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Simple Summary: The prognosis for advanced Extramammary Paget’s disease (EMPD) is almost
always poor. HER2-targeted antibody–drug conjugates (ADCs) such as trastuzumab emtansine
and trastuzumab deruxtecan have proven to be effective against HER2-positive breast cancers;
however, no studies have addressed HER2-targeted ADCs as treatments for EMPD. We examine the
efficacy of ADCs against an EMPD patient-derived xenograft (PDX) model harboring pathogenic
ERBB2 mutations. Treatment with trastuzumab emtansine or trastuzumab deruxtecan was found to
significantly regress EMPD-PDX tumors in only seven days, with no recurrence observed for 10 weeks.
Our results suggest that HER2-targeted ADCs could be novel and promising treatment options for
patients with EMPD, especially in cases with the ERBB2-mutation or ERBB2-overexpression.

Abstract: Extramammary Paget’s disease (EMPD) is an adenocarcinoma that develops mainly in the
genital region of older adults. The prognosis for advanced EMPD is almost always poor; thus, novel
therapeutic strategies need to be developed. HER2-targeted antibody–drug conjugates (ADCs) such
as trastuzumab emtansine and trastuzumab deruxtecan have proven effective against HER2-positive
breast cancers; however, no studies have addressed HER2-targeted ADCs as treatments for EMPD.
We examine the efficacy of ADCs against an EMPD patient-derived xenograft (PDX) model harboring
pathogenic ERBB2 mutations and investigate the expression levels of HER2 using EMPD clinical
samples. Trastuzumab emtansine or trastuzumab deruxtecan was administered intravenously to
tumor-bearing NOD/Scid mice. Treatment with trastuzumab emtansine or trastuzumab deruxtecan
was found to significantly regress EMPD-PDX tumors in only seven days, with no recurrence observed
for 10 weeks. EMPD tumors extracted 48 h after drug administration revealed the TUNEL-positive
ratio to be significantly higher for the HER2-targeted ADC-treated tumors than for the control tumors.
EMPD patients’ clinical samples revealed a significant correlation between HER2 positivity and
invasion, suggesting that HER2 status is associated with tumor progression. Our results suggest
that HER2-targeted ADCs could be novel and promising treatment options for patients with EMPD,
especially in ERBB2-mutant or ERBB2-overexpressed cases.

Keywords: antibody–drug conjugate; HER2; ERBB2; extramammary Paget’s disease; patient-
derived xenograft

1. Introduction

Extramammary Paget’s disease (EMPD) is a rare cutaneous adenocarcinoma that is
commonly seen in the genital epithelia of older adults [1]. Most EMPD cases are diagnosed
as carcinoma in situ; thus, the prognosis is relatively favorable with surgical resection. How-
ever, once metastasis occurs, the prognosis becomes poorer. A multi-center retrospective
study revealed the 5-year survival rate for EMPD patients with distant metastasis to be only
7% [2]. Although several chemical regimens such as docetaxel monotherapy and low-dose
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5-fluorouracil/cisplatin therapy have been proposed for the treatment of advanced EMPD,
their efficacy has proven limited [3]. Therefore, novel therapies for advanced EMPD need
to be developed.

Human epidermal growth factor receptor 2 (HER2) is a 185-kDa receptor tyrosine
kinase encoded by the ERBB2 gene on chromosome 17q12. Upon ligand binding, HER2
activates downstream signaling cascades, such as the PI3K and MAPK pathways. ERBB2
amplification causes HER2 overexpression, resulting in ligand-independent homo- or
heterodimerization and abnormal downstream signaling activation [4]. Approximately
15–25% of breast cancers have been reported to be HER2-positive and correlate with more
aggressive features [5,6]. Reportedly, the positive expression of HER2 has been observed in
15–60% of EMPD cases [7,8]. Given EMPD’s biological resemblance to breast cancers [3,7,8],
HER2 is recognized as a crucial therapeutic target in HER2-positive EMPD patients.

