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Three‑dimensional conditional 
generative adversarial 
network‑based virtual thin‑slice 
technique for the morphological 
evaluation of the spine
Atsushi Nakamoto1*, Masatoshi Hori2, Hiromitsu Onishi1, Takashi Ota1, Hideyuki Fukui1, 
Kazuya Ogawa1, Jun Masumoto3, Akira Kudo4, Yoshiro Kitamura4, Shoji Kido5 & 
Noriyuki Tomiyama1

Virtual thin‑slice (VTS) technique is a generative adversarial network‑based algorithm that can 
generate virtual 1‑mm‑thick CT images from images of 3–10‑mm thickness. We evaluated the 
performance of VTS technique for assessment of the spine. VTS was applied to 4‑mm‑thick CT 
images of 73 patients, and the visibility of intervertebral spaces was evaluated on the 4‑mm‑thick 
and VTS images. The heights of vertebrae measured on sagittal images reconstructed from the 
4‑mm‑thick images and VTS images were compared with those measured on images reconstructed 
from 1‑mm‑thick images. Diagnostic performance for the detection of compression fractures was 
also compared. The intervertebral spaces were significantly more visible on the VTS images than on 
the 4‑mm‑thick images (P < 0.001). The absolute value of the measured difference in mean vertebral 
height between the VTS and 1‑mm‑thick images was smaller than that between the 4‑mm‑thick 
and 1‑mm‑thick images (P < 0.01–0.54). The diagnostic performance of the VTS images for detecting 
compression fracture was significantly lower than that of the 4‑mm‑thick images for one reader 
(P = 0.02). VTS technique enabled the identification of each vertebral body, and enabled accurate 
measurement of vertebral height. However, this technique is not suitable for diagnosing compression 
fractures.

Multidetector-row CT (MDCT) is currently in widespread use worldwide, and can reconstruct thin-slice images 
with a slice thickness of 1 mm or less. Thin-slice images are useful for evaluating small lesions and depicting 
detailed structures, and are also used for reconstructing multiplanar reformatted images and 3-dimensional 
(3D) images using processes such as volume rendering and maximum intensity  projection1. Sagittal reformatted 
images are useful for evaluating spinal lesions and  morphology2,3, for numbering the vertebrae, and identifying 
the vertebral level of lesions. However, it is not possible to reconstruct thin-slice images after the raw data have 
been deleted from storage in the scanner. Although saving thin-slice images for all patients before deleting the 
raw data would be one way of solving this problem, it would require more storage in picture archiving and com-
munication system (PACS), which is costly.

Artificial intelligence (AI) has been attracting greater attention in recent years and many reports regarding 
the use of AI in radiological image analysis have been  published4–7. Generative adversarial networks (GANs) are 
deep learning models that comprise two networks trained simultaneously: a generator and a discriminator, and 
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are aimed at generating new  images8. GANs are being increasingly employed for various radiology applications, 
such as in noise reduction of CT images and for generating images of different  modalities8–13. Virtual thin-slice 
(VTS) technique is a newly developed GAN-based algorithm that can generate 1-mm-thick virtual images from 
CT images obtained with a slice thickness of 3–10  mm14. This software is now commercially available and can be 
applied to CT images obtained with any CT scanner. If VTS images are as useful as true thin-slice images, then 
thin-slice images would not need to be prepared in advance and could be created when needed. It would also 
make it possible to create thin-slice images for comparison, even when thin-slice images have not been saved in 
previous examinations. However, it is necessary to verify the diagnostic ability of VTS images before this tech-
nique can be applied to clinical practice. Although many studies have reported use of the GAN technique for 
creating medical  images8,12,13, few have examined whether the created images have the same diagnostic ability 
as the true images. The purpose of this study was to investigate whether VTS images can be used as a substitute 
for true thin-slice images in evaluation of the spine by analyzing the visibility of the vertebral bodies, accuracy 
of vertebral body height measurement, and diagnostic performance in detecting compression fractures.

