
TransBorrow: genome-guided transcriptome assembly
by borrowing assemblies from different assemblers

Ting Yu,1,4 ZengchaoMu,1,4 Zhaoyuan Fang,2 Xiaoping Liu,1 Xin Gao,3 and Juntao Liu1
1School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China; 2Key Laboratory of Systems Biology,
CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological
Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; 3Computational
Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia

RNA-seq technology is widely used in various transcriptomic studies and provides great opportunities to reveal the complex

structures of transcriptomes. To effectively analyze RNA-seq data, we introduce a novel transcriptome assembler,

TransBorrow, which borrows the assemblies from different assemblers to search for reliable subsequences by building a col-

ored graph from those borrowed assemblies. Then, by seeding reliable subsequences, a newly designed path extension strat-

egy accurately searches for a transcript-representing path cover over each splicing graph. TransBorrow was tested on both

simulated and real data sets and showed great superiority over all the compared leading assemblers.

[Supplemental material is available for this article.]

RNA-seq technology is still widely used throughout the world to
explore and study the very complex transcriptomic structures of
eukaryotes (Marioni et al. 2008; Wang et al. 2009; Wilhelm and
Landry 2009; Marguerat and Bähler 2010) because of its high
throughput, high accuracy, and low cost. It is a powerful technol-
ogy that identifies expressed transcripts and measures isoform
expression levels at the whole-transcriptome level with unprece-
dented accuracy (Wang et al. 2009; Wilhelm and Landry 2009;
Marguerat and Bähler 2010; Ozsolak and Milos 2011).

Most eukaryotic genes generally produce multiple isoforms
because of alternative splicing in eukaryotes. Therefore, one of
the most important tasks is to accurately identify all the expressed
transcripts for subsequent biological studies. However, transcripts
from the same locus can share exons owing to alternative splicing,
and different isoforms from the same gene may have highly vari-
able expression abundances, making the transcriptome assembly
problemquite challenging.Moreover, RNA-seq runs generate hun-
dreds of millions of short reads (usually 50–300 bp in length) with
∼2% sequencing errors (Metzker 2010; Canzar et al. 2016).
Therefore, computationally identifying all the expressed tran-
scripts from the large amounts of short sequencing reads with un-
known sequencing errors poses a great challenge.

Currently available transcriptome assemblers are usually cat-
egorized into two strategies: genome-guided (or reference-based)
and de novo. In general, if a high-quality genome is available for
some species, such as humans, genome-guided assemblers such
as Scallop (Shao and Kingsford 2017), TransComb (Liu et al.
2016b), StringTie (Pertea et al. 2015), StringTie2 (Kovaka et al.
2019), Cufflinks (Trapnell et al. 2010), Class2 (Song et al. 2016),
Scripture (Guttman et al. 2010), IsoInfer (Feng et al. 2011),
IsoLasso (Li et al. 2011), iReckon (Mezlini et al. 2013), CEM (Li
and Jiang 2012), Traph (Tomescu et al. 2013), and Mitie (Behr

et al. 2013) usually firstmap all RNA-seq reads to the genome using
mapping tools such as HISAT (Kim et al. 2015), STAR (Dobin et al.
2013), TopHat (Trapnell et al. 2009), TopHat2 (Kim et al. 2013),
SpliceMap (Au et al. 2010), or GSNAP (Wu and Nacu 2010).
Then, a graph model, such as a splicing graph or overlap graph,
is built based on the mappings, and different methods are imple-
mented to search for transcript-representing paths in the con-
structed graphs. Different from the reference-based strategy,
which benefits from high-quality genomes, the de novo strategy,
with assemblers such as TransLiG (Liu et al. 2019), BinPacker
(Liu et al. 2016a), Bridger (Chang et al. 2015), Trinity (Grabherr
et al. 2011), ABySS (Simpson et al. 2009), SOAPdenovo-Trans
(Xie et al. 2014), and IDBA-Tran (Peng et al. 2013), usually builds
graph models and assembles all expressed transcripts directly
from the RNA-seq reads. Therefore, the de novo strategy is more
challenging than the genome-guided strategy, and its assembly ac-
curacy is generally much lower. However, the de novo strategy
plays an important role in studying species for which genome as-
semblies of high quality are not available at the moment.

For genome assembly, a variety of assembly tools are avail-
able, but it is not always obvious which tool to use for a specific
genome. Therefore, a compelling approach is to merge multiple
assemblies to produce a higher-quality consensus assembly
(Alhakami et al. 2017). Several tools for merging multiple assem-
blies have been developed, such as CISA (Lin and Liao 2013),
GAA (Yao et al. 2012), GAM_NGS (Vicedomini et al. 2013),
GARM (Soto-Jimenez et al. 2014), Metassembler (Wences and
Schatz 2015), andMIX (Soueidan et al. 2013) via differentmerging
strategies. For example, the CISA tool first selects representative
contigs and discards contained contigs. It then extends representa-
tive contigs and detects misassembly in the representative contigs
by aligning them to query contigs. Finally, the resulting contigs are
iteratively merged. Another tool, MIX, uses an extension graph to
determine a set of nonoverlapping maximal independent longest
paths to merge contigs. Contigs not included in any path are
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examined for duplications. Contigs that are contained or nearly
contained are removed, and the rest are added to the assembly.

