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The complexity of the immune responses is a major challenge in current virotherapy. This study incorporates the innate immune
response into our basic model for virotherapy and investigates how the innate immunity affects the outcome of virotherapy. The
viral therapeutic dynamics is largely determined by the viral burst size, relative innate immune killing rate, and relative innate
immunity decay rate. The innate immunity may complicate virotherapy in the way of creating more equilibria when the viral burst
size is not too big, while the dynamics is similar to the system without innate immunity when the viral burst size is big.

1. Introduction

Oncolytic virotherapy is a promising therapeutic strategy
to destroy tumors [1]. Oncolytic viruses are viruses that
selectively infect and replicate in tumor cells but spare normal
cells, which have two types: wild-type oncolytic viruses which
preferentially infect human cancer cells, and gene-modified
viruses engineered to achieve selective oncolysis. In oncolytic
viral therapy, oncolytic viruses infect tumor cells and replicate
themselves in tumor cells; upon lysis of infected tumor cells,
new virion particles burst out and proceed to infect additional
tumor cells. This idea was initially tested in the middle of
the last century and merged with renewed ones over the last
30 years due to the technological advances in virology and
in the use of viruses as vectors for gene transfer (for the
history of oncolytic viruses, see [2]). Oncolytic viruses have
shown efficacy in clinical trials [3]. However, the immune
response presents a challenge in maximizing efficacy. The
major problem is the complexity of the innate and adaptive
immune responses in the process of oncolytic viral therapy
[4].

Mathematical models have been applied to the under-
standing of oncolytic virotherapy since fifteen years ago. Wu
et al. [5] and Wein et al. [6] proposed and analyzed a system
of partial differential equations that is essentially a radially
symmetric epidemic model embedded in a Stefan problem
to describe some aspect of cancer virotherapy. They were

interested in three alternative virus-injection strategies: a
fixed fraction of cells preinfected with the virus is introduced
throughout the entire tumor volume, within the tumor core,
or within the tumor rim.Wodarz [7] and his review paper [8]
formulated a simple model with three ordinary differential
equations. He studied three hypothetical situations: viral
cytotoxicity alone kills tumor cells, a virus-specific lytic
CTL response contributes to killing of infected tumor cells,
and the virus elicits immunostimulatory signals within the
tumor, which promote the development of tumor-specific
CTL. Komarova and Wodarz [9] and Wodarz and Komarova
[10] analyzed several possible mathematical formulations of
oncolytic virus infection in terms of two ordinary differential
equations, while Novozhilov et al. [11] analyzed ratio based
oncolytic virus infection models. Bajzer et al. [12] used
three ordinary differential equations to model specific cancer
virotherapy with measles virus, and then they considered
optimization of viral doses, number of doses, and timingwith
a simple mathematical model of three ordinary differential
equations for cancer virotherapy [13].

Friedman et al. [14] proposed a free boundary problem
with nonlinear partial differential equations to study brain
tumor glioma with mutant herpes simplex virus therapy. The
model incorporated immunosuppressive agent cyclophos-
phamide to reduce the effect of the innate immune response.
This model reveals the oscillation of cell populations in
the process of oncolytic viral therapy. Vasiliu and Tian [15]

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2017, Article ID 6587258, 17 pages
https://doi.org/10.1155/2017/6587258

https://doi.org/10.1155/2017/6587258


2 Computational and Mathematical Methods in Medicine

proposed a simplified model to study the cell population
oscillation in oncolytic virotherapy, which may be caused by
interaction between infected tumor cells and innate immune
cells. To obtain a basic dynamic picture of oncolytic viral
therapy, Tian [16] proposed a simple model with three ordi-
nary differential equations to represent interaction among
tumor cells, infected tumor cells, and oncolytic viruses and
concluded that the viral therapeutic dynamics is largely
determined by the viral burst size. To further understand
how the viral burst size is affected, Wang et al. [17] and Tian
et al. [18] incorporated virus lytic cycle as delay parameter
into the basicmodel.These delay differential equationmodels
gave another explanation of cell population oscillation and
revealed a functional relation between the virus burst size and
lytic cycle. In a recent paper [19], Choudhury and Nasipuri
considered a simple model of three ordinary differential
equations for the dynamics of oncolytic virotherapy in the
presence of immune response. However, this model did not
include the free virus population, and it may not give a
complete picture of dynamics of viral therapy with innate
immune response.

All proposed mathematical models have given some
insights into oncolytic virotherapy. However, there is a
considerable need to understand the dynamics of oncolytic
virotherapy in the presence of immune responses [4], par-
ticularly, to understand the different effects of the innate
immune system and adaptive immune system on virotherapy.
In response to this call in [4], we plan to construct a compre-
hensive mathematical model for oncolytic virotherapy with
both innate and adaptive immune responses. Toward this
end, we will first build a mathematical model for oncolytic
virotherapy with the innate immune system based on our
basic model proposed in [16]. There are several types of
cells that are involved in the innate immune response in
virotherapy. So far, the experiments show that natural killer
cells, macrophages, and neutrophils have significant effects in
viral therapy [4]. For the sake of simplicity, we lump all these
innate immune cell types to one variable, the innate immune
cell population, in our mathematical model.

Our basic dynamical model for oncolytic virotherapy
studied in [16] is as follows:𝑑𝑥𝑑𝑡 = 𝜆𝑥 (1 − 𝑥 + 𝑦𝐾 ) − 𝛽𝑥V,𝑑𝑦𝑑𝑡 = 𝛽𝑥V − 𝛿𝑦,𝑑V𝑑𝑡 = 𝑏𝛿𝑦 − 𝛽𝑥V − 𝛾V,

(1)

where 𝑥 stands for uninfected tumor cells, 𝑦 for infected
tumor cells, and V for free viruses. For the details of expla-
nations and results, the reader is referred to [16]. The innate
immune response reduces infected tumor cells and viruses
[4, 14]. We incorporate these effects into the basic model.

Denoting the innate immune cell population by 𝑧, we have
the following system:𝑑𝑥𝑑𝑡 = 𝜆𝑥 (1 − 𝑥 + 𝑦𝐶 ) − 𝛽𝑥V,𝑑𝑦𝑑𝑡 = 𝛽𝑥V − 𝜇𝑦𝑧 − 𝛿𝑦,𝑑V𝑑𝑡 = 𝑏𝛿𝑦 − 𝛽𝑥V − 𝑘V𝑧 − 𝛾V,𝑑𝑧𝑑𝑡 = 𝑠𝑦𝑧 − 𝜌𝑧,

(2)

where 𝜆 is tumor growth rate, 𝐶 is the carrying capacity of
tumor cell population, 𝛽 is the infected rate of the virus, 𝜇
is immune killing rate of infected tumor cells, 𝛿 is death rate
of infected tumor cells, 𝑏 is the burst size of oncolytic viruses
(i.e., the number of new viruses coming out from a lysis of an
infected cell),𝑘 is immune killing rate of viruses, 𝛾 is clearance
rate of viruses, 𝑠 is the stimulation rate of the innate immune
system, and 𝜌 is immune clearance rate.

In this study, we analyze this four-dimensional system (2).
Our analysis and numerical study show that the dynamics
of the model is largely determined by the viral burst size 𝑏
and parameters related to the innate immune response. We
can denote the dynamical behaviors of the model by 𝑏, the
ratio of the innate immune killing rate of infected tumor cells
over the innate immune killing rate of free viruses by 𝜇/𝑘,
the relative innate immune killing rate of viral therapy by𝐾, the ratio of the innate immune clearance rate over the
stimulation rate of the innate immune system by 𝜌/𝐶𝑠, and
the relative innate immune response decay rate by 𝑁. These
two combined parameters are related to the innate immune
response. Comparing with the basic model in [16], there are
several critical values of the oncolytic viral burst size 𝑏, 𝑏𝑠1 , 𝑏𝑠2 ,𝑏, and 𝑏0, where 𝑏 is a function of the relative innate immune
killing rate𝐾 and relative innate immune response decay rate𝑁. When 𝑏 is smaller than 𝑏 and the two relative rates are
constrained in some intervals, the system has 5 equilibrium
solutions and 2 of them are positive, while these two positive
equilibrium points coalesce when 𝑏 = 𝑏. When 𝑏 is greater
than 𝑏𝑠1 or 𝑏 and the two relative rates are in the complement
intervals, the system has at most 3 equilibrium solutions with0 innate immune components. An interesting fact is that the
equilibrium points where Hopf bifurcations arise for both
models, (2) and the one in [16], are corresponding to each
other. Therefore, we may conclude that the innate immune
response complicates the oncolytic virotherapy in the way of
creating more equilibrium solutions when the oncolytic viral
burst size is not too big, say less than 𝑏, while the dynamics
is similar to the system without the presence of the innate
immune response when the oncolytic viral burst size is big.

The rest of this article is organized as follows. Section 2
presents analysis of model (2) in 4 subsections. Section 2.1
gives preliminary results about the model, Section 2.2 cal-
culates equilibrium solutions, Section 2.3 studies stability of
equilibrium solutions, and Section 2.4 provides bifurcation
analysis of themodel and themainTheorem 14 to summarize
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the dynamical behaviors of the model (2). Section 3 provides
a numerical study and discussion, where we numerically
compute some dynamical characteristics and simulate the
model, and we also compare the dynamics of our model with
the basic model of oncolytic virotherapy in [16].

2. Analysis of the Mathematical Model

Weconduct a detailed analytical study of our proposedmodel
in this section. The major properties of dynamical behaviors
of our model are summarized in Theorem 14. For each
analysis result, we also provide biological interpretations or
implications as appropriate.

2.1. Positive Invariant Domain. In order to simplify system
(2), we apply nondimensionalization by setting 𝜏 = 𝛿𝑡, 𝑥 =𝐶𝑥, 𝑦 = 𝐶𝑦, V = 𝐶V, 𝑧 = 𝐶𝑧 and rename parameters 𝑟 = 𝜆/𝛿,𝑎 = 𝐶𝛽/𝛿, 𝑐 = 𝜇𝐶/𝛿, 𝑑 = 𝑘𝐶/𝛿, 𝑒 = 𝛾/𝛿, 𝑚 = 𝑠𝐶/𝛿, and𝑛 = 𝜌/𝛿. Then system (2) becomes𝑑𝑥𝑑𝜏 = 𝑟𝑥 (1 − 𝑥 − 𝑦) − 𝑎𝑥 V,𝑑𝑦𝑑𝜏 = 𝑎𝑥 V − 𝑐𝑦 𝑧 − 𝑦,𝑑V𝑑𝜏 = 𝑏𝑦 − 𝑎𝑥 V − 𝑑V 𝑧 − 𝑒V,𝑑𝑧𝑑𝜏 = 𝑚𝑦𝑧 − 𝑛𝑧.

(3)

For convenience, dropping all the bars and writing 𝜏 as 𝑡, we
obtain 𝑑𝑥𝑑𝑡 = 𝑟𝑥 (1 − 𝑥 − 𝑦) − 𝑎𝑥V,𝑑𝑦𝑑𝑡 = 𝑎𝑥V − 𝑐𝑦𝑧 − 𝑦,𝑑V𝑑𝑡 = 𝑏𝑦 − 𝑎𝑥V − 𝑑V𝑧 − 𝑒V,𝑑𝑧𝑑𝑡 = 𝑚𝑦𝑧 − 𝑛𝑧.

(4)

We assume that all parameters are nonnegative.

