channel which is associated with the optimal

classification performance if it is removed from

Xk.

Step 2(Conditional Inclusion):

x+ = arg max J(Xk + x),where x ∈ Y − Xk

if J(Xk + x) > J(Xk+1) :

Xk+1 = Xk + x+

k = k+ 1

Go to Step 1

• In step 2, we search for channels that would

improve the classification performance when added

back to the channel subset. If such channels

exist, we add the channel x+ that maximizes

the performance improvement. If k = n or an

improvement cannot be made (i.e., such channel

x+ cannot be found), go back to step 1; else,

repeat the current step.

Termination: k = 2

• The channel subset of size k contains the

desired number of channels 2.

Algorithm 1. EEG channel selection using SBFS.

2.3.2. Reducing time complexity: Modified SBFS

Since SBFS is a search method, it makes sense to speed up

the search process without compromising accuracy. Considering

that mu (8–13 Hz bands) and beta (14–30 Hz bands) ERD/ERS

phenomenon are elicited during imagined hand movements

(Ramoser et al., 2000), depending on the location of the channels

in the cerebral cortex, left-right symmetrical channels can be

treated as a channel pair. As is shown in Figure 3, channels of the

same color are considered as a channel pair. For example, red C3

and C4, blue CP1 and CP2, and green FC1 and FC2 are channel

FIGURE 3

Location of EEG electrodes used for data acquisition, taking BCI

competition IV-dataset 1 as an example. Channels of the same

color are treated as a channel pair for selection.

pairs, respectively. Both of them are left-right symmetrical with

respect to the straight lines of CZ and CPZ. Thus, the whole set

contains fewer channel pairs and the modified SBFS can remove

or addmultiple channels at a time. Themain differences between

SBFS and modified SBFS methods are shown in Figure 4. One

can observe that the modified SBFS contains far fewer channel

pairs than before. The time spent on searching process can be

greatly reduced.

2.4. Feature extraction

CSP (Ramoser et al., 2000) is an efficient feature extraction

algorithm for binary classification tasks, which has been

extensively used in MI-based BCI (Dong et al., 2017; Chen B.

et al., 2018). It finds a spatial filter to maximize the differences in

variance between two classes of multi-channel EEG data. Let Ca

and Cb be the normalized covariance matrices of the two classes

of EEG signals which are averaged over trials. The composite

spatial covariance matrix is Cc = Ca + Cb. Decomposing Cc,

we can obtain Cc = UλUT, where λ is the eigenvalue and U is

the eigenvector. And the whitening transformation is

P =
√

λ−1UT (1)

Then the covariance matricesCa andCb can be transformed

into:

Sa = PCaP
T (2)
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FIGURE 4

Search chart of the SBFS and the modified SBFS.

Sb = PCbP
T (3)

It can be seen that Sa and Sb have the same eigenvector. Then

we have Sa + Sb = I. Any orthonormal matrix V satisfies the

following

VT(Sa + Sb)V = I (4)

Using the orthonormal matrix V, Sa and Sb can be

decomposed as follows:

Sa = V3aV
T (5)

Sb = V3bV
T (6)

and 3a + 3b = I. The projection matrix is

W = PTV (7)

W is called the CSP weight matrix. The optimal features can

be obtained in the least square case. Finally, the vector of the

features is expressed as:

f = log(var(Wx(t))) (8)

where, x(t) is EEG data.

2.5. Classification

SVM theory was proposed by Vapnik (1999). The

core idea of SVM is to separate the data from the two

classes by finding a hyperplane with the largest possible

margin. As one of the most commonly used BCI-based

MI classifiers, SVM (Subasi and Gursoy, 2010; Qin et al.,

2019) can effectively solve the classification problem of

two classes of EEG data. In this study, we used an SVM

with a radial basis function kernel to classify MI tasks

after feature extraction. The separation of training and test

data is realized by using 10-fold cross validation in the

classification part.

2.6. Framework overview

Firstly, the raw MI EEG data of each subject were

preprocessed. The SBFS and the modified SBFS method

were applied to the training data to obtain the selected

channels. The CSP spatial domain filter was applied

for training data to acquire weight matrices. Finally,

the SVM classifier was trained and the classification

performance with 10-fold cross validation was obtained.

The block diagram of our proposed framework is shown in

Figure 2.
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TABLE 1 Comparison of classification accuracy (%) with di�erent

methods on datasets 1), 2), 3).