For transcriptome assembly, no assembler consistently gener-
ates the most accurate assemblies when tested across different
RNA-seq data sets, and it is difficult to determine which assembler
to use for a specific RNA-seq data set (Smith-Unna et al. 2016;
Voshall andMoriyama2018). Therefore, it is imperative to develop
approaches to merge assemblies from different assemblers (Haas
et al. 2003; Venturini et al. 2018). The de novo assemblers
EvidentialGene (Gilbert 2013) and Concatenation (Cerveau and
Jackson 2016) try to address the limitations of individual assem-
blers, ideally keeping the correctly assembled transcripts. Both
tools process the transcripts obtained from multiple assemblers
by clustering the transcripts and predicting coding regions to
determine the representative sequence for each cluster. The de

novo assembler Trans-ABySS (Robertson et al. 2010) attempts to
solve this problem by merging assemblies from ABySS (Simpson
et al. 2009) using different k-mer lengths. The genome-guided as-
sembler Mikado (Venturini et al. 2018) generates a coherent tran-
script annotation by integrating multiple RNA-seq assemblies
from multiple samples. It defines loci, scores transcripts, deter-
mines a representative transcript for each locus, and finally returns
a set of gene models. In addition, some other assembling tools for
reconstructing a consensus transcriptome from multiple RNA-seq
samples have also been developed, such as TACO (Niknafs et al.
2017) and StringTie-merge (Pertea et al. 2015).

In this study, we developed a new genome-guided assembler
TransBorrow,which assembles transcripts by first building splicing
graphs based on the mapped reads and extracting reliable paired
subpaths fromsplicinggraphs. It thenborrows reliable subsequenc-

es fromdifferent assemblies by building a
so-called colored graph. Then, those reli-
able subsequences and paired subpaths
are mapped to the splicing graphs as reli-
able subpaths for guiding the correct
assemblies of expressed transcripts.
Finally, a newly designed path extension
method is applied to search for a tran-
script-representing path cover over each
splicing graph by seeding those reliable
subpaths (for the flowchart of Trans-
Borrow, see Fig. 1). Below, we describe
the algorithmic approaches used in
TransBorrow in detail and benchmark it
against the state-of-the-art transcriptome
assemblers StringTie2, Scallop, and Cuf-
flinks and twomerging-based assemblers
StringTie-mergeandTACOonbothsimu-
lated and real RNA-seq data sets.

Results

TransBorrow is a transcriptome assem-
bler that takes advantage of assemblies
from different assembly tools by search-
ing for reliable assembly subpaths from
different assemblies and then seeding
these subpaths for transcript-represent-
ing path extensions subsequently in
each splicing graph. To evaluate its per-
formance, we first assembled the RNA-
seq reads by using different assemblers,
and then the algorithm TransBorrow
was run by merging these different
assemblies. The results showed that
TransBorrow effectively takes advantage
of the assemblies from different tools
and that TransBorrow has enhanced per-
formance compared with that of other
assembly tools.

In this study, the latest alignment
tools HISAT2 and STAR were used for
mapping the RNA-seq reads to a refer-
ence genome, and then the leading
assemblers Scallop, StringTie2, and Cuf-
flinks were applied to assemble all the ex-
pressed transcripts of both simulated and
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Figure 1. Flowchart of the TransBorrow algorithm. (A) Building splicing graph and extracting reliable
paired subpaths; (B) building colored graph and extracting reliable assembly subpaths; (C) mapping re-
liable subpaths to the splicing graph; (D) recovering transcript-representing paths.
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real data. Then, we ran TransBorrow by merging the assemblies
from the three assemblers and comparing its performance with
each of them. In addition, two merging-based assemblers, String-
Tie-merge and TACO, were also tested, which combined assem-
blies from different samples (rather than assemblies from
different assemblers) to improve assembly accuracy. In this study,
we also compared with StringTie-merge and TACO by taking the
assemblies from StringTie2, Scallop, and Cufflinks (as those are
from different samples). The detailed commands for running all
themappers and assemblers and the versions of all the tools are de-
scribed in the Supplemental Material. The common comparison
criteria used in this study were that a reference transcript is consid-
ered to be correctly detected if and only if its intron chain is exactly
matched with an assembled transcript. The human genome
GRCh37/hg19 and all the reference transcripts downloaded from
the UCSC hg19 gene annotation were used as a reference genome
and transcriptome, respectively.

Performance of TransBorrow on simulated data

The FLUX simulator (Griebel et al. 2012) was used to generate the
simulation data (150-bp length, approximately 73 million paired-
end reads), on which we tested the performance of TransBorrow,
Scallop, StringTie2, and Cufflinks by commonly used criteria
such as assembly accuracy (recall and precision) at both the tran-
script and gene levels and the identification of transcripts with dif-
ferent expression levels (low, medium, and high). The parameters
and running commands for generating the simulated data set are
described in the Supplemental Material.