Materials and methods
This retrospective study was approved by the Osaka University Clinical Research Review Committee, and the 
requirement for informed consent was waived by the Osaka University Clinical Research Review Committee. All 
methods were carried out in accordance with relevant guidelines and regulations. Patients who underwent CT 
for evaluation of aortic or cardiac disease were eligible for inclusion in this study because we obtained a single 
scan in one breath-hold from the supraclavicular area to the symphysis pubis in these patients, whereas separate 
scans were obtained for the chest and abdominopelvic regions in other patients. Enrolled were 73 consecutive 
patients who underwent CT between January and February 2019 or between December 2020 and January 2021 
(50 men and 23 women; age range, 25–91 years; mean age, 72.9 years). The clinical indications for CT in these 
patients are listed in Table 1.

CT examination. CT was performed using a 160- or 320-slice CT scanner (Aquilion Precision, Canon 
Medical Systems, Otawara, Japan, n = 34, or Aquilion ONE GENESIS Edition, Canon Medical Systems, n = 39). 
A pre-contrast scan was performed in all patients from the supraclavicular area to the symphysis pubis during 
a single breath hold. Tube current was adjusted individually using an auto-exposure control technique with a 
standard deviation setting of 15. The remaining scan parameters were as follows: tube voltage, 120 kVp; rotation 
time, 0.5  s; helical pitch, 0.83. Although post-contrast scans were also acquired in 31 patients, only the pre-
contrast images were used in this study.

From the raw data of each patient, two sets of axial images were reconstructed, with a slice thickness/interval 
of 4/4 and 1/1 mm. A hybrid iterative reconstruction algorithm (AIDR 3D, Canon Medical Systems) with a weak 
strength setting was applied. The remaining reconstruction parameters were as follows: kernel, FC03; reconstruc-
tion field of view, 350 mm (pixel size, 0.68 × 0.68 mm).

Virtual thin‑slice technique. VTS is a conditional-GAN based algorithm. Thick-slice images with slice 
thickness/intervals of 3–10 mm were randomly simulated from real thin-slice images by down-sampling with 
Gaussian smoothing. A pair of original thin-slice images and simulated thick-slice images were used to train the 
VTS generator in the GAN framework (Fig. 1). The generator is an encoder-decoder type architecture with skip 
connections inspired by U-Net to reconstruct high resolution images. The role of the discriminator is to enable 
the generator to output virtual thin-slice images that are hard to distinguish from real ones. Both the generator 
and the discriminator are composed of 3D Convolutional Neural Networks. The conditioning labels (e.g. slice 
interval) associated with input thick images are fed into the discriminator to improve the accuracies of super 
resolution. While generator training, L1 loss was calculated in addition to adversarial loss, to minimize the 
pixel-wise intensity difference between the original (ground truth) and the generated thin-slice images, as these 
should be as close as possible. VTS software is a function of the PACS viewer (SYNAPSE SAI Viewer Version 

Table 1.  Clinical indications for CT in the enrolled patients. TAA  thoracic aortic aneurysm, AAA  abdominal 
aortic aneurysm, DAA dissecting aortic aneurysm, EIAA external iliac arterial aneurism, TAVI transcatheter 
aortic valve implantation.

Follow up after treatment for TAA and/or AAA 27

Preoperative evaluation of cardiac disease 18

Preoperative evaluation of TAA or AAA 7

Follow up after treatment for DAA 5

Follow up for untreated DAA 5

Follow up after cardiac surgery 4

Follow up after TAVI 3

Follow up for untreated TAA 1

Follow up for untreated EIAA 1

Evaluation of aortitis 1

Acute back pain 1
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1.0, FUJIFILM, Tokyo, Japan), which has regulatory approval in Japan. The training CT data for this software 
contained CT images of various body parts (head, chest, abdomen, and legs) obtained with scanners of vari-
ous manufacturers. Thus, the software can be applied to any part of the body. The generated VTS images were 
isotropic with voxel size of 1 × 1 × 1 mm. The details of the VTS technique have been presented at a previous 
conference, and the manuscript is available for reference on the preprint  server14. VTS software was applied to 
the 4-mm-thick data set of each patient to generate 1-mm-thick VTS images.