Lemma 1. If 𝑥(0) ≥ 0, 𝑦(0) ≥ 0, V(0) ≥ 0, and 𝑧(0) ≥ 0, then
the solution of system (4) 𝑥(𝑡) ≥ 0, 𝑦(𝑡) ≥ 0, V(𝑡) ≥ 0, and𝑧(𝑡) ≥ 0 for 𝑡 ≥ 0. Furthermore, if 0 ≤ 𝑥(0) + 𝑦(0) ≤ 1, then0 ≤ 𝑥(𝑡) + 𝑦(𝑡) ≤ 1 for 𝑡 ≥ 0, and lim sup𝑡→+∞V(𝑡) ≤ 𝑏/𝑒.
Proof. The proof is similar to that of Lemma 3.2 in [16].
Here we only show the second part of this lemma by using
comparison theorem for ODEs; that is, if 0 ≤ 𝑥(0)+𝑦(0) ≤ 1,
then 0 ≤ 𝑥(𝑡) + 𝑦(𝑡) ≤ 1 and lim sup𝑡→+∞V(𝑡) ≤ 𝑏/𝑒. In fact,
since 𝑥(𝑡), 𝑦(𝑡), and V(𝑡) are nonnegative for all 𝑡 ≥ 0,𝑥 (𝑡) = 𝑟𝑥 (1 − 𝑥 − 𝑦) − 𝑎𝑥V ≤ 𝑟𝑥 (1 − 𝑥 − 𝑦)≤ 𝑟𝑥 (1 − 𝑥) . (5)

As 𝑥(0) ≤ 𝑥(0)+𝑦(0) ≤ 1, by the comparison theorem we get𝑥(𝑡) ≤ 1. On the other hand, since𝑥 (𝑡) + 𝑦 (𝑡) = 𝑟𝑥 (1 − 𝑥 − 𝑦) − 𝑐𝑦𝑧 − 𝑦≤ 𝑟𝑥 (1 − 𝑥 − 𝑦) ≤ 𝑟 (1 − 𝑥 − 𝑦) , (6)

again by the comparison theorem we also have 0 ≤ 𝑥(𝑡) +𝑦(𝑡) ≤ 1. It follows that 0 ≤ 𝑦(𝑡) ≤ 1. Then V(𝑡) =𝑏𝑦 − 𝑎𝑥V − 𝑑V𝑧 − 𝑒V ≤ 𝑏 − 𝑒V, so by the comparison theorem
V(𝑡) ≤ 𝑏/𝑒 + V(0) exp(−𝑒𝑡). Taking lim sup both sides yield
lim sup𝑡→+∞V(𝑡) ≤ 𝑏/𝑒.

We then conclude that the positive invariant domain of
system (4) is𝐷 = {(𝑥, 𝑦, V, 𝑧) : 𝑥 ≥ 0, 𝑦 ≥ 0, V ≥ 0, 𝑧 ≥ 0, 0 ≤ 𝑥+ 𝑦 ≤ 1} . (7)

This is also a biological meaningful range for the variables.
We will regard the whole domain𝐷 as a global domain.

2.2. Equilibrium Solutions. We know that the dynamics of
oncolytic viral therapy without the presence of the immune
response can be characterized by the burst size 𝑏 [16]. The
effects of the innate immune system on the virotherapy
in our model are encoded in the parameters 𝑐, 𝑑, and 𝑚.
To understand how the innate immune system affects the
dynamics of oncolytic viral therapy, we use three combined
parameters, the viral burst size 𝑏, the relative immune killing
rate 𝐾 = 𝑐/𝑑, and the relative immune response decay
rate 𝑁 = 𝑛/𝑚, to describe the solution behaviors of our
model. We summarize the possible equilibrium solutions in
the following lemma.

Lemma 2. When (𝑟/𝑎)(1/𝑁 − 1) < 𝐾 < 1/(𝑎 + 𝑒 − 𝑎𝑁),𝑁 < 1+(1/2)(𝑒/𝑎+1/𝑟−√(𝑒/𝑎 + 1/𝑟)2 + 4/𝑟), and 𝑏 > 𝑏with𝑏 > 1+𝑒/𝑎, system (4) has 3 equilibrium solutions: 𝐸0, 𝐸1, and𝐸2. When either 𝐾 ≤ (𝑟/𝑎)(1/𝑁 − 1) or 𝐾 > 1/(𝑎 + 𝑒 − 𝑎𝑁)
and 𝑏 = 𝑏 with 𝑔(𝐾) > 0, system (4) has a unique positive
equilibrium solution: 𝐸3. When either 𝐾 ≤ (𝑟/𝑎)(1/𝑁 − 1) or𝐾 > 1/(𝑎 + 𝑒 − 𝑎𝑁) and 𝑏 < 𝑏 with 𝑔(𝐾) > 0, system (4) has
two distinct positive equilibrium solutions: 𝐸4 and 𝐸5.

In what follows we will analyze the existence of equilib-
rium solutions. First, let𝑋 = (𝑥, 𝑦, V, 𝑧)𝑇 and𝐹 (𝑋) = (𝑟𝑥 (1 − 𝑥 − 𝑦) − 𝑎𝑥V, 𝑎𝑥V − 𝑐𝑦𝑧 − 𝑦, 𝑏𝑦− 𝑎𝑥V − 𝑑V𝑧 − 𝑒V, 𝑚𝑦𝑧 − 𝑛𝑧)𝑇 . (8)

Then system (4) can be simply written as the autonomous
system 𝑑𝑋/𝑑𝑡 = 𝐹(𝑋). We assume that (𝑥, 𝑦, V, 𝑧) ∈ 𝐷. The
equilibrium points are solutions of the equation 𝐹(𝑋) = 0;
that is, 𝑥 (𝑟 (1 − 𝑥 − 𝑦) − 𝑎V) = 0,𝑎𝑥V = 𝑦 (𝑐𝑧 + 1) ,
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(9)

If 𝑥 = 0, then, from the second and the third equation of (9),𝑦(𝑐𝑧 + 1) = 0 and 𝑏𝑦 = V(𝑑𝑧 + 𝑒). Since 𝑐𝑧 + 1 > 0, then𝑦 = 0. It leads to V(𝑑𝑧 + 𝑒) = 0, which implies V = 0. The
last equation of (9) gives −𝑛𝑧 = 0, which implies 𝑧 = 0. Thus𝐸0 = (0, 0, 0, 0) is an equilibrium point.

If 𝑥 ̸= 0, the first equation of (9) implies 𝑟(1 − 𝑥 − 𝑦) =𝑎V. Consider the last one 𝑧(𝑚𝑦 − 𝑛) = 0. If 𝑧 = 0, from the
second and the third equation of (9), we get 𝑎𝑥V = 𝑦 and𝑏𝑦 = V(𝑎𝑥 + 𝑒). These follow 𝑎𝑏𝑥V = V(𝑎𝑥 + 𝑒) and hence
V(𝑎𝑏𝑥 − 𝑎𝑥 − 𝑒) = 0. If V = 0, then 𝑦 = 0 and 𝑟(1 − 𝑥) = 0,
which implies that 𝑥 = 1. So 𝐸1 = (1, 0, 0, 0) is an equilibrium
point.

Now if V ̸= 0, then 𝑎(𝑏 − 1)𝑥 = 𝑒. Since we want to
find positive equilibrium points, we assume 𝑏 > 1. Then𝑥 = 𝑒/𝑎(𝑏 − 1). From the equation 𝑟(1 − 𝑥 − 𝑦) = 𝑎V, we
have 𝑟𝑥(1 − 𝑥) = 𝑟𝑥𝑦 + 𝑎𝑥V = 𝑟𝑥𝑦 + 𝑦 = 𝑦(1 + 𝑟𝑥). It follows
that 𝑦 = 𝑟𝑥 (1 − 𝑥)1 + 𝑟𝑥 = 𝑟𝑒 (𝑎𝑏 − 𝑎 − 𝑒)𝑎 (𝑏 − 1) (𝑎𝑏 − 𝑎 + 𝑟𝑒) . (10)

Since 𝑎𝑥V = 𝑦, we have V = 𝑦/𝑎𝑥 = 𝑟(𝑎𝑏−𝑎−𝑒)/𝑎(𝑎𝑏−𝑎+𝑟𝑒).
Thus we get the third critical point𝐸2 = ( 𝑒𝑎 (𝑏 − 1) , 𝑟𝑒 (𝑎𝑏 − 𝑎 − 𝑒)𝑎 (𝑏 − 1) (𝑎𝑏 − 𝑎 + 𝑟𝑒) ,𝑟 (𝑎𝑏 − 𝑎 − 𝑒)𝑎 (𝑎𝑏 − 𝑎 + 𝑟𝑒) , 0) . (11)

Notice that in order for the first three coordinates of 𝐸2 to be
positive, it is enough that 𝑎𝑏 − 𝑎 − 𝑒 > 0; that is, 𝑏 > 𝑒/𝑎 + 1.

Next, if 𝑧 ̸= 0, then 𝑦 = 𝑛/𝑚. Set 𝑁 = 𝑛/𝑚, then𝑦 = 𝑁. From the equation 𝑟(1 − 𝑥 − 𝑦) = 𝑎V, we can
derive 𝑥 = 1 − 𝑁 − 𝑎V/𝑟. By the third equation of (9),𝑧 = ((𝑏−1)𝑁−𝑒V)/(𝑐𝑁+𝑑V). Plugging these expressions into
the second equation gives 𝑓(V) š V3 + 𝑎2V2 + 𝑎1V + 𝑎0 = 0,
where 𝑎2 = 𝑐𝑑𝑁 + 𝑟𝑎 (𝑁 − 1) ,𝑎1 = 𝑟𝑁𝑎2 ⋅ 𝑐𝑑 (−𝑎 + 𝑎𝑁 − 𝑒 + 𝑑𝑐 ) ,𝑎0 = 𝑏 ⋅ 𝑟𝑁2𝑎2 ⋅ 𝑐𝑑 .

(12)

Since 𝑓(0) = 𝑎0 > 0 and limV→−∞𝑓(V) = −∞, 𝑓(V) has at
least one negative root, say V1 < 0. Assume that V1 is the least
root. If 𝑎1 > 0 and 𝑎2 > 0, then 𝑓 has no sign changes at all
and hence the other two roots of𝑓 are either both negative or
both complex. Notice that 𝑎1 > 0 and 𝑎2 > 0 are equivalent to(𝑟/𝑎)(1/𝑁−1) < 𝑐/𝑑 < 1/(𝑎+𝑒−𝑎𝑁) and𝑁 < 1+(1/2)(𝑒/𝑎+1/𝑟 −√(𝑒/𝑎 + 1/𝑟)2 + 4/𝑟). In this case, the system only has 3
equilibrium points: 𝐸0, 𝐸1, and 𝐸2.

Wenow look at other situations of𝑓(V). Taking derivative,𝑓(V) = 3V2 + 2𝑎2V + 𝑎1. By long division,𝑓 (V) = (13V + 𝑎29 )𝑓 (V) + 29 (3𝑎1 − 𝑎22) V − 19𝑎1𝑎2+ 𝑎0. (13)

Suppose that 𝑎22 − 3𝑎1 > 0, then 𝑓 has 2 distinct roots, V∗1
and V∗2 , where V∗2 = (−𝑎2 + √𝑎22 − 3𝑎1)/3 š 𝐴. If V∗2 > 0
and 𝑓(V∗2 ) = 0, then 𝑓 has one negative root, V1, and one
positive root, V2 = V3 = V∗2 = (9𝑎0 − 𝑎1𝑎2)/2(𝑎22 − 3𝑎1).
In this case, in addition to the 3 equilibrium points 𝐸0, 𝐸1,
and 𝐸2, system (4) has one positive equilibrium point: 𝐸3 =(1−𝑁−𝑎𝐴/𝑟,𝑁,𝐴, ((𝑏−1)𝑁−𝑒𝐴)/(𝑐𝑁+𝑑𝐴)). To guarantee
all four coordinates of 𝐸3 are positive, we need to impose1 − 𝑁 − 𝑎𝐴/𝑟 > 0 and (𝑏 − 1)𝑁 − 𝑒𝐴 > 0, which imply that
V∗2 = 𝐴 < 𝑢∗ = min{(1 − 𝑁)(𝑟/𝑎), ((𝑏 − 1)/𝑒)𝑁}.