Comparison of assembly accuracy at the transcript and gene levels

We first ran Scallop, StringTie2, and Cufflinks on the simulated
data by using the mapping results from both HISAT2 and STAR.

Then TransBorrow was run by merging the assemblies from the
three assemblers on the mapping results from HISAT2 and STAR.
The accuracy was evaluated by recall (the fraction of correctly de-
tected expressed transcripts out of all the expressed transcripts)
and precision (the percentage of assembled transcripts that exactly
matched an expressed transcript).

Based on both HISAT2 and STARmapping, TransBorrow con-
sistently achieved the highest recall and precision among all the
compared assemblers on the simulated data (see Fig. 2A; for details,
see Supplemental Table S1). For the correctly assembled transcripts
basedonHISAT2andSTARmapping,TransBorrowcorrectlydetect-
ed 5.64% and 1.29% more expressed transcripts than StringTie2,
35.58% and 7.53% more than Scallop, 52.29% and 38.55% more
than Cufflinks, 37.96% and 8.3% more than StringTie-merge,
and 30.13% and 8.44% more than TACO (see Fig. 2B; for details,
see Supplemental Table S1). Therefore, TransBorrow performed
better than all the other compared assemblers on the simulated
data at the transcript level.

We further compared the performance of the assemblers in
identifying expressed genes. A gene is considered to be correctly
detected if at least one of its isoforms is correctly assembled.
Similarly, recall (at the gene level) is defined as the fraction of cor-
rectly detected genes out of the expressed genes, and precision (at
the gene level) is defined as the fraction of correctly detected genes
out of all assembled genes.

After running the assemblers based on bothHISAT2 and STAR
mapping, the recall and precision of TransBorrow again achieved
the highest among all the compared assemblers (see Fig. 2C; for de-
tails, see Supplemental Table S1). Regarding the correctly detected
genes, TransBorrow correctly detected 4.96% more genes than
StringTie2 based on HISAT2 mapping, 33.33% and 5.48% more
than Scallop based on HISAT2 and STAR mapping, 39.79% and
26.65% more than Cufflinks, 31.83% and 3.26% more than
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Figure 2. Performance comparisons of the assemblers on the simulated data. (A) Comparisons of assembly accuracy of the assemblers at the transcript
level. (B) The number of correctly assembled transcripts by the assemblers. (C) Comparisons of assembly accuracy of the assemblers at the gene level.
(D) The number of correctly detected genes by the assemblers. (E–G) Comparisons of detected transcripts with low, medium, or high expression levels
on the simulated data.
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StringTie-merge, and 20.78% and 0.8% more than TACO (see Fig.
2D; for details, see Supplemental Table S1). Therefore,
TransBorrow reached the best performance among all the com-
pared assemblers under both HISAT2 and STAR mappings at the
gene level.

Comparison of detected transcripts with different expression levels

In theory, splicing isoforms with relatively lower expression levels
are more difficult to correctly assemble than those with higher ex-
pression levels (Canzar et al. 2016; Shao and Kingsford 2017). To
compare the performance of the assemblers in identifying tran-
scripts with different expression levels, especially those with rela-
tively lower expression levels, as previously described (Shao and
Kingsford 2017), the expressed transcripts of the simulated data
were first equally divided into three parts according to their expres-
sion levels, which corresponded to lowly, moderately, and highly
expressed transcripts.

After comparison, the results showed that TransBorrow cor-
rectly detected the largest number of expressed transcripts, regard-
less of expression levels, based on both HISAT2 and STAR
mappings (for details, see Fig. 2E–G). More importantly, TransBor-
row correctly detected 7.3% and 9.17%more lowly expressed tran-
scripts than StringTie2, 46.58% and 38.96% more than Scallop,
146.25% and 133.02% more than Cufflinks, 24.06% and 24.12%
more than StringTie-merge, and 24.21% and 16.92% more than
TACO, which clearly showed that TransBorrow performed the
best in identifying transcripts with different expression levels, es-
pecially those with low expression levels.

Performance of TransBorrow on real data

The advantage of simulated data is that its ground truth is known;
however, it is not able to capture all the features of real RNA-seq
data. Therefore, performance evaluations of the assemblers should
also be implemented on real data. As the ground truth of real data
is difficult to know,we set all the reference transcripts downloaded
from the UCSC gene annotation hg19 as
the ground truth in this study. Four real
data sets—including R1, K562 cells (repli-
cate 1); R2, K562 cells (replicate 2);
R3, H1 cells (replicate 1); and R4, H1
cells (replicate 2)—were collected from
the NCBI Sequence Read Archive (SRA)
with the accession codes SRR387661,
SRR387662, SRR307911, and SRR30
7912, respectively. The four data sets,
R1, R2, R3, and R4, contain approximate-
ly 125 million, 88 million, 41 million,
and 37 million paired-end reads, respec-
tively. Then, the performance of the as-
semblers was evaluated on the four real
data sets by using the same criteria as
that used for the simulated data.