Qualitative analysis. Two radiologists familiar with abdominal radiology (9 and 6 years’ experience) inde-
pendently reviewed the sagittal images reformatted from 4-mm-thick images and the VTS images and evaluated 
the visibility of the intervertebral spaces in each of four regions: cervical, upper thoracic, lower thoracic, and 
lumbar spine. They reviewed these images on a commercially available workstation (SYNAPSE VINCENT ver-
sion 5.3.001, FUJIFILM), and assigned a score using the following 4-point scale: 4, all intervertebral spaces are 
visible; 3, most intervertebral spaces are visible but some are unclear; 2, most intervertebral spaces are unclear; 
1, no intervertebral spaces are visible. The radiologists were informed that the images for evaluation were either 
4-mm-thick or VTS images, but were blinded to the patients’ identity, medical background, and the reconstruc-
tion protocol used.

Quantitative analysis. Two radiologists familiar with abdominal radiology (16 and 9 years’ experience), 
different to the radiologists who performed the qualitative assessment, independently measured the height of 
the first thoracic (Th1) and first lumbar (L1) vertebrae on sagittal reformatted images made from each of the 
4-mm-thick, true 1-mm-thick, and VTS data sets. Height was measured at the anterior border of each of these 
vertebrae. The absolute values of the difference between the measured heights on the 4-mm-thick and true 
1-mm-thick images  (D1) were calculated, as well as the absolute values of the difference between the measured 
heights on VTS and true 1-mm-thick images  (D2). The absolute percentage errors between the measured heights 
on the 4-mm-thick and true 1-mm-thick images (%Error1) was also calculated by dividing  D1 by the measured 
height on true 1-mm-thick images, as well as the absolute percentage errors between the measured heights on 
VTS and true 1-mm-thick images (%Error2). Measurements were performed using a workstation (SYNAPSE 
VINCENT version 5.3.001).

Diagnostic performance in detecting compression fracture. The same two radiologists who per-
formed the qualitative assessment also independently evaluated the possible presence of compression fracture 
using the sagittal reformatted images constructed from each of the 4-mm-thick images and the VTS images. 
They classified the likelihood of compression fracture in all vertebrae using the following 4-point confidence 
score scale: 1, probably no fracture present; 2, indefinite presence of fracture; 3, fracture probably present; and 
4, fracture definitely present. Before the assessment, they were informed that a confidence level of 3 or 4 would 
be considered a positive finding for the calculation of sensitivity and positive predictive value (PPV). The crite-
ria for compression fracture used in this study were: 1, ratio of the anterior height of the vertebra (AH) to the 
posterior height (PH) < 0.75; 2, ratio of the central height of the vertebrae (CH) to AH or PH < 0.8; 3, height of 
a vertebra reduced by > 20% compared with those above and  below15. The reference standard was determined 
by two other radiologists (16 and 9 years’ experience) who evaluated the presence or absence of compression 
fracture on sagittal images reformatted from the true 1-mm-thick images, in consensus.