Antibody–drug conjugates (ADCs) are monoclonal antibodies connected to cytotoxic
agents. They make use of antibodies that are specific to tumor cell-surface transmembrane
proteins; thus, they have tumor specificity and potency while minimizing toxicity in normal
tissue. The mechanism of ADCs involves the recognition and connection of the monoclonal
antibody backbone to the extracellular domain of cancer-specific membrane proteins, the
internalization of the ADC-antigen complex via receptor-mediated endocytosis, and the in-
tracellular release of the cytotoxic payload that induces cell death [9]. Two ADCs have been
approved as treatments for HER2-positive breast cancer: trastuzumab emtansine (T-DM1)
and trastuzumab deruxtecan (T-DXd) [10]. T-DM1 has the HER2-targeted antitumor prop-
erties of trastuzumab conjugated with the cytotoxic activity of the microtubule-inhibitory
agent DM1 [10]. T-DXd is an ADC of trastuzumab and a cytotoxic agent exatecan derivative
that is a topoisomerase I inhibitor [11]. ADCs provide a wider selection of therapeutic
options and greater efficacy of chemotherapy in breast cancer [12]. Concerning anti-HER2
treatments for EMPD, Vornicova et al. reported the HER2-targeted drug lapatinib to be
effective against HER2-positive EMPD [13]. Further, several case reports have shown the
HER2-targeted antibody trastuzumab alone or with cytotoxic chemotherapies to be effective
against metastatic or advanced EMPD in ERBB2-mutant or HER2/ERBB2-overexpressed
cases (Supplemental Table S1) [14–30]. Notably, Nordmann et al. reported an EMPD tumor
harboring the ERBB2 S310F mutation that was sensitive to anti-HER2 treatment, with the
patient achieving a near-complete response by a combination treatment of trastuzumab
and carboplatin [24]. Concerning anti-HER2 ADC, there has been only one case report in
which the patient was treated with T-DM1 and complete remission was achieved [21]. For
the preclinical models, we established an EMPD patient-derived xenograft (PDX) model
harboring a pathogenic ERBB2 S310F mutation against which anti-HER2 therapy and cyto-
toxic agents are effective [31]. Furthermore, in several other cancers, including lung cancer
and colon cancers, HER2-targeted ADCs have proven effective in treating PDX models
harboring pathogenic ERBB2 mutations [32–34]. Based on the clinical and experimental
results, we hypothesized that HER2-targeted ADCs could be effective treatments for EMPD.
We investigated the efficacy of HER2-targeted ADCs in treating an EMPD-PDX model and
assessed the protein expression of HER2 using EMPD clinical samples.

2. Materials and Methods
2.1. Reagents and Antibodies

Antibodies against HER2 were purchased from Dako (Code A0485, Hovedstaden, Den-
mark), and those against Ki-67 were purchased from Abcam (#ab8191, Boston, MA, USA).
The T-DM1 (Kadcyla®) was purchased from Chugai Pharmaceutical/Roche (Tokyo, Japan).
The T-DXd (Enhertu®) was purchased from Daiichi-Sankyo/AstraZeneca (Tokyo, Japan).

2.2. EMPD Patient-Derived Xenografts

We previously established PDXs from an EMPD tumor sample using Matrigel (BD
Biosciences; Franklin Lakes, NJ, USA; EMPD-PDX-H1) [31]. Briefly, we transplanted tumor
tissue from metastatic lymph nodes into immunodeficient NOD/Scid mice. The EMPD-
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PDX-H1 model showed similar morphology and protein expression to those of the patient’s
primary tumor and metastatic lymph nodes [31]. All animal experiments were approved by
the Institutional Animal Care and Use Committee of Hokkaido University (approval num-
ber 22-0034). NOD/Scid mice were purchased from Clea Japan. All animals used for the
present study were maintained under pathogen-free conditions. The tumor-transplanted
mice were observed twice a week, and the tumor volumes were measured twice a week by
a caliper. Tumor volume was calculated using the following formula: (long axis × short
axis2)/2 [35]. Once the tumor volume reached 500–1000 mm3, the EMPD-PDX-H1 tumor
was passage into the next generation of NOD/Scid mice by subcutaneous transplantation.