Comparison of assembly accuracy at the
transcript level

After running all the assemblers on the
four real data sets, the results showed
that TransBorrow achieved the highest
recall on all four data sets based on both
HISAT2 and STAR mappings (see Fig.

3A–D; for details, see Supplemental Table S2). In terms of preci-
sion, TransBorrow reached the highest precision among all com-
pared assemblers on the data sets R2, R3, and R4 based on both
HISAT2 and STAR mappings (see Fig. 3A–D; for details, see
Supplemental Table S2). On the first data set R1, the precision of
TransBorrow is slightly lower than that of Scallop based on
HISAT2 mapping and slightly lower than that of StringTie2 based
on STAR mapping. However, the F-score of TransBorrow is the
highest (for details, see Supplemental Fig. S9), which indicates
that the overall performance of TransBorrowwas better than those
of both StringTie2 and Scallop with their default settings. By de-
fault, assemblers filtered their assembled transcripts with low esti-
mated expression levels after transcriptome assembly. Therefore,
after filtering, the recall will generally decline, whereas the preci-
sion will increase. This flexible filtering parameter corresponds to
a trade-off between recall and precision. If the users adjust the pa-
rameter, TransBorrow could reach both higher recall and precision
than StringTie2 and Scallop. For example, if we filtered the assem-
bled transcripts of TransBorrow by using parameters 2.2 and 1.7
under HISAT2 and STAR mappings to make its precision slightly
higher than that of Scallop and StringTie2 on data set R1, and
we found that the recall and precision of TransBorrow were
18.78% and 28.66% under HISAT2 mapping, and 17.76% and
27.74% under STAR mapping, which indicates that TransBorrow
showed both higher recall and precision than Scallop and
StringTie2 (see Fig. 3A; for details, see Supplemental Table S2). In
addition, the recall/precision curves give more comprehensive
comparison between different methods (for details, see
Supplemental Fig. S14).

For the correctly assembled transcripts based onHISAT2map-
pings, TransBorrow correctly detected 15.19%–20.82%more tran-
scripts than StringTie2, 14.61%–20.52% more than Scallop,
76.81%–114.93% more than Cufflinks, 22.2%–40.84% more
than StringTie-merge, and 22.12%–34.95% more than TACO on
the four real data sets (see Fig. 3E; for details, see Supplemental
Table S2). Based on STAR mappings, TransBorrow correctly
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Figure 3. Accuracy comparisons of the assemblers on the four real data sets at the transcript level.
(A–D) Comparisons of assembly accuracy of the assemblers on data sets R1, R2, R3, and R4, respectively.
(E) Theaveragenumberof correctly assembled transcripts by the assemblers ondata sets R1, R2, R3, andR4.
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detected 10.59%–14.7%more transcripts
than StringTie2, 7.78%–10.54% more
than Scallop, 65.62%–94.52% more
than Cufflinks, 20.73%–39.58% more
than StringTie-merge, and 15.5%–

24.05% more than TACO on the four
real data sets (see Fig. 3E; for details, see
Supplemental Table S2). Therefore,
TransBorrow performed better than all
the other compared assemblers on the
four real data sets at the transcript level.

Comparison of assembly accuracy at
the gene level

We then compared the accuracy of the
assemblers at the gene level using the
four real data sets. After running the as-
semblers based on both HISAT2 and
STAR mappings, TransBorrow reached
much higher recall and precision than
any of the compared assemblers on all
four real data sets (see Fig. 4A–D; for de-
tails, see Supplemental Table S3).

Regarding the correctly detected
genes based on the HISAT2 mappings,
TransBorrow correctly detected 5.35%–5.94% more genes than
StringTie2, 6%–9.74% more than Scallop, 47.76%–63.49% more
than Cufflinks, 7.04%–15.57% more than StringTie-merge, and
7.97%–13.2%more than TACO (see Fig. 4E; for details, see Supple-
mental Table S3). Based on STARmappings, TransBorrow correctly
detected 0.52%–2.12%more genes than StringTie2, 5.11%–8.26%
more than Scallop, 37.53%–48.65% more than Cufflinks, 5.94%–

13.96% more than StringTie-merge, and 4.37%–7.5% more than
TACO on the four real data sets (see Fig. 4E; for details, see Supple-
mental Table S3). Therefore, TransBorrow performed better than
all the other compared assemblers on the four real data sets at
the gene level.

Comparison of identifying transcripts with different expression levels

For real data, the exact expression abundances of the transcripts
were unknown to us. Tomake relatively fair comparisons of the as-
semblers in identifying transcripts with different expression levels
on real data, we first estimated the expression levels (TPM values)

of the whole-reference transcripts using the well-known abun-
dance estimator kallisto (Bray et al. 2016), based on which the ref-
erence transcripts could be equally divided into three parts
corresponding to the transcripts with low, medium, and high ex-
pression levels as we did on the simulated data.