Statistical analysis. Visual scores regarding the visibility of intervertebral spaces were compared using 
Wilcoxon signed rank test. The absolute values of the difference in measured vertebral heights  (D1 and  D2) were 
compared using paired t-test. The absolute percentage errors of the measured vertebral heights (%Error1 and 
%Error2) were also compared using paired t-test. Interobserver agreement for each of  D1 and  D2 was evaluated 
by intraclass correlation coefficient (ICC). To analyze diagnostic performance for detecting compression frac-

Figure 1.  Adversarial training framework for thick–thin slice translation of CT images.
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ture, jackknife free-response receiver-operating characteristic (JAFROC) analysis was performed using JAFROC 
software (JAFROC Version 4.2.1, www. devch akrab orty. com). This software computes the figure of merit (FOM), 
which is defined as the probability that a lesion is rated higher than the highest rated non-lesion on a normal 
 image16. In the present study, JAFROC1 was used rather than JAFROC or JAFROC2 because of its high statistical 
power for human  observers17. For all tests, a P value less than 0.05 was considered significant.

Results
Qualitative analysis. Mean visual scores regarding the visibility of intervertebral spaces are summarized 
in Table 2. The mean score was significantly higher for VTS than for 4-mm-thick images for all regions for both 
readers (P < 0.001) (Fig. 2).

Quantitative analysis. The mean measured heights of Th1 and L1 are summarized in Table 3. The mean 
absolute value of the difference in measured height between VTS and true 1-mm-thick images  (D2) was less than 
that between 4-mm-thick and true 1-mm-thick images  (D1) for both readers, and the difference was significant 
for L1 measured by Reader 1 (P < 0.01). The mean absolute percentage error of the measured height between 
VTS and true 1-mm-thick images (%Error2) was smaller than that between 4-mm-thick and true 1-mm-thick 
images (%Error1) for both readers, and the difference was significant for L1 measured by Reader 1 (P < 0.01). The 
ICCs of the two readers for height measured on the 4-mm-thick images were 0.461 and 0.795 for Th1 and L1, 
respectively, whereas those measured on VTS were 0.524 and 0.813 for Th1 and L1, respectively.

Table 2.  Mean scores of visibility of intervertebral spaces. Data are mean score (rated on a 4-point 
scale) ± standard deviation. VTS virtual thin slice.

Reader 1 Reader 2

Thick slice (4 mm) VTS P value Thick slice (4 mm) VTS P value

Cervical spine 2.0 ± 0.5 2.5 ± 0.7 < 0.001 1.2 ± 0.5 2.5 ± 0.8 < 0.001

Upper thoracic spine 2.0 ± 0.3 2.5 ± 0.6 < 0.001 1.0 ± 0.2 2.6 ± 0.7 < 0.001

Lower thoracic spine 2.7 ± 0.5 3.2 ± 0.6 < 0.001 1.7 ± 0.6 3.4 ± 0.6 < 0.001

Lumbar spine 3.5 ± 0.5 3.7 ± 0.5 < 0.001 3.1 ± 0.7 4.0 ± 0.2 < 0.001

Figure 2.  Sagittal reformatted images reconstructed from 1-mm-thick images (a), 4-mm-thick images (b), and 
virtual thin-slice images (c). The intervertebral spaces of the cervical and upper thoracic spine are not clearly 
depicted on the reconstruction from 4-mm-thick images. On the reconstruction of virtual thin-slice images, the 
intervertebral spaces are more clearly depicted and it is easier to recognize the shapes of the vertebral bodies.

http://www.devchakraborty.com
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Diagnostic performance in detecting compression fracture. A compression fracture was detected 
in 41 vertebrae in 15 patients by consensus reading of the true 1-mm-thick images. Diagnostic performance 
for detecting compression fractures is summarized in Table 4. Some compression fractures that were correctly 
diagnosed by both readers on 4-mm-thick images were missed on VTS (Figs. 3, 4). Sensitivity, positive predic-
tive value, and FOM were lower for the VTS images than for the 4-mm-thick images in both readers, and the 
difference was statistically significant for FOM for Reader 1 (P = 0.02) (Fig. 5).