2.3. Treatment Experiments Using HER2 Inhibitors and HER2-Targeted ADCs

Tumor growth curves for all of the EMPD-PDX-H1 tumors were generated using
kinetic measurements of tumor volume. The NOD/Scid mice bearing the PDX tumors (vol-
ume range: 50–100 mm3) were randomized into three groups, and treatment experiments
were performed. The control mice were intravenously administered 100 µL PBS once a
week (n = 4). For the HER2-targeted ADC treatments, T-DM1 (15 mg/kg) was administered
intravenously once a week for two weeks (n = 4), or T-DXd (10 mg/kg) was administered
intravenously once (n = 4), based on a previous study (Figure 1) [36]. Furthermore, to assess
cell death in the tumors, we prepared 3 more NOD/Scid mice bearing the PDX tumors.
They were sacrificed 48 h after the intravenous administration of PBS, T-DM1 (15 mg/kg),
or T-DXd (10 mg/kg). We assessed the extracted tumors by Ki-67 staining and TUNEL
assay as described in 2.4 and 2.5.

Cancers 2022, 14, x FOR PEER REVIEW 3 of 12 
 

 

Japan). The T-DXd (Enhertu®) was purchased from Daiichi-Sankyo/AstraZeneca (Tokyo, 
Japan). 

2.2. EMPD Patient-Derived Xenografts 
We previously established PDXs from an EMPD tumor sample using Matrigel (BD 

Biosciences; Franklin Lakes, NJ, USA; EMPD-PDX-H1) [31]. Briefly, we transplanted tu-
mor tissue from metastatic lymph nodes into immunodeficient NOD/Scid mice. The 
EMPD-PDX-H1 model showed similar morphology and protein expression to those of the 
patient’s primary tumor and metastatic lymph nodes [31]. All animal experiments were 
approved by the Institutional Animal Care and Use Committee of Hokkaido University 
(approval number 22-0034). NOD/Scid mice were purchased from Clea Japan. All animals 
used for the present study were maintained under pathogen-free conditions. The tumor-
transplanted mice were observed twice a week, and the tumor volumes were measured 
twice a week by a caliper. Tumor volume was calculated using the following formula: 
(long axis × short axis2)/2 [35]. Once the tumor volume reached 500–1000 mm3, the EMPD-
PDX-H1 tumor was passage into the next generation of NOD/Scid mice by subcutaneous 
transplantation. 

2.3. Treatment Experiments Using HER2 Inhibitors and HER2-Targeted ADCs 
Tumor growth curves for all of the EMPD-PDX-H1 tumors were generated using ki-

netic measurements of tumor volume. The NOD/Scid mice bearing the PDX tumors (vol-
ume range: 50–100 mm3) were randomized into three groups, and treatment experiments 
were performed. The control mice were intravenously administered 100 μL PBS once a 
week (n = 4). For the HER2-targeted ADC treatments, T-DM1 (15 mg/kg) was adminis-
tered intravenously once a week for two weeks (n = 4), or T-DXd (10 mg/kg) was admin-
istered intravenously once (n = 4), based on a previous study (Figure 1) [36]. Furthermore, 
to assess cell death in the tumors, we prepared 3 more NOD/Scid mice bearing the PDX 
tumors. They were sacrificed 48 h after the intravenous administration of PBS, T-DM1 (15 
mg/kg), or T-DXd (10 mg/kg). We assessed the extracted tumors by Ki-67 staining and 
TUNEL assay as described in 2.4 and 2.5. 

 
Figure 1. Schematic of treatment experiments with HER2-targeted ADCs using extramammary Pa-
get’s disease patient-derived xenograft (EMPD-PDX) model mice. Tumor-bearing NOD/Scid mice 
were randomized into three groups. In the HER2-targeted treatments, trastuzumab emtansine (15 
mg/kg) was administered intravenously once a week for two weeks, or trastuzumab deruxtecan (10 
mg/kg) was administered intravenously once (n = 4, each group). 