On the other hand, if V∗2 > 0 and 𝑓(V∗2 ) < 0, then 𝑓 has
one negative root, V1, and 2 distinct positive roots, 0 < V2 <
V∗2 < V3 < 𝑢∗. Hence system (4) has two positive equilibrium
points: 𝐸4,5 = (1−𝑁−𝑎V2,3/𝑟,𝑁, V2,3, ((𝑏−1)𝑁−𝑒V2,3)/(𝑐𝑁+𝑑V2,3)). Notice that V∗2 = 𝐴 > 0 is equivalent to either 𝑎2 ≤ 0,𝑎22 −3𝑎1 > 0 or 𝑎2 > 0 > 𝑎1. Furthermore, 𝑎2 ≤ 0, 𝑎22 −3𝑎1 > 0
are equivalent to 𝑐/𝑑 ≤ (𝑟/𝑎)(1/𝑁−1) and 𝑔(𝑐/𝑑) > 0, where𝑔(𝑥) = 𝑥2 + (𝑟/𝑎𝑁 − 𝑟/𝑎 + 3𝑟𝑒/𝑎2𝑁)𝑥 + (𝑟2/𝑎2)(1/𝑁 − 1)2 −3𝑟/𝑎2𝑁; 𝑎2 > 0 > 𝑎1 is equivalent to 𝑐/𝑑 > max{(𝑟/𝑎)(1/𝑁 −1), 1/(𝑎 + 𝑒 − 𝑎𝑁)}. The condition 𝑓(V∗2 ) ≤ 0 is equivalent to
V∗2 ≥ (9𝑎0 − 𝑎1𝑎2)/2(𝑎22 − 3𝑎1). That is, (−𝑎2 + √𝑎22 − 3𝑎1)/3 ≥(9𝑎0 −𝑎1𝑎2)/2(𝑎22 −3𝑎1), and we have 𝑏 fl 𝑎2𝑑/𝑟𝑐𝑁2 ⋅ (−2𝑎32 +9𝑎1𝑎2+2(𝑎22−3𝑎1)3/2)/27 ≥ 𝑏.The critical value 𝑏 is important
for describing the dynamics of system (4).

We summarize the details of the analysis above as follows.

(i) When 𝑥 = 0, we have equilibrium solution 𝐸0 =(0, 0, 0, 0).
(ii) When 𝑥 ̸= 0, we have the following cases.

(a) If 𝑧 = 0, then(1) when V = 0, we have equilibrium solution𝐸1 = (1, 0, 0, 0).(2) when V ̸= 0 and 𝑏 > 1 + 𝑒/𝑎, we have𝐸2 = ( 𝑒𝑎 (𝑏 − 1) , 𝑟𝑒 (𝑎𝑏 − 𝑎 − 𝑒)𝑎 (𝑏 − 1) (𝑎𝑏 − 𝑎 + 𝑟𝑒) ,𝑟 (𝑎𝑏 − 𝑎 − 𝑒)𝑎 (𝑎𝑏 − 𝑎 + 𝑟𝑒) , 0) . (14)

(b) If 𝑧 ̸= 0, then 𝑥 = 1 − 𝑁 − (𝑎/𝑟)V, 𝑦 = 𝑁, 𝑧 =((𝑏 − 1)𝑁 − 𝑒V)/(𝑐𝑁 + 𝑑V), and V satisfies the
following cubic equation:

V3 + 𝑎2V2 + 𝑎1V + 𝑎0 = 0, (15)

where 𝑎2 = (𝑐/𝑑)𝑁 + (𝑟/𝑎)(𝑁 − 1), 𝑎1 = 𝑟𝑁/𝑎2 ⋅(𝑐/𝑑)(−𝑎 + 𝑎𝑁 − 𝑒 + 𝑑/𝑐), 𝑎0 = 𝑏 ⋅ 𝑟𝑁2/𝑎2 ⋅ 𝑐/𝑑.
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In this case, we can conclude the following.(1) If𝐾 ∈ ((𝑟/𝑎)(1/𝑁−1), 1/(𝑎+𝑒−𝑎𝑁)),𝑁 <1 + (1/2)(𝑒/𝑎 + 1/𝑟 − √(𝑒/𝑎 + 1/𝑟)2 + 4/𝑟),
and 𝑏 > 1 + 𝑒/𝑎, then system (4) has three
equilibrium points: 𝐸0, 𝐸1, and 𝐸2.(2) If either 𝐾 ≤ (𝑟/𝑎)(1/𝑁 − 1), 𝑔(𝐾) > 0, or𝐾 > 1/(𝑎 + 𝑒 − 𝑎𝑁) and 𝑏 = 𝑏, then system
(4) has a unique positive equilibrium point:𝐸3 = (1 − 𝑁 − 𝑎𝐴𝑟 ,𝑁,𝐴, (𝑏 − 1)𝑁 − 𝑒𝐴𝑐𝑁 + 𝑑𝐴 ) , (16)

where V∗2 = 𝐴 < 𝑢∗ fl min{(1 − 𝑁)(𝑟/𝑎),(𝑏 − 1)𝑁/𝑒} and𝑔 (𝑥) = 𝑥2 + ( 𝑟𝑎𝑁 − 𝑟𝑎 + 3𝑟𝑒𝑎2𝑁)𝑥 + 𝑟2𝑎2 ( 1𝑁 − 1)2− 3𝑟𝑎2𝑁. (17)

(3) If either 𝐾 ≤ (𝑟/𝑎)(1/𝑁 − 1), 𝑔(𝐾) > 0, or𝐾 > 1/(𝑎 + 𝑒 − 𝑎𝑁) and 𝑏 < 𝑏, then system
(4) has two distinct positive equilibrium
points:𝐸4 = (1 − 𝑁 − V2𝑞 ,𝑁, V2, (𝑏 − 1)𝑁 − 𝑒V2𝑐𝑁 + 𝑑V2 ) ,

𝐸5 = (1 − 𝑁 − V3𝑞 ,𝑁, V3, (𝑏 − 1)𝑁 − 𝑒V3𝑐𝑁 + 𝑑V3 ) , (18)

where V2 and V3 are two distinct positive
real roots of the above cubic equation that
satisfy 0 < V2 < V∗2 < V3 < 𝑢∗, in which
V∗2 = 𝐴 fl (−𝑎2 + √𝑎22 − 3𝑎1)/3.

In order to interpret our mathematical conditions bio-
logically, we need to understand the combined parameters𝑁 and 𝐾 first. 𝑁 = 𝜌/𝑠𝐶 can be considered as a relative
immune response decay rate since 𝜌 is innate immune cell
death rate, 𝑠 is innate immune stimulating rate by infection,
and 𝐶 is tumor carrying capacity. 𝐾 = 𝑐/𝑑 = 𝜇/𝑘 is the
ratio of the rate of immune killing infected tumor cells over
the rate of immune killing viruses, which can be considered
as a relative immune killing rate of viral therapy since it
describes the ability of the innate immune system destroying
infection versus destroying viruses. Biological interpretation
of Lemma 2 is as follows. If there are no tumor cells, we have
zero equilibrium 𝐸0. If we do not consider the effect of the
immune system, and the viruses are not powerful, that is, the
burst size is smaller than a critical value, then the system has
the equilibrium 𝐸1 with only tumor cells; if the viruses are
powerful, that is, the burst size is greater than a critical value,
then the system has the equilibrium 𝐸2 with the coexistence
of tumor cells, infected tumor cells, and viruses. When we
consider the immune effect, if the burst size is another critical
value 𝑏 and the relative immune killing rate satisfies some
conditions, the system has a unique positive equilibrium; if

the burst size is greater than that critical value and the relative
immune killing rate satisfies certain similar conditions, the
system has other two positive equilibria. Combining stability
analysis, we can havemore biological implications in the next
two subsections.

2.3. Stability Analysis of Equilibrium Solutions. In this subsec-
tion, we apply various methods to analyze the asymptotically
stable behaviors of equilibrium solutions. By finding the
eigenvalues of the variational matrix of system (4) at the
equilibrium points, we show 𝐸0 is locally unstable, 𝐸1 is
locally asymptotically stable if 𝑏 < 1 + 𝑒/𝑎 and unstable if𝑏 > 1 + 𝑒/𝑎, and 𝐸2 is locally asymptotically stable if 𝑏 is in
some range, while 𝐸3, 𝐸4, and 𝐸5 are locally unstable when 𝑏,𝐾, and𝑁 satisfy some conditions.Weuse Lyapunov functions
to show 𝐸1 is globally asymptotically stable if 𝑏 < 1 + 𝑒/𝑎 and𝑁 > 1. We apply the center manifold theorem to show 𝐸1 is
locally asymptotically stable if 𝑏 = 1+𝑒/𝑎. We summarize the
main results in Lemma 3. For the combined parameter values,𝑏𝑠𝑖 , 𝑖 = 1, 2, 𝐽, 𝑏𝑗, 𝑗 = 1, 2, 3, they will be defined in the
following context. Formethods we applied in this subsection,
we refer to Allen [20] for basic knowledge of stability analysis
and Carr [21] for center manifolds.

Lemma 3. 𝐸0 is unstable. 𝐸1 is globally asymptotically stable
when 𝑏 < 1 + 𝑒/𝑎 and𝑁 > 1 and unstable when 𝑏 > 1 + 𝑒/𝑎.𝐸2 is locally asymptotically stable when 𝑏 ∈ (𝑏𝑠1 , 𝑏𝑠2) ∩ 𝐽. 𝐸3 is
unstable when 𝑏 < 𝑏1. 𝐸4 and 𝐸5 are unstable when 𝑏 < 𝑏2,3.

We look at the stability of trivial equilibrium solutions
first. The variational matrix of system (4) is given by𝜕𝐹𝜕𝑋
=(𝑟 − 2𝑥𝑟 − 𝑟𝑦 − 𝑎V −𝑟𝑥 −𝑎𝑥 0𝑎V −𝑐𝑧 − 1 𝑎𝑥 −𝑐𝑦−𝑎V 𝑏 −𝑎𝑥 − 𝑑𝑧 − 𝑒 −𝑑V0 𝑚𝑧 0 𝑚𝑦 − 𝑛). (19)

At the critical point 𝐸0, the variational matrix is

(𝑟 0 0 00 −1 0 00 𝑏 −𝑒 00 0 0 −𝑛). (20)

The corresponding eigenvalues are 𝑟, −1, −𝑒, and −𝑛. We
know that the local stability of 𝐸0 of system (4) is the same
as that of the linearized system at 𝐸0. Since 𝑟 > 0, 𝐸0 is locally
unstable. For system (4), the local stable invariant manifold
is tangent to the 𝑦-V-𝑧 subspace, and the unstable invariant
manifold is tangent to the 𝑥-axis. Biologically, the tumor will
grow from an initial small value around 𝐸0 without viruses
and infected tumor cells.

Proposition 4. The equilibrium solution 𝐸1 is locally asymp-
totically stable when 𝑏 < 1+𝑒/𝑎, and it is locally unstable when



6 Computational and Mathematical Methods in Medicine𝑏 > 1+𝑒/𝑎.𝐸1 is globally asymptotically stable when 𝑏 < 1+𝑒/𝑎
and𝑁 > 1.
Proof. At the equilibrium point 𝐸1, the variational matrix is

𝜕𝐹𝜕𝑋 (𝐸1) = (
−𝑟 −𝑟 −𝑎 00 −1 𝑎 00 𝑏 −𝑎 − 𝑒 00 0 0 −𝑛). (21)

The characteristic polynomial of this matrix is (𝜆 + 𝑛)(𝜆 +𝑟)(𝜆2+(1+𝑎+𝑒)𝜆+𝑎+𝑒−𝑎𝑏).The eigenvalues are𝜆1 = −𝑟,𝜆2 =−𝑛, and 𝜆3,4 = (1/2)(−1 − 𝑎 − 𝑒 ± √(1 − 𝑎 − 𝑒)2 + 4𝑎𝑏). Since
the eigenvalues 𝜆1 = −𝑟, 𝜆2 = −𝑛, and 𝜆3 = (1/2)(−1−𝑎−𝑒−√(1 − 𝑎 − 𝑒)2 + 4𝑎𝑏) are negative for all positive parameters,𝐸1 is locally asymptotically stable if and only if 𝜆4 < 0. This
is equivalent to √(1 − 𝑎 − 𝑒)2 + 4𝑎𝑏 < 1 + 𝑎 + 𝑒, which is the
same as 𝑏 < 1 + 𝑒/𝑎. Similarly, if 𝑏 > 1 + 𝑒/𝑎, then 𝜆4 =(1/2)(−1 − 𝑎 − 𝑒 + √(1 − 𝑎 − 𝑒)2 + 4𝑎𝑏) > 0, and hence 𝐸1 is
unstable.