Subject
Methods

All channels C3C4Cz SBFS

a 52.0 43.5 74.5

b 44.0 51.0 64.5

f 49.0 46.5 63.5

g 50.0 63.0 68.0

Mean± std 48.8± 3.4 49.3± 5.5 67.6± 5.0

k3 45.6 53.3 78.9

k6 46.7 41.7 76.7

l1 50.0 46.7 80.0

Mean± std 47.4± 2.3 47.2± 5.8 78.5± 1.7

aa 62.1 58.8 84.4

al 62.3 74.1 95.0

av 47.5 60.0 75.0

aw 75.6 68.0 100

ay 67.5 45.0 100

Mean± std 63.0± 10.3 61.2± 11.0 90.9± 10.9

P-value <0.0001 <0.0001 −

“−” Denotes the missing values. The optimal classification accuracies in each row are in

bold.

3. Results

3.1. Classification accuracy and
significance

The classification accuracies of all subjects from datasets

1), 2), 3) using different methods are shown in Table 1. The

classification accuracies of 14 subjects which participated left

and right handMI using different methods are shown in Table 2.

The optimal classification accuracy for each subject and mean

are in bold. The last row of Tables 1, 2 gives the paired t-

test results of the SBFS or the modified SBFS with the current

column method. The C3C4Cz method indicates that only EEG

data from these 3 channels are used in the classification of MI.

From Table 1, for each single subject, the highest classification

accuracy was obtained with SBFS. In particular, subjects aw

and ay achieved 100% classification accuracy. Compared with

all channels, the average performance improvement of the

SBFS method in datasets 1), 2), 3) was 18.8, 31.1, and 27.9%,

respectively. Meanwhile, the SBFS method improved by 18.3,

31.3, and 29.7%, respectively, compared with the C3C4Cz

method. From Table 2, the average accuracy of the SBFS and the

modified SBFS is improved by 21.4 and 20.4%, respectively. It is

shown that the accuracy of the SBFS is significantly better than

all channels and conventional MI channels (p < 0.0001). There

TABLE 2 Comparison of classification accuracy (%) with di�erent

methods on 14 subjects which participate in left and right hand MI

tasks.

Subject
Methods

All channels SBFS Modified SBFS

b 44.0 64.5 62.5

g 50.0 68.0 69.0

k3 45.6 78.9 74.4

k6 46.7 76.7 71.7

l1 50.0 80.0 81.7

A01 45.7 70.7 67.9

A02 51.4 66.4 65.7

A03 55.0 77.9 79.3

A04 46.4 62.9 63.6

A05 51.4 65.0 67.9

A06 49.3 63.6 61.4

A07 57.9 69.3 65.6

A08 60.7 87.1 87.1

A09 48.6 71.4 70.7

Mean± std 50.2± 4.8 71.6± 7.4 70.6± 7.6

P-value <0.0001 0.1522 −

“−” Denotes the missing values. The optimal classification accuracies in each row are in

bold.

is no significant difference (p = 0.1522) between the SBFS and

the modified SBFS.

3.2. Number of selected channels

The number of selected channels with optimal classification

accuracy is shown in Table 3. From Table 3, the number of

channels selected by the SBFS shows a substantial decrease

compared to all channels. In terms of averages, this is specifically

shown as 23 vs. 59, 12 vs. 60, 25 vs. 118, and 10 vs. 22. Overall,

the number of selected channels ranges from one-fifth to one-

half of the total number of usable channels. The number of

channels selected by the modified SBFS method is similar to that

of the SBFS.

3.3. Computation time

In order to compare the computation time between the

SBFS method and the modified SBFS method, the results of

14 subjects who participated in a left and right hand MI task

from datasets 1), 2), 4) were used. The two algorithms were

implemented and tested using MATLAB 20191 configured on

Windows 10 professional operating system and the experiments

1 MATLAB is a commercial mathematical software from MathWorks,

Inc. in the U.S. 2019a is the version number.
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TABLE 3 Comparison of the number of channels selected at the

highest accuracy.

Subject
Methods

All channels SBFS Modified SBFS

a 59 10 −

b 59 45 14

f 59 4 −

g 59 33 17

Average 59 23 −

k3 60 10 14

k6 60 19 20

l1 60 6 20

Average 60 12* 18

aa 118 40 −

al 118 31 −

av 118 37 −

aw 118 6 −

ay 118 13 −

Average 118 25* −

A01 22 7 9

A02 22 4 8

A03 22 13 17

A04 22 3 14

A05 22 7 13

A06 22 14 6

A07 22 19 19

A08 22 8 10

A09 22 15 9

Average 22 10 12*

“*” Denotes that the original number is not an integer. “−” Denotes the missing values.

were performed on an Intel (R) Core (TM) i5-8265U CPU @

1.60GHz, 8.00 GB RAM computer. As can be seen from Figure 5,

the modified SBFS method for channel selection is faster than

the SBFS method. It is precisely because more than one channel

were added or deleted each time that the number of iterations

was reduced, which greatly saved the time.