Table 3.  Measured heights of thoracic and lumbar vertebrae. Data are mean ± standard deviation (mm, except 
for %Error1 and %Error2). VTS virtual thin slice, Th1 first thoracic vertebra, L1 first lumber vertebra, D1 
absolute value of the difference between measured heights on thick slice images and those on thin slice images, 
D2 absolute value of the difference between measured heights on VTS images and those on thin slice images, 
%Error1 absolute percentage error between measured heights on thick slice images and those on thin slice 
images, %Error2 absolute percentage error between measured heights on VTS images and those on thin slice 
images.

Thick slice (4 mm) VTS Thin slice (1 mm) D1 D2 P value %Error1 %Error2 P value

Reader 1

Th1 14.0 ± 1.9 14.0 ± 1.7 15.2 ± 1.6 1.5 ± 1.2 1.4 ± 0.9 0.30 9.9 ± 7.7% 9.0 ± 6.0% 0.33

L1 23.4 ± 3.4 22.9 ± 3.2 23.1 ± 3.2 1.2 ± 1.4 0.9 ± 1.2 < 0.01 5.6 ± 7.6% 4.3 ± 6.6% < 0.01

Reader 2

Th1 13.1 ± 2.3 13.1 ± 2.1 13.8 ± 1.6 1.6 ± 1.6 1.5 ± 1.2 0.54 12.0 ± 11.9% 11.1 ± 9.4% 0.53

L1 22.5 ± 3.5 22.1 ± 3.2 22.5 ± 3.0 1.5 ± 1.1 1.3 ± 1.1 0.22 6.9 ± 5.3% 5.8 ± 4.9% 0.16

Table 4.  Diagnostic performance for detecting compression fractures. Numbers in parentheses are actual 
numbers of lesions. VTS virtual thin slice, JAFROC Jackknife alternative free-response receiver-operating 
characteristic.

Reader 1 Reader 2

Thick slice (4 mm) VTS P value Thick slice (4 mm) VTS P value

Sensitivity 0.66 (27/41) 0.51 (21/41) 0.26 0.61 (25/41) 0.54 (22/41) 0.51

Positive predictive value 0.75 (27/36) 0.66 (21/32) 0.43 0.89 (25/28) 0.76 (22/29) 0.30

JAFROC1 figure of merit 0.82 0.73 0.02 0.83 0.80 0.66

Figure 3.  Sagittal reformatted images reconstructed from 1-mm-thick images (a), 4-mm-thick images (b), and 
virtual thin-slice images (c). A compression fracture of the 8th thoracic vertebra is seen on the reconstruction 
from 1-mm-thick images (arrow), but is not depicted on that from virtual thin-slice images.
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Discussion
GAN is a type of deep learning model capable of generating realistic-looking fake  images8. In recent years, GANs 
have been used for various radiology applications, such as in noise reduction of CT  images9–11, augmentation of 
data for deep learning algorithm  training18, and for generating images of different  modalities12,13. VTS is a newly 
developed GAN-based algorithm that can generate virtual images of 1-mm thickness from thick-slice CT images 
of 3–10-mm thickness. Although VTS can be applied to any part of the body, it is considered to be more effective 
in high-contrast regions such as  bone14. Thus, we conducted the present study to investigate the utility of VTS 
for morphological evaluation of the spine. The results of our qualitative analysis demonstrated that the visibility 
of intervertebral spaces was higher on sagittal reformatted images created from VTS images than on reformat-
ted images made from 4-mm-thick images, for all spinal regions. The intervertebral spaces of the cervical and 
upper thoracic spine were hardly visible on reformatted images made from the 4-mm-thick images (mean score, 

Figure 4.  Sagittal reformatted images reconstructed from 1-mm-thick images (a), 4-mm-thick images (b), 
and virtual thin-slice images (c). Multiple compression fractures are seen in the thoracic and lumbar spine. The 
fracture of the 10th thoracic vertebra can be seen on the reconstruction from 1-mm-thick images (arrow), and is 
also identifiable on that from the 4-mm-thick images. However, it is barely visible on that from the virtual thin-
slice image, and is therefore difficult to diagnose.