In fact, we can show that 𝐸1 is globally asymptotically
stable in the positive invariant domain𝐷when 𝑏 < 1+𝑒/𝑎 and𝑚 < 𝑛 by constructing two Lyapunov functions according
to different ranges of the parameter 𝑏. For convenience, we
translate 𝐸1 into the origin by setting 𝑥 = 1 − 𝑥, 𝑦 = 𝑦, V = V,
and 𝑧 = 𝑧. After dropping all the bars over variables, system
(4) becomes𝑑𝑥𝑑𝑡 = −𝑟𝑥 + 𝑟𝑦 + 𝑎V + 𝑟𝑥2 − 𝑟𝑥𝑦 − 𝑎𝑥V,𝑑𝑦𝑑𝑡 = 𝑎V − 𝑎𝑥V − 𝑐𝑦𝑧 − 𝑦,𝑑V𝑑𝑡 = 𝑏𝑦 + 𝑎𝑥V − 𝑑V𝑧 − (𝑎 + 𝑒) V,𝑑𝑧𝑑𝑡 = 𝑚𝑦𝑧 − 𝑛𝑧,

(22)

while the domain 𝐷 is translated to 𝐷1 = {(𝑥, 𝑦, V, 𝑧) : 0 ≤𝑥 ≤ 1, 𝑦 ≥ 0, V ≥ 0, 𝑧 ≥ 0, 0 ≤ 𝑥 − 𝑦 ≤ 1}. For any initial
condition (𝑥0, 𝑦0, V0, 𝑧0) ∈ 𝐷1, the solution of (22) satisfies0 ≤ 𝑥(𝑡) ≤ 1, 0 ≤ 𝑦(𝑡) ≤ 1, V(𝑡) ≥ 0, and 𝑧(𝑡) ≥ 0. Now
we construct two Lyapunov functions corresponding to the
values of the parameter 𝑏 to prove 𝑦(𝑡) and V(𝑡) approach 0,
then we show 𝑥(𝑡) and 𝑧(𝑡) also tend to 0.

When 0 < 𝑏 < 1, we define the Lyapunov function𝑉1(𝑥, 𝑦, V, 𝑧) = 𝑦 + V. It is clear that 𝑉1(𝑥, 𝑦, V, 𝑧) > 0, and the
orbital derivative 𝑑𝑉1/𝑑𝑡 = 𝑑𝑦/𝑑𝑡 + 𝑑V/𝑑𝑡 = (𝑏 − 1)𝑦 − 𝑐𝑦𝑧 −𝑑V𝑧 − 𝑒V < 0. When 1 ≤ 𝑏 < 1 + 𝑒/𝑎, consider the Lyapunov
function𝑉2(𝑥, 𝑦, V, 𝑧) = (1/2)𝑎𝑏(𝑎+𝑒)𝑦2+𝑎2𝑏𝑦V+(1/2)𝑎2V2.
Obviously, 𝑉2(𝑥, 𝑦, V, 𝑧) > 0. The orbital derivative along a
solution is given by𝑑𝑉2𝑑𝑡 = 𝑎𝑏 (𝑎 + 𝑒) 𝑦𝑑𝑦𝑑𝑡 + 𝑎2𝑏𝑑𝑦𝑑𝑡 V + 𝑎2𝑏𝑦𝑑V𝑑𝑡 + 𝑎2V𝑑V𝑑𝑡= 𝑎𝑏 (𝑎 + 𝑒) 𝑦 (𝑎V − 𝑎𝑥V − 𝑐𝑦𝑧 − 𝑦)

+ 𝑎2𝑏 (𝑎V − 𝑎𝑥V − 𝑐𝑦𝑧 − 𝑦) V+ 𝑎2𝑏𝑦 (𝑏𝑦 + 𝑎𝑥V − 𝑑V𝑧 − 𝑎V − 𝑒V)+ 𝑎2V (𝑏𝑦 + 𝑎𝑥V − 𝑑V𝑧 − 𝑎V − 𝑒V)= (𝑎𝑏𝑦2 + 𝑎2V2) (𝑎𝑏 − 𝑎 − 𝑒) + 𝑎3𝑥V2 (1 − 𝑏)− 𝑎2𝑏𝑐𝑥𝑦V − 𝑎𝑏𝑐 (𝑎 + 𝑒) 𝑦2𝑧 − 𝑎2𝑏𝑦V𝑧 (𝑐 + 𝑑)− 𝑎2𝑑V2𝑧.
(23)1 ≤ 𝑏 < 1 + 𝑒/𝑎; that is, 𝑎𝑏 − 𝑎 − 𝑒 < 0 and 1 − 𝑏 ≤ 0; therefore𝑑𝑉2/𝑑𝑡 < 0. Combining these two Lyapunov functions gives𝑦(𝑡) → 0 and V(𝑡) → 0 as 𝑡 → ∞ when 𝑏 < 1 + 𝑒/𝑎.

Considering the component 𝑥(𝑡), we have𝑑𝑥𝑑𝑡 = −𝑟𝑥 + 𝑟𝑦 + 𝑎V + 𝑟𝑥2 − 𝑟𝑥𝑦 − 𝑎𝑥V= (1 − 𝑥) (𝑟𝑦 + 𝑎V − 𝑟𝑥) ≤ 𝑟𝑦 + 𝑎V − 𝑟𝑥. (24)

By the comparison theorem,0 ≤ 𝑥 (𝑡) ≤ 𝑥 (0) 𝑒−𝑟𝑡 + 𝑒−𝑟𝑡 ∫𝑡
0
(𝑟𝑦 (𝑠) + 𝑎V (𝑠)) 𝑒𝑟𝑠𝑑𝑠. (25)

Taking limit of both sides as 𝑡 → ∞ and using the L’Hospital’s
Rule and the fact that 𝑦(𝑡) and V(𝑡) approach 0 yield 𝑥(𝑡) → 0.
Finally, since 𝑦(𝑡) ≤ 1, we have 𝑑𝑧/𝑑𝑡 ≤ (𝑚 − 𝑛)𝑧. By the
comparison theorem, 0 ≤ 𝑧(𝑡) ≤ 𝑧(0)𝑒(𝑚−𝑛)𝑡 → 0 as 𝑡 → ∞,
since 𝑚 − 𝑛 < 0. Therefore system (3) has a global attractor𝐸1.

Biologically, Proposition 4 is easy to understand. When
the viral burst size is smaller than a critical value which is𝑏 = 1 + 𝑒/𝑎, there will not be enough newly produced viruses
to infect tumor cells. The therapy fails. The model system
will be stable in the state of tumor cells and free of infected
tumor cells, viruses, and immune cells. Proposition 5 ensures
mathematically that this critical burst size is the smallest one
that will make the virotherapy completely fail. One obvious
medical implication is that we have to genetically increase the
viral burst size in order to have effective virotherapy.

We next consider the stability of 𝐸1 when 𝑏 = 1 + 𝑒/𝑎.
This is a critical case, since the linearized system at 𝐸1 has
three negative eigenvalues and one zero eigenvalue. we have
to reduce the system to its local center manifold. We actually
have the following proposition.

Proposition 5. The equilibrium solution 𝐸1 is locally asymp-
totically stable when 𝑏 = 1 + 𝑒/𝑎.
Proof. Consider 𝑏 = 1+𝑒/𝑎, which implies that 𝑎𝑏 = 𝑎+𝑒.The
linearized system at𝐸1 has three negative eigenvalues and one
zero eigenvalue. In order to determine the stability of 𝐸1, we
use the center manifold theorem to reduce system (22) into
a center manifold, and then we study the reduced system. So
we separate it into two parts, onewith zero eigenvalue and the
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other with negative eigenvalues.Thematrix corresponding to
the linear part of system (22) is

𝐿 =(−𝑟 𝑟 𝑎 00 −1 𝑎 00 𝑏 −𝑎𝑏 00 0 0 −𝑛), (26)

which has eigenvalues −𝑟, −(1+𝑎𝑏), 0, and −𝑛.The associated
eigenvectors of these eigenvalues, respectively, are 𝑉𝑇1 =(1, 0, 0, 0), 𝑉𝑇2 = (𝑎𝑏 − 𝑟, 1 + 𝑎𝑏 − 𝑟, −𝑏(1 + 𝑎𝑏 − 𝑟), 0), 𝑉𝑇3 =(𝑎𝑟 + 𝑎, 𝑎𝑟, 𝑟, 0), and 𝑉𝑇4 = (0, 0, 0, 1). System (22) can be
written as𝑑𝑋/𝑑𝑡 = 𝐿𝑋+𝐹, where𝐹 = (𝑟𝑥2−𝑟𝑥𝑦−𝑎𝑥V, −𝑎𝑥V−𝑐𝑦𝑧, 𝑎𝑥V − 𝑑V𝑧,𝑚𝑦𝑧)𝑇. Set 𝑇 = (𝑉1, 𝑉2, 𝑉3, 𝑉4) and 𝑋 = 𝑇𝑌;
then 𝑑𝑌𝑑𝑡 = 𝑇−1𝐿𝑇𝑌 + 𝑇−1𝐹, (27)

where

𝑇−1𝐿𝑇 =(−𝑟 0 0 00 −1 − 𝑎𝑏 0 00 0 0 00 0 0 −𝑛), (28)

and 𝑌 = (𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑇 is determined by𝑥 = 𝑦1 + (𝑎𝑏 − 𝑟) 𝑦2 + (𝑎𝑟 + 𝑎) 𝑦3,𝑦 = (1 + 𝑎𝑏 − 𝑟) 𝑦2 + 𝑎𝑟𝑦3,
V = −𝑏 (1 + 𝑎𝑏 − 𝑟) 𝑦2 + 𝑟𝑦3,𝑧 = 𝑦4.

(29)

Denote 𝑇−1𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4)𝑇; then we can express 𝑓𝑖, 𝑖 =1, 2, 3, 4, in terms of 𝑦𝑖:𝑓1 = 𝑟𝑥2 − 𝑟𝑥𝑦 − 𝑎𝑥V + 𝑎𝑏 + 𝑟𝑎𝑏 − 𝑟2(1 + 𝑎𝑏 − 𝑟) 𝑟 (𝑎𝑥V + 𝑐𝑦𝑧)+ 𝑎(1 + 𝑎𝑏 − 𝑟) 𝑟 (𝑑V𝑧 − 𝑎𝑥V)= 𝐴11𝑦21 + 𝐴12𝑦1𝑦2 + 𝐴13𝑦1𝑦3 + 𝐴22𝑦22+ 𝐴23𝑦2𝑦3 + 𝐴33𝑦23 + 𝐴24𝑦2𝑦4 + 𝐴34𝑦3𝑦4,𝑓2 = −1(𝑎𝑏 + 1) (1 + 𝑎𝑏 − 𝑟) (𝑎𝑥V + 𝑐𝑦𝑧)+ 𝑎(𝑎𝑏 + 1) (1 + 𝑎𝑏 − 𝑟) (𝑑V𝑧 − 𝑎𝑥V)= 𝐵12𝑦1𝑦2 + 𝐵13𝑦1𝑦3 + 𝐵22𝑦22 + 𝐵23𝑦2𝑦3 + 𝐵33𝑦23 ,𝑓3 = −𝑏(1 + 𝑎𝑏) 𝑟 (𝑎𝑥V + 𝑐𝑦𝑧) + 1(𝑎𝑏 + 1) 𝑟 (𝑎𝑥V − 𝑑V𝑧)= 𝐶12𝑦1𝑦2 + 𝐶13𝑦1𝑦3 + 𝐶22𝑦22 + 𝐶23𝑦2𝑦3 + 𝐶33𝑦23 ,𝑓4 = 𝑚𝑦𝑧 = 𝐷24𝑦2𝑦4 + 𝐷34𝑦3𝑦4,

(30)

where 𝐴 𝑖𝑗, 𝐵𝑖𝑗, 𝐶𝑖𝑗, and 𝐷𝑖𝑗 are coefficients that can be easily
determined. The transformed system can be expressed as𝑑𝑍𝑑𝑡 = 𝐵𝑍 +(𝑓1𝑓2𝑓4),𝑑𝑦3𝑑𝑡 = 𝐴𝑦3 + 𝑓3,