2.4. Histopathological Analyses 
Histopathologically, in situ EMPD is defined as a malignant neoplasm confined to 

the squamous epithelium and adnexal tissues without invasion of the underlying tissues 
[37]. The degree of histological invasion is categorized as in situ/microinvasive (showing 
invasion until the papillary dermis) or invasive (showing invasion of the deep dermis) 
[38]. Immunohistochemical analyses were performed on 4 μm thick formalin-fixed, par-
affin-embedded sections. Immunostaining was evaluated by the same observer. The ex-
pression levels of HER2 protein were evaluated in accordance with the US Food and Drug 
Administration-approved scoring guideline for breast carcinomas, i.e., the HercepTest 
scoring guideline: 0 for no staining or only membrane staining in <10% of the cells; 1+ for 

Figure 1. Schematic of treatment experiments with HER2-targeted ADCs using extramammary
Paget’s disease patient-derived xenograft (EMPD-PDX) model mice. Tumor-bearing NOD/Scid
mice were randomized into three groups. In the HER2-targeted treatments, trastuzumab emtansine
(15 mg/kg) was administered intravenously once a week for two weeks, or trastuzumab deruxtecan
(10 mg/kg) was administered intravenously once (n = 4, each group).

2.4. Histopathological Analyses

Histopathologically, in situ EMPD is defined as a malignant neoplasm confined to
the squamous epithelium and adnexal tissues without invasion of the underlying tis-
sues [37]. The degree of histological invasion is categorized as in situ/microinvasive
(showing invasion until the papillary dermis) or invasive (showing invasion of the deep
dermis) [38]. Immunohistochemical analyses were performed on 4 µm thick formalin-fixed,
paraffin-embedded sections. Immunostaining was evaluated by the same observer. The
expression levels of HER2 protein were evaluated in accordance with the US Food and
Drug Administration-approved scoring guideline for breast carcinomas, i.e., the HercepTest
scoring guideline: 0 for no staining or only membrane staining in <10% of the cells; 1+
for faint or barely perceptible staining of the incomplete cell membrane in >10% of the
cells; 2+ for weak to moderate staining of the complete cell membrane in >10% of the cells;
and 3+ for intense staining of the complete circumferential membrane in >10% of the cells.
Overexpression was evaluated as positive for scores of 2+ or 3+ and as negative for scores
of 0 or 1+ (Supplemental Figure S1) [39]. For nuclear Ki-67 expression, the percentage of
positive cells among 100 cancer cells from three randomly selected fields of vision observed
using a high-power lens was calculated.
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2.5. TUNEL Assays

Cell death was assessed using the TUNEL (TdT-mediated dUTP nick end labeling)
method and an In Situ Cell Death Detection Kit (Roche, #11684817910) following the
manufacturer’s instructions. For the TUNEL staining of nuclei, the percentage of positive
cells among at least 100 cancer cells from three randomly selected fields of vision observed
using a high-power lens (×400) was calculated.

2.6. Patient Selection

Tumor samples from seventy-nine patients with EMPD were immunohistochemically
assessed. All of the patients had been diagnosed and treated at the Department of Derma-
tology, Hokkaido University Hospital. The EMPD samples were obtained from patients
whose ages ranged from 46 to 94 years (average, 74.59 years; male–female ratio, 44: 35).
This research was approved by the institutional review board of Hokkaido University
Hospital (#021-0220). The initial clinical stage and observation duration were retrieved
from clinical data. The TNM stage was defined in accordance with the EMPD staging
system proposed by Ohara et al. [2]. Primary tumors of greater than 4 mm in thickness
or with lymphovascular invasion were defined as T2, and primary tumors that did not
meet these criteria were defined as T1. The patients were classified into four stages: distant
metastasis as stage IV, lymph node (LN) metastasis as stage III, advanced primary tumor
as stage II, and early primary tumor as stage I [2].

2.7. Statistical Analyses

Quantitative data are described as mean ± standard deviation (SD). All statistical
analyses were performed using Excel 2016 (Microsoft Corporation) and the Excel add-in
software Statcel (OMS Ltd., Tokyo, Japan). The Student’s t-test was used to evaluate tumor
volumes between the treatment groups and the control group. At least three indepen-
dent experiments were carried out for statistical comparison. We used the Fisher’s exact
probability test to assess pairwise comparisons among groups. Kaplan–Meier survival
curves were calculated for the two or four groups (HER2-positive or -negative), and the
log-rank test was used to compare disease-specific survival. P values of less than 0.05 were
considered significant.