Figure 5.  JAFROC curves for Reader 1 (a) and Reader 2 (b). The figure of merit was significantly higher for 
thick-slice images than for virtual thin-slice images for Reader 1 (P = 0.02).
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1.0–2.0), but visibility was improved on reformatted images made from VTS images (mean score, 2.5–2.6). Thus, 
reformatted images made from VTS images would make it easier to recognize and number individual vertebral 
bodies, and thus identify the vertebral level of a lesion. Moreover, this technique would improve the quality of 
reformatted or 3D images, and it would make it easier to obtain an overview of the whole spine.

The absolute values of the differences in measured heights of thoracic and lumbar vertebrae between VTS and 
true 1-mm-thick images were smaller than those between 4-mm-thick and true 1-mm-thick images, and inter-
observer agreement was slightly improved using VTS compared with 4-mm-thick images. Therefore, reformatted 
VTS images might have the potential to achieve more accurate measurement of bone structures compared with 
reformatted images using 4-mm-thick images. However, the height tends to be underestimated when using VTS, 
and it remains unclear whether VTS can be used for quantitative evaluation instead of thin-slice images. Further 
studies will be necessary to confirm the usefulness of VTS images in quantitative evaluation.

Regarding diagnostic ability for compression fracture, VTS had impaired performance compared with 4-mm-
thick images, for the reason that slight compression fractures were sometimes not depicted correctly by VTS 
images (Fig. 3). If localized mild depressions suggestive of a mild compression fracture are not visible on the 
4-mm-thick images, then the VTS images generated from these images are also unlikely to contain such informa-
tion. Moreover, some compression fractures were depicted less definitively on the VTS images than the 4-mm-
thick images (Fig. 4). If a mild compression fracture is located near the boundary between two adjacent 4-mm-
thick images, it might be recognizable on the reformatted 4-mm-thick images. However, in the process of VTS 
generation, there might be a tendency to make the morphology of vertebral bodies closer to normal vertebrae, 
which might obscure such a slight compression fracture. This might be the reason for the impaired diagnostic 
performance. VTS was originally developed for purposes such as improving the visibility of the vertebral bod-
ies, and not for the diagnosis of lesions such as compression fractures. Thus, as indicated by the present results, 
the current VTS technique would not be suitable for the evaluation of subtle abnormalities. Although training 
using more cases, including those with compression fractures, might improve the diagnostic ability of VTS, it 
is unclear whether it is really possible for the trained algorithm to accurately delineate subtle lesions. Further 
improvement and validation will be necessary before VTS can be used for the purpose of diagnosing lesions. Our 
results would suggest that virtual images generated by a GAN would not always accurately depict pathological 
abnormalities, and this might be also true for other types of GANs, such as noise reduction, super-resolution, 
and generating images of different modalities. Thus, these virtual images would need to be validated before use 
for diagnostic purposes in routine clinical practice.

Our study had several limitations. First, this was a retrospective study, and the number of patients was 
relatively small. Second, although thick-slice images of 3–10-mm thickness can be applied to VTS software, 
we evaluated only 4-mm-thick images. Because thick-slice images with thickness 4 or 8 times that of the thin-
slice images were used when training the  VTS14, it was considered that images with a thickness of 4 mm were 
the most suitable for this software. Third, the reference standard for compression fractures was determined by 
consensus reading of the true 1-mm-thick CT images, and other diagnostic modalities such as MR imaging were 
not performed. As the purpose of this study was to investigate whether VTS images could be used as a substitute 
for true thin-slice images, it was appropriate to use the thin-slice images as the gold standard.

Conclusions
Virtual thin-slice technique enabled the identification of all vertebral bodies and more accurate measurement of 
vertebral height compared with thick-slice images, but is not suitable for the detection of compression fractures. 
Further improvements are needed before virtual thin-slice images can achieve the same diagnostic performance 
as true thin-slice images for detecting lesions.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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