(31)

where

𝐵 = (−𝑟 0 00 −1 − 𝑎𝑏 00 0 −𝑛) ,𝐴 = (0) ,𝑍 = (𝑦1, 𝑦2, 𝑦4)𝑇 .
(32)

It is easy to check that each 𝑓𝑖, 𝑖 = 1, 2, 3, 4, is twice
differentiable function, 𝑓𝑖(0, 0, 0, 0) = 0 and 𝐷𝑓𝑖(0, 0, 0, 0) =0, where 𝐷𝑓𝑖 is the Jacobian matrix of the function 𝑓𝑖. By the
center manifold theorem, there exists a center manifold:𝑍 = ℎ (𝑦3) ,

or (𝑦1𝑦2𝑦4) = (ℎ1 (𝑦3)ℎ2 (𝑦3)ℎ4 (𝑦3)) (33)

with ℎ(0) = 0 and𝐷ℎ(0) = 0, and it satisfies

𝐵ℎ (𝑦3) +(𝑓1 (ℎ (𝑦3) , 𝑦3)𝑓2 (ℎ (𝑦3) , 𝑦3)𝑓4 (ℎ (𝑦3) , 𝑦3))= 𝐷ℎ (𝑦3) ⋅ 𝑓3 (ℎ (𝑦3) , 𝑦3) . (34)

Since ℎ(0) = 0 and𝐷ℎ(0) = 0, we can assume that

ℎ (𝑢) = (ℎ1 (𝑢)ℎ2 (𝑢)ℎ4 (𝑢))
= (𝑎2𝑢2 + 𝑎3𝑢3 + 𝑎4𝑢4 + 𝑂 (𝑢5)𝑏2𝑢2 + 𝑏3𝑢3 + 𝑏4𝑢4 + 𝑂 (𝑢5)𝑑2𝑢2 + 𝑑3𝑢3 + 𝑑4𝑢4 + 𝑂 (𝑢5)) ; (35)

here we use the variable 𝑢 instead of 𝑦3 for simplicity. Then
we can compute𝑓1 (ℎ (𝑢) , 𝑢) = 𝑓1 (ℎ1 (𝑢) , ℎ2 (𝑢) , 𝑢, ℎ4 (𝑢))= 𝐴33𝑢2 + 𝑂 (𝑢3) ,𝑓2 (ℎ (𝑢) , 𝑢) = 𝑓2 (ℎ1 (𝑢) , ℎ2 (𝑢) , 𝑢, ℎ4 (𝑢))= 𝐵33𝑢2 + 𝑂 (𝑢3) ,



8 Computational and Mathematical Methods in Medicine𝑓3 (ℎ (𝑢) , 𝑢) = 𝑓3 (ℎ1 (𝑢) , ℎ2 (𝑢) , 𝑢, ℎ4 (𝑢))= 𝐶33𝑢2 + 𝑂 (𝑢3) ,𝑓4 (ℎ (𝑢) , 𝑢) = 𝑓4 (ℎ1 (𝑢) , ℎ2 (𝑢) , 𝑢, ℎ4 (𝑢))= 𝐷24 [𝑏2𝑑2𝑢4 + (𝑏2𝑑3 + 𝑏3𝑑2) 𝑢5]+ 𝐷34 (𝑑2𝑢3 + 𝑑3𝑢4 + 𝑑4𝑢5)+ 𝑂 (𝑢6) .
(36)

By substituting 𝑓𝑖’s into (34) and equating both sides of the
equation, we can get𝐶33 = −𝑎2(𝑟+1)(𝑏−1)/(𝑎𝑏+1) < 0, since𝑏 = 1 + 𝑒/𝑎 > 1. The asymptotically behavior of zero solution
of system (31) is governed by that of the equation 𝑑𝑦3/𝑑𝑡 =𝑓3(ℎ(𝑦3), 𝑦3) or𝑑𝑦3/𝑑𝑡 = 𝐶33𝑦23+𝑂(𝑦33). Since𝐶33 < 0,𝑦3 = 0
is locally asymptotically stable. Therefore, the trivial solution
of system (22) is locally asymptotically stable.

We next consider the stability of the equilibrium solution𝐸2 = (𝑥, 𝑦, V, 𝑧), where 𝑥 = 𝑒/𝑎(𝑏−1), 𝑦 = 𝑟𝑒(𝑎𝑏−𝑎−𝑒)/𝑎(𝑏−1)(𝑎𝑏 − 𝑎 + 𝑟𝑒), V = 𝑟(𝑎𝑏 − 𝑎 − 𝑒)/𝑎(𝑎𝑏 − 𝑎 + 𝑟𝑒), and 𝑧 = 0.
For lately defined 𝑏𝑠𝑖 and 𝐽, we have a proposition as follows.

Proposition 6. When 𝑏 ∈ (𝑏𝑠1 , 𝑏𝑠2) ∩ 𝐽 ̸= 0, 𝐸2 is locally
asymptotically stable.

We show this proposition as follows. The variational
matrix at 𝐸2 is given by𝐿 = 𝜕𝐹𝜕𝑋 (𝐸2)
=((
(

− 𝑟𝑒𝑎 (𝑏 − 1) − 𝑟𝑒𝑎 (𝑏 − 1) − 𝑒𝑏 − 1 0𝑟 (𝑎𝑏 − 𝑎 − 𝑒)𝑎𝑏 − 𝑎 + 𝑟𝑒 −1 𝑒𝑏 − 1 −𝑐𝑦−𝑟 (𝑎𝑏 − 𝑎 − 𝑒)𝑎𝑏 − 𝑎 + 𝑟𝑒 𝑏 − 𝑏𝑒𝑏 − 1 −𝑑V0 0 0 𝑚𝑦 − 𝑛
))
)

. (37)

The characteristic polynomial of 𝐿 is𝑝 (𝜆) = |𝜆𝐼 − 𝐿| = [𝜆 − (𝑚𝑦 − 𝑛)] 𝑞 (𝜆) , (38)

where 𝑞(𝜆) = 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3, and𝑎1 = 𝑟𝑒 + 𝑎𝑏 − 𝑎 + 𝑎𝑏𝑒𝑎 (𝑏 − 1) ,
𝑎2 = 𝑟𝑒 (𝑏𝑒 + 𝑏 − 1)𝑎 (𝑏 − 1)2 + 𝑟𝑒 (𝑎𝑏 − 𝑎 − 𝑒) (𝑟 − 𝑎)𝑎 (𝑏 − 1) (𝑎𝑏 − 𝑎 + 𝑟𝑒) ,𝑎3 = 𝑟𝑒 (𝑎𝑏 − 𝑎 − 𝑒)𝑎 (𝑏 − 1) .

(39)

By Routh-Hurwitz Criterion, all roots of 𝑞(𝜆) have negative
real parts if and only if𝐻1 = 𝑎1 > 0,𝐻2 = 𝑎1 𝑎31 𝑎2 > 0,

𝐻3 = 
𝑎1 𝑎3 01 𝑎2 00 𝑎1 𝑎3

 > 0.
(40)

Since 𝑏 > 𝑏𝑠1 š 1 + 𝑒/𝑎, 𝑎1 > 0 and 𝑎3 > 0. And those
conditions in (40) are equivalent to𝐻2 = 𝑎1𝑎2 − 𝑎3 > 0. This
inequality is the same as𝜑 (𝑏) = 𝑎 (𝑏 − 1) (𝑎𝑏 − 𝑎 + 𝑟𝑒)𝑎𝑏 − 𝑎 + 𝑟𝑒 + 𝑎𝑏𝑒− (𝑏𝑒 + 𝑏 − 1) (𝑎𝑏 − 𝑎 + 𝑟𝑒)(𝑏 − 1) (𝑎𝑏 − 𝑎 − 𝑒) < 𝑟 − 𝑎. (41)

Therefore, we can conclude that if 𝑦 < 𝑁 and 𝜑(𝑏) < 𝑟 − 𝑎;
then𝐸2 is locally asymptotically stable. Nowwe can refine this
result by considering𝐻(𝑏) = 𝐻2, andΦ (𝑥) = −𝑎3𝑥4 + 𝑎2 (3𝑒 + 𝑒2 + 𝑟 − 𝑎 − 𝑎𝑒 + 1) 𝑥3+ 𝑎𝑒 (3𝑟𝑒 + 3𝑎 + 𝑟𝑒2 + 3𝑎𝑒 + 𝑟 + 𝑟2 − 𝑎2) 𝑥2+ 𝑒2 (3𝑎𝑟 + 2𝑎𝑒𝑟 + 𝑟2𝑒 + 2𝑎2) 𝑥+ 𝑟𝑒3 (𝑟 + 𝑎) .

(42)

It is easy to check that𝐻(𝑏) = 𝑟𝑒Φ(𝑏−1)/𝑎2(𝑏−1)3(𝑎𝑏−𝑎+𝑟𝑒).
Since 𝑏 > 1 + 𝑒/𝑎, 𝐻(𝑏) and Φ(𝑏 − 1) have the same roots.
Since Φ(𝑒/𝑎) = 𝑒3(1 + 𝑟 + 𝑒 + 𝑎)(1 + 𝑒 + 𝑎)((1 + 𝑟)/𝑎) > 0
and lim𝑥→±∞Φ(𝑥) = −∞, there are at least one 𝑥1 < 𝑒/𝑎
and one 𝑥2 > 𝑒/𝑎 so that Φ(𝑥1) = Φ(𝑥2) = 0. Then 𝐻(𝑏)
has at least one root 1 + 𝑥1 < 1 + 𝑒/𝑎 = 𝑏𝑠1 and one root1 + 𝑥2 > 1 + 𝑒/𝑎 = 𝑏𝑠1 . We consider three different cases as
follows.

(i) If Φ has 4 distinct real roots, then either 3 roots are
bigger than 𝑒/𝑎 or only 1 root is bigger than 𝑒/𝑎.

(ii) If Φ has 3 distinct real roots, then one root must be
repeated.

(iii) If Φ has 2 distinct real roots, then one root must be
bigger than 𝑒/𝑎.

In all cases, we always have at least one root bigger than 𝑒/𝑎;
denote it by 𝑥0. Then 𝑥0 > 𝑒/𝑎, Φ(𝑥0) = 0, and Φ(𝑥0) < 0.
Let 𝑏0 = 1 + 𝑥0; since

𝐻 (𝑥) = 𝑟𝑒𝑎2 ⋅ (𝑥 − 1) (𝑎𝑥 − 𝑎 + 𝑟𝑒)Φ (𝑥 − 1) − (4𝑎𝑥 − 4𝑎 + 3𝑟𝑒)Φ (𝑥 − 1)(𝑥 − 1)4 (𝑎𝑥 − 𝑎 + 𝑟𝑒)2 , (43)
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we get𝐻(𝑏0) = 𝐻(1 + 𝑥0) = (𝑟𝑒/𝑎2)(Φ(𝑥0)/𝑥30(𝑎𝑥0 + 𝑟𝑒)) <0. As 𝐻(𝑏) is continuous, there is 𝛿1 > 0 that can be made
smaller than 𝑏0 − 𝑏𝑠1 so that 𝐻(𝑏) < 0 in (𝑏0 − 𝛿1, 𝑏0 + 𝛿1).
Thus𝐻(𝑏) is monotonically decreasing in this interval. Thus,
we have proved the following property.

Property 7. The function𝐻(𝑏) has at least 2 real roots, one of
which is bigger than 𝑏𝑠1 = 1 + 𝑒/𝑎, and the other is less than𝑏𝑠1 . Among all roots bigger than 𝑏𝑠1 , there is a root 𝑏0 and a
neighborhood of 𝑏0, (𝑏0 − 𝛿1, 𝑏0 + 𝛿1) where 𝛿1 < 𝑏0 − 𝑏𝑠1 so
that𝐻(𝑏0) < 0 and𝐻(𝑏) is decreasing in this interval.