3. Results
3.1. HER-2-Targeted ADCs Regress the Tumor Growth of EMPD-PDXs

Previously, our group investigated the protein expression levels of HER2 in PDX tumor
cells (EMPD-PDX-H1) [31]. Tumor cells in the EMPD-PDXs scored 1+ for HER2. Targeted
gene mutation analysis using a comprehensive cancer panel (Qiagen) revealed pathogenic
genomic DNA alterations in ERBB2 (c.929C > T, p.S310F) in EMPD-PDXs [31]. Based on
the gene mutation analysis, we conducted a therapeutic examination using HER2-targeted
ADCs to examine whether EMPD-PDX-H1 harboring the pathogenic ERBB2 mutation
responds to such therapies. We administered intravenous injections of T-DM1 (15 mg/kg)
once a week for two weeks or of T-DXd (10 mg/kg) once. The HER2-targeted ADCs
(T-DM1 and T-DXd) were found to regress EMPD-PDX tumors remarkably in only seven
days (Figure 2). At 14 days after the initial injections, the subcutaneous tumors were not
palpable, suggesting that the PDX tumors had been eradicated. Further, we observed no
recurrence of PDX-tumors for 10 weeks with either therapeutic. To examine the status
of the treated cells, we extracted tumors 48 h after the intravenous administration of the
drugs. The positive ratio of TUNEL staining was remarkably higher for the HER2-targeted
ADC-treated EMPD-PDX-H1 tumors than for the untreated control tumors (Figure 3).
Additionally, the extracted tumors revealed the ratio of Ki-67-positive cells to be lower
in the HER2-targeted ADC-treated cells than in the control tumor cells (Figure 4). These
histopathological results indicate that the HER2-targeted ADCs are highly effective and are
able to kill EMPD cells promptly. The present results are consistent with a previous study
using PDX tumors harboring pathogenic ERBB2 mutations in other cancers [36].
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Figure 2. HER2-targeted ADCs suppress tumor growth in extramammary Paget’s disease patient-
derived xenografts. Tumor-bearing NOD/Scid mice were randomized into three groups: no therapy
(control, black line), trastuzumab emtansine (blue line), and trastuzumab deruxtecan (orange line).
Tumor volume was calculated using the following formula: (long axis × short axis2)/2. The data
are presented as means, with error bars representing the SD from the mean. The blue or orange
arrowheads indicate the injection of trastuzumab emtansine or trastuzumab deruxtecan, respectively.
** p < 0.01 vs. control.
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Figure 3. The positive ratio of TUNEL staining is markedly higher in the EMPD-PDX-H1 tumors
treated with HER2-targeted ADC than in the untreated control tumors. EMPD tumors were treated
with HER2-targeted ADCs (trastuzumab emtansine or trastuzumab deruxtecan). After 48 h, the
tumors were extracted and were assessed by TUNEL staining. Upper: Representative images of
TUNEL staining (scale bar = 100 µm). Lower: The ratio of TUNEL-positive cells was examined
(columns, mean percentage of TUNEL-positive cells, n = 3, determinations based on examination of
100 tumor cells; bars, SD). ** p < 0.01, *** p < 0.001; compared to control tumors, by t-test.
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Figure 4. The ratio of Ki-67-positive cells is lower in the HER2-targeted ADC-treated cells than
in the control tumor cells. EMPD tumors were treated with HER2-targeted ADCs (trastuzumab
emtansine or trastuzumab deruxtecan). After 48 h, the tumors were extracted and were assessed
by Ki-67 staining. Upper: Representative images of Ki-67 staining (scale bar = 100 µm).Lower: The
ratio of Ki-67-positive cells was examined (columns, mean percentage of Ki-67-positive cells, n = 3,
determinations based on examination of 100 tumor cells; bars, SD). ** p < 0.01; compared to control
tumors, by t-test.