In comparisonwith any of the other assemblers, TransBorrow
correctly detected more reference transcripts, regardless of expres-
sion levels, for all four real data sets based on both HISAT2 and
STARmappings (for details, see Fig. 5A–C). It is worth mentioning
that based on HISAT2 mappings, TransBorrow correctly detected
44.19%–54.53% more lowly expressed transcripts from the four
data sets than StringTie2, 51.66%–79.37% more than Scallop,
191.72%–361.22% more than Cufflinks, 52.69%–93.16% more
than StringTie-merge, and 21.18%–59.15% more than TACO.
For the STAR mappings, TransBorrow correctly detected 31.91%–

36.22% more lowly expressed transcripts from the four data sets
than StringTie2, 21.81%–37.8% more than Scallop, 161.78%–

312.8% more than Cufflinks, 47.39%–84.97% more than
StringTie-merge, and 11%–28.71% more than TACO. Therefore,
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Figure 4. Accuracy comparisons of the assemblers on the four real data sets at the gene level. (A–D)
Comparisons of assembly accuracy of the assemblers on data sets R1, R2, R3, and R4, respectively. (E)
The average number of correctly detected genes by the assemblers on data sets R1, R2, R3, and R4.

BA C

Figure 5. Performance comparisons of the assemblers in identifying transcripts with different expression levels on the real data. (A–C) The average num-
ber of correctly assembled transcripts with different expression levels by the assemblers on data sets R1, R2, R3, and R4.
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the comparison showed that TransBorrow consistently main-
tained considerably superior performance in identifying lowly ex-
pressed transcripts not only on simulated data but also on real data
sets.

Comparison of running time and memory usage

To compare the running time and memory usage of the assem-
blers, all the assemblers were run on the same server with 96 GB
of memory and a 12-core CPU. The results showed that Scallop
and StringTie2 ran the fastest on all the four real data sets.
TransBorrow ran slightly slower than Scallop and StringTie2, but
several times faster than Cufflinks. For example, on data sets R2
(88million reads) and R3 (41million reads) under STARmappings,
the running time of StringTie2 was 10 and 6min, respectively. The
running time of Scallop was 24 and 9 min, respectively, and the
running time of TransBorrow was 45 and 33 min, respectively.
However, the running time of Cufflinks was 148 and 97 min, re-
spectively. For memory usage, the memory cost by StringTie2
was ∼1 GB on all the four data sets, and all the other assemblers
showed a similar trend, with maximum memory usage of no
more than 10 GB inmost cases (for the running time andmemory
usage of all the four real data sets, see Supplemental Table S5).
Overall, althoughTransBorrow is not themost efficient in running
time andmemory usage, it is quite acceptable for practical use. The
merging-based approaches, StringTie-merge and TACO, are differ-
ent from the above assemblers because they only take the assem-
blies from the other assemblers as their inputs. Their running
time was much faster, and their memory usage was also less than
that of all the above assemblers (for details, see Supplemental
Table S5).

Additional evaluations

In addition to the evaluations presented above, the Supplemental
Material also includes evaluating the assembly accuracy of all as-
semblers on an additional 101 RNA-seq samples from the species
Homo sapiens, Saccharomyces cerevisiae, Drosophila melanogaster,
Caenorhabditis elegans, Mus musculus, Arabidopsis thaliana, and
Zea mays (see Supplemental Figs. S1–S4). The assembly accuracy
of the assemblers by using spike-in and single-cell RNA-seq data
sets (Supplemental Figs. S5–S7), the performance of the assemblers
at identifying long noncoding transcripts (see Supplemental Fig.
S8) and the F-score of the assemblers on all the data sets (see
Supplemental Figs. S9–S12) were also evaluated in the
Supplemental Material. Moreover, some other evaluations were
also performed, including the comparison of the performance of
TransBorrow (by using the assemblies from StringTie, Scallop,
and Cufflinks) with that of StringTie2 (see Supplemental Fig.
S13), the recall/precision curves of each assembler on all the data
sets (see Supplemental Figs. S14–S17), the comparison of the per-
formance of TransBorrowwith an approach that simply combined
the assembled transcripts from different assemblers (see
Supplemental Fig. S18), and the assembled transcripts of a gene
with complicated splice junction patterns in the form of a
Genome Browser snapshot (for details, see Supplemental Fig. S19).

Discussion

In this study, we present a novel genome-guided assembler,
TransBorrow, for transcriptome assembly using short RNA-seq
reads. Compared with three leading assemblers of the same kind
on both simulated and real data sets, TransBorrow consistently

performs the best under commonly used criteria. The superiority
of TransBorrow may be attributed to the following.