Define 𝐼𝑝 = {𝑏 > 𝑏𝑠1 : 𝐻(𝑏) > 0}, 𝐼𝑛 = {𝑏 > 𝑏𝑠1 : 𝐻(𝑏) <0}, and 𝐼0 = {𝑏 > 𝑏𝑠1 : 𝐻(𝑏) = 0}. All these sets are nonempty
and 𝐼0 has either at least 1 element or at most 3 elements. Let𝑏𝑠2 = min 𝐼0. Note that 𝑏0 ≥ 𝑏𝑠2 . It is easy to check that when𝑏 ∈ (𝑏𝑠1 , 𝑏𝑠2),𝐻(𝑏) > 0.

Next, we refine the condition 𝑦 < 𝑁, where 𝑁 = 𝑛/𝑚.
This inequality is equivalent to𝑁(𝑎 (𝑏 − 1))2 + 𝑟𝑒 (𝑁 − 1) (𝑎 (𝑏 − 1)) + 𝑟𝑒2 > 0. (44)

Considering it as a quadratic polynomial of 𝑎(𝑏 − 1), we haveΔ = 𝑟𝑒2[𝑟(𝑁 − 1)2 − 4𝑁]. If Δ < 0, then this inequality is
always true for all𝑁, so 𝑦 < 𝑁 is always true. If Δ ≥ 0, then

(i) when𝑁 ≥ 1, the right-hand side of the inequality has
2 negative roots 𝑁1 < 𝑁2 < 0, but since 𝑁 > 0, this
inequality is obviously true and hence𝑦 < 𝑁 is always
true;

(ii) when 𝑁 < 1, the inequality is equivalent to 𝑏 ∈(1, 1+𝑁1/𝑎)∪(1+𝑁2/𝑎, +∞), where𝑁1 and𝑁2 are 2
positive roots of the right-hand side of the inequality
(they may be equal).

Let 𝐽 = (1, 1 + 𝑁1/𝑎) ∪ (1 + 𝑁2/𝑎, +∞). Then we have the
following result: if (𝑏𝑠1 , 𝑏𝑠2)∩𝐽 ̸= 0 and 𝑏 is in this intersection,
then 𝐸2 is locally asymptotically stable.

Biologically, when the viral burst size is becoming larger
and between two critical values, Proposition 6 says that the
virotherapy will reach a stable state which is free of innate
immune cells. It is reasonable that these two critical burst
sizes are related to the relative immune response decay rate.
Actually, in order to have this equilibrium, it requires that the
relative immune response decay rate is small. In other words,
when the relative immune response decay rate is small and
the viral burst size is becoming larger, the virotherapy can
have a partial success where the innate immune systemhas no
effects on the therapy, and tumor cells, infected tumor cells,
and viruses coexist.

For positive equilibrium solutions 𝐸3, 𝐸4, and 𝐸5, when
they exist, we derive conditions under which they are unsta-
ble.

Proposition 8. 𝐸3 is locally unstable when 𝑏 < 𝑏1. 𝐸4 and 𝐸5
are locally unstable when 𝑏 < 𝑏2,3.
Proof. When 𝑓(V) = 0 has a unique positive root V2 = V3 =
V∗2 = 𝐴 < 𝑢∗, the system has a unique positive equilibrium
solution𝐸3 = (1−𝑁−𝑎𝐴/𝑟,𝑁,𝐴, ((𝑏−1)𝑁−𝑒𝐴)/(𝑐𝑁+𝑑𝐴)).
The variational matrix at 𝐸3 is

𝜕𝐹𝜕𝑋 (𝐸3) =((((((
(

−𝑟 + 𝑟𝑁 + 𝑎𝐴 −𝑟 + 𝑟𝑁 + 𝑎𝐴 −𝑎 + 𝑎𝑁 + 𝑎2𝐴𝑟 0𝑎𝐴 −𝑏𝑐𝑁 + (𝑐𝑒 − 𝑑)𝐴𝑐𝑁 + 𝑑𝐴 𝑎 − 𝑎𝑁 − 𝑎2𝐴𝑟 −𝑐𝑁−𝑎𝐴 𝑏 −𝑎 + 𝑎𝑁 + 𝑎2𝐴𝑟 + (𝑑 − 𝑑𝑏 − 𝑐𝑒)𝑁𝑐𝑁 + 𝑑𝐴 −𝑑𝐴0 𝑚(𝑏 − 1)𝑁 − 𝑒𝐴𝑐𝑁 + 𝑑𝐴 0 0
))))))
)

. (45)

The characteristic polynomial of this matrix is computed as
the quartic polynomial 𝑝(𝜆) = 𝜆4 + 𝑏3𝜆3 + 𝑏2𝜆2 + 𝑏1𝜆 + 𝑏0,
where 𝑏0 = −𝑚(𝑏 − 1)𝑁 − 𝑒𝐴𝑐𝑁 + 𝑑𝐴 {(𝑟 − 𝑟𝑁 − 𝑎𝐴)

⋅ [(−𝑎 + 𝑎𝑁 + 𝑎2𝐴𝑟 ) (𝑐𝑁 + 𝑑𝐴)− 𝑐𝑁(𝑑𝑏 + 𝑐𝑒 − 𝑑)𝑁𝑐𝑁 + 𝑑𝐴 ] + 𝑎𝐴 (𝑐𝑁 + 𝑑𝐴)
⋅ (𝑎 − 𝑎𝑁 − 𝑎2𝐴𝑟 )} .

(46)

Assume that 𝑝(0) = 𝑏0 < 0. Since lim𝜆→∞𝑝(𝜆) = ∞, 𝑝(𝜆)
has at least one positive root. The fact 𝑏0 < 0 is equivalent to𝑏 < ((𝑐𝑁 + 𝑑𝐴)2/𝑐𝑑𝑁2)((2𝑎2/𝑟)𝐴 − 𝑎 + 𝑎𝑁) − 𝑐𝑒/𝑑 + 1. On
the other hand, we can compute 𝑏 in terms of coefficients of𝑓(V) and note that the coefficients 𝑎1, 𝑎2 do not depend on 𝑏.
Since 𝑓(V∗2 ) = 0, we have V∗2 = (9𝑎0 − 𝑎1𝑎2)/2(𝑎22 − 3𝑎1). As
V∗2 = 𝐴 = (−𝑎2 + √𝑎22 − 3𝑎1)/3, so (9𝑎0 − 𝑎1𝑎2)/2(𝑎22 − 3𝑎1) =(−𝑎2 + √𝑎22 − 3𝑎1)/3, which implies that

𝑏 = 𝑎2𝑑𝑐𝑟𝑁2 ⋅ −2𝑎32 + 9𝑎1𝑎2 + 2 (𝑎22 − 3𝑎1)3/227 š 𝑏. (47)

Thus, when 𝑏 < ((𝑐𝑁 + 𝑑𝐴)2/𝑐𝑑𝑁2)((2𝑎2/𝑟)𝐴 − 𝑎 + 𝑎𝑁) −𝑐𝑒/𝑑 + 1 š 𝑏1, 𝐸3 is locally unstable.
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Lastly, when 𝑓(V) = 0 has two distinct positive real roots0 < V2 < V∗2 = 𝐴 < V3 < 𝑢∗, the variational matrices at𝐸4 and 𝐸5 are the same as the variational matrix at 𝐸3 except
that 𝐴 is replaced by V2 and V3, respectively. We obtain the
corresponding characteristic polynomials of those matrices
which are the same as the characteristic polynomial of 𝐿
except for replacing 𝐴 by V2 and V3. By the same argument
as above, when 𝑏 < ((𝑐𝑁 + 𝑑V2,3)2/𝑐𝑑𝑁2)((2𝑎2/𝑟)V2,3 − 𝑎 +𝑎𝑁) − 𝑐𝑒/𝑑 + 1 š 𝑏2,3, 𝐸4 and 𝐸5 are locally unstable.

It is interesting to notice that our model system has 3
positive equilibria when the viral burst size is not too large
and the relative immune killing rate falls into some intervals.
Proposition 8 gives conditions that ensure these equilibrium
solutions are unstable. Biologically, when the relative immune
killing rate and relative immune response decay rate fall into
some ranges, wemay genetically change the viral burst size to
avoid coexistent equilibria.

2.4. Bifurcation Analysis. The dramatic changes of solutions
may occur at bifurcations of parameter values. It is important
to study bifurcation phenomena for any mathematical mod-
els. For our model (4), there are two types of bifurcations,
transcritical bifurcations and Hopf bifurcations. For basic
knowledge of Hopf bifurcations, we refer Hassard et al. [22].

A transcritical bifurcation occurs with 𝐸1 and 𝐸2. When𝑏 < 𝑏𝑠1 , 𝐸2 is outside of the positive domain 𝐷 and 𝐸1 is
locally asymptotically stable. As 𝑏 increases to 𝑏𝑠1 = 1 + 𝑒/𝑎,𝐸2 moves into𝐷 and it coalesces with 𝐸1 which is still locally
asymptotically stable. But when 𝑏𝑠1 < 𝑏 < 𝑏𝑠2 and 𝑏 ∈ 𝐼𝑝,
the stability of these equilibrium points interchanges, which
means that 𝐸2 is locally asymptotically stable while 𝐸1 is
unstable. Notice that when 𝑏 > 𝑏0 and 𝑏 ∈ 𝐼𝑛, 𝐸2 is locally
unstable.

In order to study the Hopf bifurcation at 𝑏 = 𝑏0, we look
at the characteristic polynomial (38):𝑝 (𝜆) = |𝜆𝐼 − 𝐿| = [𝜆 − (𝑚𝑦 − 𝑛)] 𝑞 (𝜆) , (48)

where 𝑞(𝜆) = 𝜆3+𝑎1𝜆2+𝑎2𝜆+𝑎3. For convenience, we assume
that (𝑏𝑠1 , 𝑏0) ⊂ 𝐽. From the derivation of Proposition 6, we
know𝑚𝑦−𝑛 < 0.That is, 𝑝(𝜆) has a negative root𝑚𝑦−𝑛 < 0.
Thus, the assumption (𝑏𝑠1 , 𝑏0) ⊂ 𝐽 reduces the study of the
quartic polynomial 𝑝(𝜆) to the cubic polynomial 𝑞(𝜆).

Consider each coefficient of 𝑞(𝜆) as a function of the
parameter 𝑏. Then𝑞 (𝜆) = 𝜆3 + 𝑎1 (𝑏) 𝜆2 + 𝑎2 (𝑏) 𝜆 + 𝑎3 (𝑏) , (49)

where 𝑎1(𝑏) = (𝑟𝑒 + 𝑎𝑏−𝑎+𝑎𝑏𝑒)/𝑎(𝑏 − 1), 𝑎2(𝑏) = 𝑟𝑒(𝑏𝑒 + 𝑏−1)/𝑎(𝑏 − 1)2 + 𝑟𝑒(𝑎𝑏 − 𝑎 − 𝑒)(𝑟 − 𝑎)/𝑎(𝑏 − 1)(𝑎𝑏 − 𝑎 + 𝑟𝑒), and𝑎3(𝑏) = 𝑟𝑒(𝑎𝑏 − 𝑎 − 𝑒)/𝑎(𝑏 − 1).
The following theorem is our main result for occurring a

Hopf bifurcation around 𝑏0, which appears in [16] asTheorem3.12. For completion, we restate this theorem and related
lemmas and corollary and give slight different proofs.

Theorem9. There exists a neighborhood of 𝑏0, (𝑏0−𝛿0, 𝑏0+𝛿0),
such that for each 𝑏 in this neighborhood 𝑞(𝜆) has a pair of

complex conjugate eigenvalues 𝜆(𝑏) = 𝛼(𝑏) ± 𝑖𝛽(𝑏), where 𝛼(𝑏)
changes sign when 𝑏 passes through 𝑏0 and 𝛽(𝑏) > 0. Moreover,
when 𝑏 = 𝑏0, 𝛼(𝑏0) = 0 and 𝛼(𝑏0) ̸= 0. Notice that 𝛿0 can be
made small enough so that (𝑏0 − 𝛿0, 𝑏0 + 𝛿0) ⊆ 𝐽.