3.2. HER2 Expression Correlates with Invasion and Disease-Specific Survival

Next, we immunohistochemically examined the expression levels of HER2 in EMPD
clinical specimens. We assessed 79 specimens of primary EMPD skin lesions. The clin-
ical information is summarized in Table 1. Of the specimens of in situ/microinvasive
EMPD (50 cases), positive HER2 immunostaining was observed in 12 cases (24%: 3+ for
3 cases, 2+ for 9 cases). Of the specimens of invasive EMPD (29 cases), positive HER2
immunostaining was observed in 16 cases (55%: 3 + for 7 cases, 2 + for 9 cases) (Figure 5).
Thus, there was a significant correlation between positive HER2 immunostaining and
the presence of invasive lesions (p < 0.01). Our study included six cases of EMPD with
lymph node metastasis; thus, we assessed the HER2 expression of six specimens of lymph
node metastasis. In three out of six such cases (50%), the expression levels of HER2 in
the lymph node metastases were lower than those in the corresponding primary tumors
(Supplemental Figure S2). Additionally, no significant correlation was found between the
HER2 status of the primary skin lesions and lymph node metastasis (p = 0.44, Table 1).
We also investigated the correlations between HER2 expression and disease-specific sur-
vival. The disease-specific survival was significantly worse for cases with positive HER2
immunostaining (28 cases) than for cases with negative HER2 immunostaining (51 cases)
(p = 0.045, Figure 6). These results are consistent with a previous study by Tsutsumida
et al. [38], in which the 5-year survival rate was significantly worse in cases with invasive
EMPD than in cases with in situ/microinvasive EMPD. Further, we assessed the prognosis
(disease-specific survival) based on HER2 status as well as EMPD pathology. The pa-
tients were divided into four groups: 1: microinvasive/invasive cases with positive HER2
immunostaining (N = 19), 2: in situ cases with positive HER2 immunostaining (N = 9),
3: microinvasive/invasive cases with negative HER2 immunostaining (N = 26), and 4: in
situ cases with negative HER2 immunostaining (N = 25). The disease-specific survival was
significantly worse for microinvasive/invasive cases with positive HER2 immunostaining
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(19 cases) than for in situ cases with negative HER2 immunostaining (25 cases) as well as
for microinvasive/invasive cases with negative HER2 immunostaining (26 cases) (p = 0.04,
p = 0.021, respectively, Supplemental Figure S3). The disease-specific survival was worse
for microinvasive/invasive cases with positive HER2 immunostaining than for in situ
cases with positive HER2 immunostaining; however, the difference was not significant
(p = 0.07). Concerning the clinical stages and HER2 status, HER2 expression was higher in
progressive clinical stages than in early clinical stages; however, the correlation was not
significant (Table 1).

Table 1. Clinical summary of the 79 EMPD patients.

Total
Number

HER2-
Negative

HER2-
Positive p Value

Cases 79 51 28

Age Range 46–94
(Mean) −74.59

Sex
Male 44 (55.7%) 27 17

0.33Female 35 (44.3%) 24 11

Primary site
Genital/anal 74 46 28

0.17Axillary 4 4 0
Inguinal 1 1 0

Clinical stage

In situ 34 (43.1%) 25 9

0.07
I 5 (6.3%) 4 1
II 31 (39.2%) 18 13
III 6 (7.6%) 3 3
IV 3 (3.8%) 1 2

EMPD pathology
In situ 34 (43.1%) 25 9

0.006Microinvasive 16 (20.2%) 13 3
Invasive 29 (36.7%) 13 16

Lymph node
metastasis

+ 6 (7.6%) 3 3
0.44- 73 (92.4%) 48 25

Outcome
Alive 70 (88.6%) 49 21

0.008Dead 9 (11.4%) 2 7
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HER2-negative or HER2-positive. HER2-negative is significantly more common in situ/microinvasive
EMPD tumors than in invasive EMPD (p < 0.01, Fisher’s exact probability test).
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group (N = 28)) (p = 0.045, log-rank test).