The computation time of the method is affected by several

factors, such as the number of all channels, the number of trials,

the length of trials, software and hardware configuration etc.

For example, using a parallel for loop (parfor) in Matlab to

speed up the algorithm, the iterations of the parfor loop can

run in parallel on multiple cores of the target hardware (our

computer has 4 cores), and speed of the algorithm obtained by

FIGURE 5

Computation time comparisons between SBFS and modified

SBFS.

testing is shown to be about 4 times faster. During the initial

sessions (also called the training sessions) in BCI experiments,

the desired parameters are adjusted offline according to the

signals collected from different subjects. Thus, the running speed

of the channel selection part is not a concern, even for the

SBFS method. In short, users have the flexibility to choose

the SBFS or the modified SBFS methods according to specific

practical situations.

3.4. Comparison with other selection
methods

We compared SBFS-based EEG channel selection method

with other algorithms in this field. For fairness of comparison,

the data preprocessing, feature extraction and classifier were

used identically.

CSP-rank (Tam et al., 2011) is a channel selection method in

MI-based BCI using CSP. The method is based on the sorting

of CSP filters. To be specific, we first rank the absolute values of

the filter coefficients in each filter respectively, and then take the

electrodes with the next largest coefficients from the two spatial

filters in turn.

Improved sequential floating forward selection (ISFFS) (Qiu

et al., 2016) combines the practical distribution of channels and

an intelligent selection algorithm to select EEG channels.
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TABLE 4 Comparison of classification accuracy (%) with di�erent

channel selection methods on BCI competition IV-dataset 1.

Subject
Methods

CSP-rank ISFFS CCS SBFS

a 62.0 64.5 57.5 74.5

b 57.5 61.5 58.0 64.5

f 53.5 63.5 55.0 63.5

g 61.5 63.5 63.0 68.0

Mean 58.6 63.3 58.4 67.6

The optimal classification accuracies in each row are in bold.

TABLE 5 Comparison of the number of selected channels with

di�erent channel selection methods on BCI competition IV-dataset 1.

Subject
Methods

CSP-rank ISFFS CCS SBFS

a 53 41 42 10

b 27 11 21 45

f 57 8 38 4

g 7 24 25 33

Average 36 21 32* 23

“*” Denotes that the original number is not an integer.

Correlation-based channel selection (CCS) (Jin et al., 2019)

assumes that there is a high correlation between task-related

channels, then the relevant channels are selected.

Tables 4, 5 presents the classification accuracy and the

number of channels at optimal accuracy for different methods,

respectively. The optimal classification accuracy for each subject

and mean are in bold. The SBFS method achieved the best

classification accuracy for both single subjects and mean values.

The SBFS and the ISFFS methods are similar in the number of

selected channels, less than the CSP-rank and the CCS method.

4. Discussion

4.1. Maps of the selected channels

We used MATLAB 2019 (see text footnote 1) with

the EEGLAB toolbox (Delorme and Makeig, 2004) to plot

topographic maps of subjects g, k3, and av from each of the

datasets 1), 2), 3), as shown in Figure 6. The map of the channels

selected by SBFS is shown in Figure 7.

The location of channels was compared with topographic

maps. On the whole, the channels selected by SBFS were

consistent with the corresponding ERD phenomena for all

channels. Channel C3, C4, and Cz or their surrounding channels

located in the motor area of the brain were selected multiple

FIGURE 6

Topographic maps under two channel settings of subjects g, k3

and av from datasets 1), 2), 3). For each topographic map, the

mean value of all trials in the training data is taken. The value of

the unselected channels in the second column maps is set to 0.

times. For dataset 1), Channel C4 and Cz were selected twice.

Also, some channels (C2, C5, CFC3, and CCP2) around C3 and

C4 were selected multiple times. Figure 6 shows that subject

g in the right hand MI task, the ERD phenomena occurred
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FIGURE 7

Maps of selected channels by SBFS for datasets 1), 2), 3). The

blue circles represent selected channels. Darker colors

(Continued)

FIGURE 7 (Continued)

indicate more selections. For dataset 1), channels selected more

than twice from four subjects are colored in the top map. For

dataset 2), channels selected more than once from three

subjects are colored in the middle map. For dataset 3), channels

selected more than twice from five subjects are colored in the

bottom map.

mainly in the left cerebral cortex. For dataset 2), Channel C3

was selected. Channel 32 and 40, located around channel Cz,

were also selected twice. In Figure 6, the ERD phenomena of

subject k3 mainly occurred in the right cerebral cortex during

left hand MI task. For dataset 3), all 5 subjects performed foot

and right handMI tasks. Channel C3 and Cz were selected twice.