First, TransBorrow attempts to identify all expressed tran-
scripts by taking advantage of different assemblies from other as-
semblers. The reliable subsequences generated in this step serve
as seeds and effectively guide the subsequent assembly process.
Second, TransBorrow develops a new graph model, the colored
graph, which was built by merging different assemblies. Based
on colored graphs, reliable subsequences could be accurately and
efficiently extracted from merged assemblies. Third, TransBorrow
constructs a weighted line graph for each splicing graph, whose
edge weight exactly indicates the correct connections between
the incoming and outgoing edges for each node of the splicing
graph. Fourth, TransBorrow implements a newly designed path ex-
tension strategy for searching for a transcript-representing path
cover over each weighted line graph by seeding the extracted reli-
able subpaths and iteratively choosing the best neighbor for
extension.

Although we have seen great advantages of TransBorrow, fur-
ther improvements could still be made for TransBorrow in the fu-
ture. For example, the current version of TransBorrow is not
compatible with long-read RNA-seq data sets (e.g., Pacific
Biosciences [PacBio] or Oxford Nanopore Technologies [ONT]).
Similar to other assemblers, StringTie2, Scallop, and Cufflinks,
the current version of TransBorrow performs transcriptome assem-
bly in each individual gene locus without considering the resolu-
tion of chimeric transcripts. And the current version of
TransBorrow is a genome-guided assembler, which is not compat-
ible with de novo assemblies. The future version of TransBorrow
will attempt to solve these problems and make further improve-
ments. For the development of TransBorrow, difficulties existed
when we were building it. For example, different assemblers used
by TransBorrow may generate quite different exon–intron bound-
aries for some genes, whichmakes the colored graphs very compli-
cated. In terms of the efficiency of TransBorrow, it depends in
part on the performance of the borrowed assemblies, and we tried
to optimize the performance of the assemblers that were used
upstream of TransBorrow by adjusting their parameters, such as
minimum isoform abundance, minimum transcript length, and
minimum junction coverage, and the performance of TransBor-
row was only slightly affected by these operations. Therefore, run-
ning the assemblers upstream of TransBorrow by using their
default parameters would be good. In addition, we tried to replace
Cufflinks with two other assemblers, CLASS2 and Strawberry, and
tested the performance of TransBorrow. We found that the perfor-
mance of TransBorrow was not improved when replacing Cuf-
flinks with CLASS2 or Strawberry. For example, on the simulated
data set, the recall and precision of TransBorrow by using String-
Tie2, Scallop, and Cufflinks were 57.12% and 60.32% versus
57.52% and 55.07% when replacing Cufflinks with CLASS2 and
57.14% and 55.57% when replacing Cufflinks with Strawberry.
Therefore, we ran TransBorrow by using the assemblies from Cuf-
flinks. Moreover, we also tested TransBorrow on four single-cell
RNA-seq data sets, and it also showed appreciable improvements
over the applied assemblers (see Supplemental Material; Supple-
mental Fig. S7).

Tools such as EvidentialGene, Concatenation, and Mikado
also perform assemblies by combining assemblies from different
assemblers, which is similar to TransBorrow. Different from the
three tools, TransBorrow performs transcriptome assembly from
the original read mapping results by building splicing graphs
and searching for path covers over splicing graphs, and those
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combined assemblies fromdifferent assemblers effectively provide
reliable subpaths for TransBorrow guiding its accurate assembly.
However, the three tools EvidentialGene, Concatenation, and
Mikado perform assemblies completely based on the results from
other assemblers, which clearly limits their performance in identi-
fying novel transcripts. In addition, the performance of Mikado
also relied on additional reference information, such as the
BLAST information, whereas the current version of TransBorrow
does notmake use of additional reference information. The two as-
semblers EvidentialGene and Concatenation were designed for
processing combined assemblies in the FASTA format, different
from TransBorrow and Mikado, which use assemblies in the GTF
format.

To the best of our knowledge, TransBorrow is the first ge-
nome-guided transcriptome assembler that uses assemblies from
different tools by searching for reliable assembly subpaths from
different assemblies and then seeding these subpaths for tran-
script-representing path extensions in each splicing graph. The
software has been developed to be user-friendly and is expected
to play a crucial role in new discoveries of transcriptome studies us-
ing RNA-seq, especially in complicated human diseases related to
abnormal splicing events and expression levels, such as cancers.

Methods

Building splicing graphs and extracting reliable paired subpaths

Assembly of expressed transcripts in this study is completed with
the traditional graphmodel, the splicing graph. Therefore, we first
build accurate splicing graphs and then collect all subpaths in the
graphs supported by the paired-end sequencing reads.

Building splicing graphs

The splicing graph is constructed frommapping the RNA-seq reads
to a reference genome using mapping tools such as HISAT2 or
STAR. According to themapping results, reads are usually clustered
into corresponding gene loci, and a splicing graph is generally
built for each gene. The exon–intron boundaries and exon–exon
junctions are derived from those mapping reads spanning two or
more exons. Generally, each node in a splicing graph represents
an exon in the corresponding gene, and a directed edge between
two nodes means a splicing junction between the two exons. For
a splicing graph, we assign a weight to each edge depending on
the number of reads spanning it.