To prove this theorem, we need two lemmas about the
properties of roots of cubic equations which appear in [16]
as Lemmas 3.10 and 3.11.
Lemma 10. The cubic polynomial 𝜆3+𝑎1𝜆2+𝑎2𝜆+𝑎3 = 0with
real coefficients has a pair of pure imaginary roots if and only if𝑎2 > 0 and 𝑎3 = 𝑎1𝑎2. When it has pure imaginary roots, these
imaginary roots are given by 𝜆 = ±𝑖√𝑎2, the real root is given
by 𝜆 = −𝑎1, and 𝑎1𝑎3 > 0.
Proof. Suppose the cubic polynomial has a pair of complex
roots 𝜆 = 𝑢 ± V𝑖 and one real root 𝜆 = 𝜆0. Then (𝜆2 − 2𝑢𝜆 +𝑢2 + V2)(𝜆 − 𝜆0) = 𝜆3 + 𝑎1𝜆2 + 𝑎2𝜆 + 𝑎3. Expanding the left-
hand side and then equating both sides give 𝑎1 = −(𝜆0 + 2𝑢),𝑎2 = 𝑢2 + V2 + 2𝑢𝜆0, and 𝑎3 = −(𝑢2 + V2)𝜆0. This implies that𝜆0 = −(𝑎1 + 2𝑢), 𝑢2 + V2 = 𝑎3/(𝑎1 + 2𝑢), and 𝑎3/(𝑎1 + 2𝑢) −2𝑢(𝑎1+2𝑢) = 𝑎2.The last equation yields 2(𝑎2+(𝑎1+2𝑢)2)𝑢 =𝑎3 − 𝑎1𝑎2. Thus, 𝑢 = 0 if and only if 𝑎2 > 0 and 𝑎3 = 𝑎1𝑎2.
If 𝑢 = 0, then 𝜆0 = −𝑎1 and V2 = 𝑎2, which follows that
V2𝑎1 = 𝑎3.
Lemma11. Consider polynomial𝜆3+𝑎1(𝜏)𝜆2+𝑎2(𝜏)𝜆+𝑎3(𝜏) =0, where 𝑎𝑘(𝜏) ∈ 𝐶1, 𝑘 = 1, 2, 3. Let 𝜆(𝜏) = 𝛼(𝜏) + 𝑖𝛽(𝜏)
be the roots of the polynomial. Suppose there is 𝜏0 such that𝛼(𝜏0) = 0 and 𝛽(𝜏0) ̸= 0. Moreover, if (𝑑𝛼/𝑑𝜏)|𝜏=𝜏0 = 0, then𝑎2(𝜏0)𝑎3(𝜏0) = 𝑎2(𝜏0)[𝑎3(𝜏0) − 𝑎2(𝜏0)𝑎1(𝜏0)].
Proof. Differentiating the polynomial with respect to 𝜏 and
evaluating the derivative at 𝜏0, we notice that 𝛼(𝜏0) = 𝛼(𝜏0) =0, then we get, after equating the real part and the imaginary
part, 𝛽(𝜏0) = 𝑎2(𝜏0)𝛽(𝜏0)/(3𝛽2(𝜏0) − 𝑎2(𝜏0)) = (𝑎3(𝜏0) −𝛽2(𝜏0)𝑎1(𝜏0))/2𝑎1(𝜏0)𝛽(𝜏0). By Lemma 10, since 𝛽2(𝜏0) =𝑎2(𝜏0) = 𝑎3(𝜏0)/𝑎1(𝜏0), we obtain the desired result.

From the proofs of Lemmas 10 and 11, andRouth-Hurwitz
Criterion, we have the following corollary about 𝑞(𝜆).
Corollary 12. There is a neighborhood of 𝑏0, (𝑏0 − 𝛿2, 𝑏0 + 𝛿2),
where 𝛿2 < 𝑏0 − 𝑏𝑠1 , such that 𝑎2(𝑏) > 0 for all 𝑏 ∈ (𝑏0 −𝛿2, 𝑏0 +𝛿2), and the real part 𝛼(𝑏) of the root 𝜆(𝑏) = 𝛼(𝑏) + 𝑖𝛽(𝑏) of𝑞(𝜆) changes sign when 𝑏 passes through 𝑏0.
Proof. Since 𝑏 > 1 + 𝑒/𝑎, 𝑎1(𝑏) > 0 and 𝑎3(𝑏) > 0. As𝐻(𝑏0) =𝑎1(𝑏0)𝑎2(𝑏0) − 𝑎3(𝑏0) = 0, 𝑎2(𝑏0) = 𝑎3(𝑏0)/𝑎1(𝑏0) > 0. Since𝑎2(𝑏) is continuous with respect to 𝑏, there is a neighborhood
of 𝑏0 such that 𝑎2(𝑏) > 0 in that neighborhood. Its radius 𝛿2
can be made small enough so that 𝛿2 < 𝑏0 − 𝑏𝑠1 and 𝛿2 < 𝛿1.
We know that𝐻(𝑏) is decreasing in this neighborhood (𝑏0 −𝛿2, 𝑏0 + 𝛿2). If 𝑏 ∈ (𝑏0 − 𝛿2, 𝑏0), then𝐻2 = 𝐻(𝑏) > 𝐻(𝑏0) = 0.
Since 𝐻1 = 𝑎1(𝑏) > 0 and 𝐻3 = 𝑎3(𝑏)𝐻(𝑏) > 0, by Routh-
Hurwitz Criterion 𝛼(𝑏) < 0. If 𝑏 ∈ (𝑏0, 𝑏0 + 𝛿2), then 𝐻2 =𝐻(𝑏) < 𝐻(𝑏0) = 0. Since 𝑎1(𝑏) > 0, 𝑎2(𝑏) > 0, and 𝑎3(𝑏) > 0,
from the proof of Lemma 10 we have 𝛼(𝑏) = −𝐻(𝑏)/2(𝑎2(𝑏) +
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changes when 𝑏 passes through 𝑏0.

We now can prove our mainTheorem 9.

Proof. By Property 7 in previous section, 𝑏0 > 1 + 𝑒/𝑎 and𝐻(𝑏0) = 0. Then, for 𝑏 > 1 + 𝑒/𝑎, 𝑎1(𝑏) > 0 and 𝑎3(𝑏) > 0;
hence 𝑎2(𝑏0) = 𝑎3(𝑏0)/𝑎1(𝑏0) > 0. By Lemma 10, 𝑝(𝜆) has a
pair of purely imaginary roots, 𝜆(𝑏0) = ±𝑖𝛽(𝑏0) = ±𝑖√𝑎2(𝑏0),
and the real root is −𝑎1(𝑏0) < 0. Since 𝛽(𝑏0) > 0 and 𝛽(𝑏) is
continuous, we can find a neighborhood of 𝑏0 so that 𝛽(𝑏) >0 in this neighborhood and its radius can be chosen so that𝛿0 < min{𝛿1, 𝛿2} and (𝑏0 − 𝛿0, 𝑏0 + 𝛿0) ⊆ 𝐽. By the above
corollary, in the interval (𝑏0 − 𝛿0, 𝑏0 + 𝛿0), 𝛼(𝑏) changes sign
when 𝑏 passes through 𝑏0. Finally, we claim that 𝛼(𝑏0) ̸= 0.
By way of contradiction, if 𝛼(𝑏0) = 0, then by Lemma 11 we
have 𝑎2(𝑏0)𝑎3(𝑏0) = 𝑎2(𝑏0)(𝑎3(𝑏0) − 𝑎1(𝑏0)𝑎2(𝑏0)). Then this
yields𝐻(𝑏0) = 𝐻(𝑏0)𝑎2(𝑏0)/𝑎2(𝑏0) = 0, a contradiction. This
completes the proof.

Combining Proposition 6 and applying this theorem, we
can obtain a statement about Hopf bifurcations of our model.

Theorem 13. Assuming (𝑏𝑠1 , 𝑏0) ⊂ 𝐽, for system (4) �̇� =𝑓(𝑋, 𝑏) 𝑓(𝐸2, 𝑏) = 0 for all 𝑏 > 𝑏𝑠1 . The variational matrix
of 𝑓 at 𝐸2, 𝐿 = (𝜕𝑓/𝜕𝑋)(𝐸2, 𝑏), has 2 strictly negative roots
and 2 conjugate complex roots 𝜆(𝑏) = 𝛼(𝑏) ± 𝑖𝛽(𝑏) in the
neighborhood (𝑏0 − 𝛿0, 𝑏0 + 𝛿0) of 𝑏0, in which 𝛽(𝑏) > 0,𝛼(𝑏) changes sign when 𝑏 passes through 𝑏0, and 𝛼(𝑏0) ̸= 0.
Consequently, in a neighborhood 𝑈 of 𝐸2 and for any 𝑏 ∈(𝑏0 − 𝛿0, 𝑏0 + 𝛿0), the system �̇� = 𝑓(𝑋, 𝑏) has nontrivial
periodical solutions in 𝑈.

Because we cannot find explicit algebraic expression for𝑏0, it is very hard to study the nature of periodical solutions
that occur around 𝐸2 when 𝑏 is close to 𝑏0 such as the
amplitudes, periods, and their stability. However, we can
make some statements about the general properties of these
periodical solutions as follows.

(i) If 𝐸2 is stable but not asymptotically stable, then any
solution of system (3) in 𝑈 is periodical in a surface.

(ii) If 𝐸2 is asymptotically stable, then there is an asymp-
totically stable periodical solution 𝑋(𝑡) in 𝑈 when 𝑏
is close to 𝑏0. Any solution inside 𝑋 will spiral into𝐸2 when time is increasing and any solution in 𝑈
outside 𝑋 will spiral and emerge into 𝑋 when time
is increasing.

(iii) If 𝐸2 is unstable, then there is an asymptotically stable
periodical solution 𝑋(𝑡) in 𝑈 when 𝑏 is close to 𝑏0.
Any solution starting at nearby 𝐸2 will spiral out
and emerge into 𝑋 when time is increasing, and any
solution in 𝑈 nearby outside 𝑋 will move away from𝑋 when time is increasing.

We will use numerical simulations to confirm some of
these situations. Lastly, we will not conduct the analysis
for the bifurcations arising around the positive equilibrium
points 𝐸4 and 𝐸5 because their formulas are extremely

cumbersome and therefore we will treat this by numerical
simulations in the next section.

We close Section 2 with the following theorem that
summarizes the main results about the our model and its
biological implications.

Theorem 14. The dynamical behaviors of system (4) can be
described as follows.

(i) When (𝑟/𝑎)(1/𝑁 − 1) < 𝐾 < 1/(𝑎 + 𝑒 − 𝑎𝑁),𝑁 < 1+(1/2)(𝑒/𝑎 + 1/𝑟 − √(𝑒/𝑎 + 1/𝑟)2 + 4/𝑟), and 𝑏 > 𝑏
with 𝑏 > 𝑏𝑠1 , system (4) has at most 3 equilibrium
solutions: 𝐸0, 𝐸1, and 𝐸2. 𝐸0 is unstable. 𝐸1 is globally
asymptotically stable if 𝑏 < 𝑏𝑠1 and𝑁 > 1 and unstable
if 𝑏 > 𝑏𝑠1 . 𝐸2 is locally asymptotically stable if 𝑏 ∈(𝑏𝑠1 , 𝑏𝑠2) ∩ 𝐽.

(ii) When either𝐾 ≤ (𝑟/𝑎)(1/𝑁−1) or𝐾 > 1/(𝑎+𝑒−𝑎𝑁)
and 𝑏 = 𝑏 with 𝑔(𝐾) > 0, system (4) has a unique
positive equilibrium solution: 𝐸3. 𝐸3 is unstable if 𝑏 <𝑏1.

(iii) When either𝐾 ≤ (𝑟/𝑎)(1/𝑁−1) or𝐾 > 1/(𝑎+𝑒−𝑎𝑁)
and 𝑏 < 𝑏 with 𝑔(𝐾) > 0, system (4) has two distinct
positive equilibrium solutions:𝐸4 and𝐸5.𝐸4 and𝐸5 are
unstable if 𝑏 < 𝑏2,3.

(iv) When (𝑏𝑠1 , 𝑏0) ⊂ 𝐽, there exist a neighborhood (𝑏0 −𝛿0, 𝑏0 +𝛿0) of 𝑏0 and a neighborhood𝑈 of 𝐸2, such that
for any 𝑏 ∈ (𝑏0 − 𝛿0, 𝑏0 + 𝛿0), system (4) has nontrivial
periodical solutions in 𝑈.