They were surrounded by channel CCP3 and CCP4 which were

also selected multiple times. As shown in Figure 6, the ERD

phenomena appears in the left cerebral cortex when subject av

was performing a right hand MI task.

The SBFS method selected channels successively from

bottom (i.e., serial number is larger) to top (i.e., serial number is

smaller). This may lead to channels which are not related to MI

being selected as well. The irregular channel positions resulted

from an evaluation criterion by using cross-validation accuracy

method. Many selected channels were located in the posterior

part of the cerebral cortex. In the case of equal classification

accuracy, the channels with larger ordinal numbers, i.e., the

backward position, were retained, and the channels with smaller

ordinal numbers, i.e., the forward position, were removed.

The topographic maps plotted using the EEGLAB toolbox

under all channels and channels selected by the modified SBFS

for subject k6 are shown in Figure 8, respectively. From Figure 8,

it can also be seen that the topographic map of the channels

selected by the modified SBFS was basically consistent with

that of all channels. Specifically, clear ERD phenomenon can

be observed in the left hand and right hand topographic maps

under channels selected by modified SBFS.

4.2. Parameter sensitivity analysis

Figure 9 plots the variation of classification accuracy with

the number of selected channels by SBFS. With the increase

of the number of selected channels, the overall trend of

classification accuracy increases, then decreases. This may be

due to the fact that there are few channels containing available

information at the beginning and the initial accuracy is low. As

the number of channels increases, the useful information keeps

increasing and the accuracy is improved. With the sustainable

increase of the number of channels, the number of redundant

information channels increases as well, leading to the decrease of

accuracy. Specifically, the change in accuracy with the number

of channels is different for each subject. For example, the
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FIGURE 8

Topographic maps under two channel settings of subjects k6.

For each topographic map, the mean value of all trials in the

training data is taken. The value of the unselected channels in

the maps is set to 0.

classification accuracies of subjects a, b, k6 and av have a slight

decrease initially.

4.3. Future works

The SBFS method obviously outperforms other competing

channel selection algorithms. In the following study, the

proposed framework will be tested on datasets containing more

subjects, such as the Physionet dataset (Goldberger et al., 2000),

to strengthen sufficient persuasiveness. In addition, the SBFS

can be combined with other features to further improve the

classification performance in MI-based BCI. For example, for

small sample data, it might be combined with regularized CSP

feature (Lu et al., 2010).

In this paper, we studied the SBFS method for channel

selection of MI tasks. The idea of a feature selection algorithm

combined with task-related effective features can be extended

to other tasks, e.g., for the SSVEP task, a combination of the

SBFS and canonical correlation analysis (Lin et al., 2006) can be

used, and for the rapid serial visual presentation task (Xu et al.,

2021), a combination of the SBFS and hierarchical discriminant

component analysis (Parra et al., 2007) can be used. Moreover,

the proposed symmetrical strategy which is with respect to the

optimization time can also be extended to other tasks, such as

EEG-based emotion recognition (Chen T. et al., 2018; Gao et al.,

2020; Tang et al., 2022).

FIGURE 9

Classification accuracy of subjects from datasets 1), 2), 3) under

di�erent number of selected channels by SBFS.

Note that, ERD and ERS phenomenon are found not

only in EEG but also in magnetoencephalography (MEG)

recordings. As another non-invasive physiological signal, MEG-

based BCI often involves more sensors. The existing MEG

instrument based on superconducting quantum interference

device technology is typically composed of 275 (gradiometer) or

306 (204 gradiometer and 120magnetometer) sensors. Although

a large number of sensors can provide higher spatial-temporal

resolution for evaluating brain activity patterns, not all sensors

can significantly improve classification accuracy. In addition,

a larger number of channels implies a greater computation

complexity. Recently, Roy et al. (2019, 2020) assessd the effect

of channel selection using intelligent algorithms on MEG

decoding of MI for the first time. Therefore, the application

of the proposed method to MEG data can be explored in

the future.
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5. Conclusion

In this paper, the SBFS method is first applied to EEG

channel selection, combining CSP features and an SVM classifier

to form a new decoding framework. In order to reduce

the time complexity of SBFS, the modified SBFS method is

proposed, in which symmetrical channel pairs are removed

or added in each iteration depending on the location of EEG

channels at the scalp. Experimental results show that the

proposed method can significantly improve the classification

accuracy while reducing the number of EEG channels. The study

provides a new approach to improve the reliability of future

BCI systems.
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