Theoretically, edges in the splicing graphs can capture most
splicing events in the expressed transcripts, and the sequencing
depth information is appropriately integrated into the graph as
the edgeweight. Then the task of transcript assembly is to accurate-
ly search for an edge-path cover for the splicing graph, each path of
which represents an expressed transcript.

Extracting reliable paired subpaths

To make full use of the paired-end information in the subsequent
assembly procedure, we search for all the subpaths in each splicing
graph supported by the paired-end reads, named paired subpaths.

In detail, for each two paired-end reads r1 and r2, if r1 spans
a path P1 =ni1→ni2→…→nip in a splicing graph G while r2
spans P2 =nj1→nj2→…→njq, we will search for all paths from nip
to nj1 in graph G. If there exists one and only one path Pin=nip→
nm1→nm2→…→nms→nj1 between nip and nj1 satisfying p+ s+ q
≥3, then reads r1 and r2 are connected by the path Pin, and the cor-
responding paired subpath is extracted as P=P1→Pin→P2 (see Fig.
1A). After all the paired-end reads in graphG are processed, we ob-

tain a set Sp of all paired subpaths. Different paired-end reads may
generate the same paired path. Therefore, we record the number of
paired-end reads that generate each paired subpath P, and this
number is called the coverage of path P.

In fact, some paired subpaths may be erroneously extracted
because of mapping or sequencing errors. These paired subpaths
usually show very low coverage and need to be removed.
Although a paired subpath P is erroneously extracted, the subpaths
of P may be reliable and should not be removed. Therefore, we at-
tempt to obtain all reliable paired subpaths by the following steps.
Given a paired subpath P, we first extract all the subpaths of length
three (called paired 3-subpaths) by decomposing the paired sub-
path P. For example, a paired subpath P=n1→n2→n3→n4 will
be decomposed into two paired 3-subpaths, P1 =n1→n2→n3 and
P2 =n2→n3→n4. Different paired subpaths usually have different
coverage, whereas they may generate the same paired 3-subpath.
Therefore, for each paired 3-subpath, we record the sum of cover-
age of all paired subpaths that generate the paired 3-subpath,
and this number is called the coverage of the paired 3-subpath. A
paired 3-subpath is defined as a reliable paired 3-subpath if its cov-
erage is no less than two, and all reliable paired 3-subpaths can be
sorted by their coverage. Similarly, we could extract all reliable
paired 4-subpaths, paired 5-subpaths, …, and paired n-subpaths,
where n is the length of the longest paired subpath (see Fig. 1A).
Finally, we can obtain all reliable paired subpaths of different
lengths, cluster them according to their lengths, and sort them
in each cluster by their coverage.

Building colored graphs and extracting reliable assembly

sequences

The main contribution of TransBorrow is to take advantage of the
assemblies fromdifferent assemblers, which is achieved by extract-
ing all reliable sequences of the assembled transcripts from differ-
ent assembly tools. These extracted reliable sequences together
with the above reliable paired subpaths then serve as key informa-
tion guiding the subsequent assembly procedure.

Building colored graphs

To accurately search for all reliable subsequences, we first build a
novel graph model, the colored graph, as follows. Given the
merged transcripts assembled by two ormore different assemblers,
we first cluster all the transcripts into different gene loci. For each
gene locus, a colored graphGc is constructed with nodes and edges
representing the exons and splice junctions appearing in the
merged transcripts. Then each of the merged transcripts corre-
sponds to a unique path in the colored graph, named an assem-
bled-transcript-representing path. As each graph Gc is built from
those assembled-transcript-representing paths and the paths
belong to different assemblers, we call graph Gc a colored graph
(see Fig. 1B). Based on colored graphs, reliable sequences of the
merged transcripts can be effectively extracted as follows.

Extracting reliable assembly subpaths in colored graphs

The merged transcripts were predicted by different assemblers;
therefore, the merged transcripts usually contain more true posi-
tives than the single assembly by any of the assemblers.
However, the false positives would also be much more than each
single assembly. To extract reliable sequences from the merged
transcripts, we take the following steps. It is worth mentioning
that a reliable sequencemeans a segment or thewhole of an assem-
bled transcript, which corresponds to a unique subpath of a col-
ored graph.

Merging-based transcriptome assembly

Genome Research 1187
www.genome.org



In theory, if a subpath of a colored graph is covered by a tran-
script assembled byonly one assembler, then this subpath has very
low reliability. However, if a subpath is detected by two ormore as-
semblers, then it should have relatively higher reliability. To ob-
tain reliable assembly subpaths based on such considerations, we
first extract all the subpaths of length three (called assembly 3-sub-
paths) by decomposing each assembled-transcript-representing
path in the colored graph, similar to that in the subsection
“Extracting reliable paired subpaths.” Different assemblers may
generate the same assembly 3-subpath; we record the number of
assemblers that generate the assembly 3-subpath, and the number
is named the depth of the assembly 3-subpath. An assembly 3-sub-
path is defined as a reliable assembly 3-subpath if its depth is no
less than two, and all reliable assembly 3-subpaths can be sorted
by their depth. Similarly, we could extract all the reliable assembly
4-subpaths, assembly 5-subpaths, …, and assembly m-subpaths,
where m is the length of the longest assembled-transcript-repre-
senting path (see Fig. 1B). Finally, we can obtain all reliable assem-
bly subpaths of different lengths, cluster them according to their
lengths, and sort them in each cluster by their depth.