Biologically, we have interpreted most parts of this the-
orem. We may emphasize some biological implications here.
If the burst size is smaller than the critical value 𝑏𝑠1 and the
relative immune decay rate is greater than 1, the virotherapy
always fails. If the burst size is greater than 𝑏𝑠1 and smaller
than another critical value 𝑏𝑠2 , the immune free equilibrium
is stable; that is, the tumor cells, infected tumor cells, and
viruses coexist. When the relative immune killing rate is too
small or too big compared to a relative immune survival
rate (1/𝑁), according to the burst size, the model can have
one more or two more positive equilibria, and these positive
equilibria are unstable. This gives a chance for the model to
have periodical solutions. That is, the virus cannot eradicate
the tumor and the virus, tumor cells, and immune cells fight
each other forever.

For positive equilibria, 𝐸3, 𝐸4, and 𝐸5, 𝐸3 is difficult to
obtain in practice because it requires a particular threshold
of the burst size. In rat experiments, the virus burst size can
be genetically changed as we want, but usually, we can ensure
a range of the burst size in the process of geneticmodification.𝐸4 and 𝐸5 are unstable if the burst size is smaller than a
threshold. Biologically, these two equilibria are not important
because of their instability. The immune free equilibrium 𝐸2
can be stable. If the burst size is made big enough, the tumor
cell portion will be small in 𝐸2. On the other hand, the model
can have periodic solutions.Thismay provide an opportunity
for combining surgery with the phase where the tumor cell
portion is in the lowest state.
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Table 1: Parameters and their values.

Parameters Description Values Dimensions𝜆 Tumor growth rate 2 × 10−2 1/h𝜃 Density of tumor cells 106 cells/mm3𝛽 Infection rate of the virus 7/10 × 10−9 mm3/h virus𝜇 Immune killing rate of infected tumor cells 2 × 10−8 mm3/h immune cell𝛿 Death rate of infected tumor cells 1/18 1/h𝑏 Burst size of free virus 50 viruses/cell𝑘 Immune killing rate of virus 10−8 mm3/h immune cell𝛾 Clearance rate of the virus 2.5 × 10−2 1/h𝑠 Stimulation rate of the virus by infected cells 5.6 × 10−7 mm3/h infected cell𝜌 Immune clearance rate 20 × 10−8 mm3/h cell

3. Numerical Study and Discussion

3.1. Numerical Study. In order to demonstrate our analytical
results about dynamical behaviors of the model, we use
some data of parameter values from our previous research
[14] to conduct numerical computations for all dynamical
characteristics and perform some numerical simulations by
usingMatlab.The data of parameter values we used from [14]
is recorded inTable 1.We applied the algorithmof theNewton
method for finding Hopf bifurcation points [23], and Matlab
codes are available upon request.

After nondimensionalization, the parameter values are𝑟 = 0.36, 𝑎 = 0.11, 𝑐 = 0.48, 𝑑 = 0.16, 𝑒 = 0.2, 𝑚 = 0.6,
and 𝑛 = 0.036. Then 𝑏𝑠1 = 1 + 𝑒/𝑎 = 2.82. Solving 𝐻(𝑏) = 0
gives 2 conjugate complex roots 𝑏 = 0.8353 ± 0.2312𝑖, and 2
real roots 𝑏 = 0.299 and 𝑏 = 19.012. Therefore, 𝐼0 = {19.012},𝐼𝑝 = (2.82, 19.012), 𝐼𝑛 = (19.012, +∞), and hence 𝑏𝑠2 =𝑏0 = 19.012. On the other hand, all coefficients of the cubic
equation are 𝑎2 = −2.8964, 𝑎1 = 0.1603, and 𝑏 = 7.4455.
Considering the case with the burst size 𝑏 = 9, we find all
equilibrium solutions of system (4):𝐸0 = (0, 0, 0, 0) ,𝐸1 = (1, 0, 0, 0) ,𝐸2 = (0.2273, 0.0584, 2.3377, 0) ,𝐸4 = (0.48328, 0.06, 1.49471, 0.67571) ,𝐸5 = (0.24994, 0.06, 2.25837, 0.07261) .

(50)

By the analysis of previous section, 𝐸0 is always unstable.
The equilibrium point 𝐸1 is locally asymptotically stable if𝑏 < 2.82 and unstable if 𝑏 > 2.82. For the equilibrium
point 𝐸2, since 𝑦 = 0.0584 < 𝑁 = 𝑛/𝑚 = 0.06 and𝑏 = 9 ∈ (𝑏𝑠1 , 𝑏𝑠2) = (2.82, 19.012), it is locally asymptotically
stable. In order to check the stability of the equilibrium
point 𝐸4, we need to compute the Jacobian matrix of 𝐹 at
this point, which is 𝐿 = (𝜕𝐹/𝜕𝑋)(𝐸4). Using the Matlab,
we can calculate 4 eigenvalues of 𝐿, which are −1.69849,−0.00803, and−0.07654±0.20995𝑖.This guarantees the locally
asymptotical stability of 𝐸4. For the last equilibrium point𝐸5, we know that V3 = 2.258366, which is the largest root
of 𝑓(V) = 0. Then, we can compute the quantity ((𝑐𝑁 +

𝑑V3)2/𝑐𝑑𝑁2)((2𝑎2/𝑟)V3 − 𝑎 + 𝑎𝑁) − 𝑐𝑒/𝑑 + 1 = 27.052. As𝑏 < 27.052, 𝐸5 is unstable.
When 𝑏 = 20, the bifurcation analysis gives us the

appearance of periodical solutions around the equilibrium
point 𝐸2 = (0.09569, 0.03011, 2.86098, 0). However, in this
case, two positive equilibrium points 𝐸4 and 𝐸5 do not exist.
Now we fix the burst size 𝑏 = 20 and other parameters,
considering 𝑚 as a variable parameter. Observe that when𝑚 = 1.17, we have two positive equilibrium points: 𝐸4
and 𝐸5. The eigenvalues of the Jacobian matrix at 𝐸5 are−1.26885, 0.00075, and −0.00003 ± 0.23144𝑖, whereas when𝑚 = 1.18, we also have two positive equilibrium points:𝐸4 and 𝐸5. The eigenvalues at 𝐸5 are 1.26023, 0.00045, and0.000455 ± 0.23025𝑖. This partially shows the existence of the
Hopf bifurcation point 1.17 < 𝑚0 < 1.18. Using the Newton
method for the computation of Hopf bifurcation points, we
find𝑚0 = 1.1706885699.

For the sake of demonstration and simplicity, we conduct
numerical simulations based on nondimensionalized model.
Therefore, the unit of the tumor cells, infected tumor cells,
viruses, and innate immune cells are not absolute numbers
and are only relative numbers. For example, the quantity of
tumor cells in all figures is the portion of tumor cells over the
tumor carrying capacity. Similarly, other quantities have the
same meaning. We just indicate them as relative tumor cells
and so on in the figures. For the time, it can be considered
as runs of infected tumor bursting since 𝜏 = 𝛿𝑡, or simply,
relative time.

Figure 1 shows that 𝐸1 is locally asymptotically stable.
Figure 2 shows 𝐸1 is locally unstable since 𝑏 = 9 >1 + 𝑒/𝑎 = 2.82. Figure 3 shows 𝐸2 is locally asymptotically

stable because 𝑏 is between 𝑏𝑠1 and 𝑏𝑠2 and 𝑦 = 0.058 < 𝑁 =0.06. Figure 4 shows 𝐸4 is locally asymptotically stable since
all eigenvalues of the variational matrix at 𝐸4 are negative.
Figure 5 shows 𝐸5 is locally unstable sine 𝑏 < 𝑏3.

Figures 6–8 show periodic solutions rising from Hopf
bifurcations.

Figure 9 shows the tumor cell population when the burst
size 𝑏 is 1000.
3.2. Discussion. The dynamics of oncolytic virotherapy with-
out the presence of the innate immune response is largely
determined by the oncolytic viral burst size as studied by
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Figure 1: Dynamics of the model when 𝑏 = 2 and initial values are 𝑥 = 0.9, 𝑦 = 0.01, V = 0.01, and 𝑧 = 0.01.
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Figure 2: Dynamics of the system when 𝑏 = 9 and initial values are 𝑥 = 0.99, 𝑦 = 0.01, V = 0.01, and 𝑧 = 0.01.
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Figure 3: Dynamics of the system when 𝑏 = 9 and initial values are 𝑥 = 0.227, 𝑦 = 0.058, V = 2.337, and 𝑧 = 0.01.
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Figure 4: Dynamics of the system when 𝑏 = 9 and initial values are 𝑥 = 0.483, 𝑦 = 0.059, V = 1.494, and 𝑧 = 0.675.
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Figure 5: Dynamics of the system when 𝑏 = 9 and initial values are 𝑥 = 0.249, 𝑦 = 0.059, V = 2.258, and 𝑧 = 0.072.
Tian [16]. Specifically, there are two threshold values of
the burst size: below the first threshold, the tumor always
grows to its maximum (carrying capacity) size; while passing
this threshold, there is a locally stable positive equilibrium
solution appearing through transcritical bifurcation; while
at or above the second threshold, there exits one or three
families of periodic solutions arising fromHopf bifurcations.
And it also suggests that the tumor load can drop to an
undetectable level either during the oscillation or when the
burst size is large enough. When the model for oncolytic
virotherapy is with the presence of the innate immune
response, the dynamics becomes more complicated. There
are several critical values for the oncolytic viral burst size 𝑏,

for example, 𝑏𝑠1 , 𝑏𝑠2 , 𝑏, and 𝑏0, where 𝑏 is a function of the
relative innate immune response killing rate 𝐾 and relative
innate immune decay rate𝑁, which we combine with innate
immune parameters 𝐾 and 𝑁 to describe the dynamics of
our model (4). When 𝑏 is smaller than 𝑏 and𝐾 and𝑁 satisfy
some constraints, system (4) has 5 equilibrium solutions and
2 of them are positive, while these two positive equilibrium
points coalesce when 𝑏 = 𝑏 and there are some constraints
for the relative innate immune killing rate 𝐾 and relative
innate immune decay rate𝑁. When 𝑏 is greater than 𝑏𝑠1 or 𝑏
and 𝐾 and 𝑁 fulfill the complement conditions, system (4)
has at most 3 equilibrium solutions with 0 innate immune
components. An interesting fact is that the equilibriumpoints
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Figure 6: Periodic solutions fromHopf bifurcation when𝑚 = 1.17.The initial values are 𝑥 = 0.0998, 𝑦 = 0.0307, V = 2.8451, and 𝑧 = 0.0331.
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Figure 7: Periodic solutions fromHopf bifurcation when𝑚 = 1.18. The initial values are 𝑥 = 0.0981, 𝑦 = 0.0305, V = 2.8515, and 𝑧 = 0.0198.
where Hopf bifurcations arise for both models (4) and in [16]
are corresponding to each other.Therefore, we may conclude
that the innate immune response complicates the oncolytic
virotherapy in the way of creatingmore equilibrium solutions
when the oncolytic viral burst size is not too big, say less than𝑏, while the dynamics is similar to the system without the
presence of the innate immune response when the oncolytic
viral burst size is big.

As we mention in the Introduction, the major challenge
in current medical practice of oncolytic viral therapy is
the complexity of the immune responses [4]. The innate

immune response tends to reduce the efficacy of oncolytic
viral treatments by reducing new virus multiplication and
blocking the spreading of infection. However, the stimulated
adaptive immune response tends to reduce tumor cells.These
two opposite functions increase the complexity of oncolytic
viral therapy. A balance between two functions needs to be
determined in order to improve the efficacy of oncolytic
virotherapy. This is a very subtle question. There are not too
much experimental or clinical data about this balance in the
literature. Therefore, a mathematical study of this question is
highly demanded. Our current mathematical model is only
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Figure 8: Periodic solutions from Hopf bifurcation.
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Figure 9: The tumor cell population when 𝑏 = 1000. The initial
values are 𝑥 = 0.5, 𝑦 = 0.5, V = 1.5, and 𝑧 = 1.
dealing with the innate immune system. The extension of
our model to incorporate the adaptive immune system is
expected. We plan to carry out such study in other articles.
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