4. Discussion

In the present study, treatments with trastuzumab emtansine (T-DM1) or trastuzumab
deruxtecan (T-DXd) significantly regressed tumors in EMPD patient-derived xenografts
(PDXs) harboring the pathogenic ERBB2 mutation. Two HER2-targeted ADCs—T-DM1
and T-DXd—were found to eradicate EMPD tumors in two weeks (Figure 2), in contrast to
trastuzumab monotherapy, which is found to only suppress tumor growth [31]. Further,
we observed no recurrence of PDX-tumors for 10 weeks following the HER2-targeted ADC
therapies. These results suggest that the HER2-targeted ADC therapeutics are more potent
against EMPD than trastuzumab monotherapy is.

More than 15 case reports have addressed HER2-targeted therapies against EMPD [14–30].
Most of the cases are EMPD with HER2 overexpression evaluated by IHC. Previously, our
group established an EMPD-PDX model harboring the ERBB2 S310F mutation without
obvious HER2 protein overexpression [31]. This mutation has been described as an extracel-
lular domain mutation of HER2, and it is the most common pathogenic mutation of ERBB2.
ERBB2 S310F mutations have been speculated to result in HER2 activation via elevated
C-terminal tail phosphorylation or via covalent dimerization mediated by intermolecular
disulfide bond formation [32]. A number of proteins regulating cytoskeletal dynamics
and cell motility were found to be prominently hyperphosphorylated in ERBB2 S310F-
expressing cells. Previous studies reported that the clinical efficacy of HER2-targeted ADCs
in lung cancers depends on ERBB2 mutations or amplification and not on the quantity of
HER2 protein expression [36,40]. These studies suggest that HER2 receptor hyperactivation
through gene mutation or amplification, rather than its overexpression, is a key mechanism
underlying the internalization of the receptor–ADC complex and the consequent efficacy of
ADCs. Two studies have addressed the ERBB2 S310F mutation in EMPD, and they indicate
that 12.5% of EMPD cases harbor the ERBB2 S310F mutation [41]. In the future, if any clini-
cal evidence is obtained for the efficacy of HER2-targeted ADCs against advanced EMPD
with the ERBB2 S310F mutation, then ERBB2 gene mutation analysis (especially of the S310F
mutation) should be evaluated in advanced EMPD to explore optimal treatment selection.

In several previous studies on HER2 positivity in EMPD, the overexpression of HER2
was found to correlate with the disease progression of EMPD [8]. The present study also
shows the positive expression of HER2 to be significantly more frequent in patients with
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invasive EMPD than in those with in situ/microinvasive EMPD, which suggests that HER2-
positive tumor cells have increased invasive potential. Thus, the ratio of HER2-positive
cases could be higher in advanced EMPD cases than in other EMPD cases. On the other
hand, several studies found no significant correlation between HER2 status and Ki-67
immunoreactivity [42,43]. Another observation of this study is that the expression of HER2
could be down-regulated in metastatic lymph nodes compared to that expression in the
corresponding primary skin tumors. These results are consistent with a previous study by
Tanaka et al. [44], who speculated that the heterogeneity of EMPD tumors was one reason
for the discrepancy in HER2 expression.

In addition to the small sample size, a limitation of our research is that we have
established only one EMPD-PDX model [31]. In the future, we will need to establish other
EMPD-PDX models and EMPD cell cultures to confirm the present results.

5. Conclusions

Our results revealed in vivo tumor regression through HER2-targeted ADCs in EMPD-
PDX models. HER2-targeted ADCs could be effective treatments for ERBB2-mutated EMPD
tumors and possibly also for HER2-overexpressed cases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14143519/s1, Figure S1: Representative images of HER2
immunostaining; Figure S2: Levels of HER2 expression in lymph node metastases are not identical
to those in the corre-sponding primary skin tumors; Figure S3: A significant correlation is observed
between HER2-positive immunostaining and disease-specific survival. Table S1: EMPD Cases treated
with HER2-targeted therapies.
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EMPD extramammary Paget’s disease
HER2 human epidermal growth factor receptor 2
IHC immunohistochemistry
LN lymph node
PDX patient-derived xenograft
T-DM1 trastuzumab emtansine
T-DXd trastuzumab deruxtecan
TUNEL TdT-mediated dUTP nick end labeling
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