Mapping reliable subpaths to the splicing graphs

The assembly procedure is performed on splicing graphs, and all
reliable paired subpaths and assembly subpaths actually guide
the assembly process on splicing graphs. Therefore, we need to
map all the reliable assembly subpaths to splicing graphs; then
each reliable assembly subpath corresponds to a unique subpath
of a splicing graph. To effectively map those assembly subpaths
to the splicing graphs, we first build a hash table recording all splic-
ing graphs. For each edge in a splicing graph, the key of the hash
table records its corresponding splicing junction positions on a
specific chromosome, and the value of the hash table records its
graph and edge indexes. Then each assembly subpath could be ef-
fectively located to a splicing graph according to the splice junc-
tions in the assembly subpath.

After mapping all the reliable assembly subpaths to splicing
graphs, we combine the assembly subpaths and paired subpaths
and remove the redundant subpaths (for the redundant subpaths
appearing both in the set of assembly subpaths and paired sub-
paths, we keep only one copy), and the combined subpaths are
called reliable subpaths (see Fig. 1C). These reliable subpaths will
serve as the seeds and guide the subsequent transcript assembly.

Searching for transcript-representing paths by seeding reliable

paths

Theoretically, each reliable subpath corresponds to a segment of
an expressed transcript and therefore should be covered by at least
one transcript to be assembled. To achieve this goal, we first create
a weighted line graph for each splicing graph, and then a tran-
script-representing path cover over each line graph is obtained
by a newly designed path extension strategy.

Building the weighted line graph

To accurately connect the incoming and outgoing edges of each
node in a splicing graph G, we first build a line graph L(G) of the
splicing graph G with nodes representing the edges in G and an
edge representing two incident edges in G. The weight of each
node in L(G) is defined by the coverage of the corresponding
edge in G, whereas each edge is weighted by solving a quadratic
program updated from our previous study (Liu et al. 2019). The
quadratic program effectively integrates the information from
transcript coverage differences and extracts reliable subpaths (for
details, see Supplemental Material). Then, the edge coverage in L

(G) clearly indicates the correct connections between incoming
and outgoing edges of each node in graph G, with an edge (ei, ej)
weight in L(G) of 1, meaning that this edge comes from an ex-
pressed transcript with a high probability and zero otherwise (see
Fig. 1D).

Searching for transcripts by a novel path extension technique

After assigning weights to both the nodes and edges of the weight-
ed line graph L(G), a newly designed path extension strategy was
applied to assemble all the expressed transcripts by searching for
an optimal transcript-representing path cover over the weighted
line graph. Before processing path extension, all the reliable sub-
paths of the splicing graphs should correspond to the paths of
the line graphs, and a reliable n-subpath in a splicing graph should
correspond to a unique reliable (n−1)-subpath in the correspond-
ing line graph. Then TransBorrow searches for all the expressed
transcripts for a line graph L(G) by the following steps.

Step 1. Choose the longest reliable subpath pr = pr1→ pr2→…→
prm that is not covered by any predicted path (or choose an un-
used node in L(G) if all the reliable subpaths have been included
in the predicted paths) as a seed and extend it to one of its right
neighbors, with the edge weight being one. If there are multiple
choices, we choose the neighbor ni, which is supported by a re-
liable 2-subpath prm→ni. If there are still multiple choices, we
choose the neighbor nj, which is supported by a reliable 3-sub-
path pr(m−1)→ prm→nj. The process is iterated until no neighbor
is supported by any longer reliable subpath. If there are still mul-
tiple choices, then the neighbor with the largest node weight is
selected for extension. The extension is continued until the last
node of the current path has no outgoing edges. A similar pro-
cess could be performed for left extensions, and then a tran-
script-representing path pt is predicted.

Step 2. Define cmin as the minimum node weight in the extended
path pt, and then we update each node weight c(n) of the line
graph L(G) to be c(n)-cmin if node n is included in the path pt.

The above extension process is repeated until all the reliable
subpaths and nodes in the line graph L(G) have been covered by
the predicted paths, and then a transcript-representing path cover
over the line graph is obtained, each path of which corresponds to
a unique path in the splicing graph G.

Software availability

The source code for the latest version of TransBorrow package is
available at https://sourceforge.net/projects/transcriptomeassembly/
files/TransBorrow/ and as Supplemental Code.

Data access

The simulated data set used in this study is available at https://
sourceforge.net/projects/transcriptomeassembly/files/TransBorrow/
Data/. All the real data sets were downloaded from NCBI SRA
with the accession codes recorded in Supplemental Table S4. The
reference genome and transcripts used for evaluating the perfor-
mance of the assemblers are described in Supplemental Material.
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