
1Scientific RepoRtS |         (2020) 10:2516  | https://doi.org/10.1038/s41598-020-58854-2

www.nature.com/scientificreports

Asymmetric dynamic interaction 
shifts synchronized frequency of 
coupled oscillators
Seong-Gyu Yang1, Hyunsuk Hong2* & Beom Jun Kim1*

interacting dynamic agents can often exhibit synchronization. it has been reported that the rhythm all 
agents agree on in the synchronized state could be different from the average of intrinsic rhythms of 
individual agents. Hinted by such a real-world behavior of the interaction-driven change of the average 
phase velocity, we propose a modified version of the Kuramoto model, in which the ith oscillator of the 
phase φi interacts with other oscillator j only when the phase difference jφ  − iφ  is in a limited range 
[−βπ, απ]. From extensive numerical investigations, we conclude that the asymmetric dynamic 
interaction characterized by β ≠ α leads to the shift of the synchronized frequency with respect to the 
original distribution of the intrinsic frequency. We also perform and report our computer-based 
synchronization experiment, which exhibits the expected shift of the synchronized frequency of human 
participants. in analogy to interacting runners, our result roughly suggests that agents tend to run 
faster if they are more influenced by runners ahead than behind. We verify the observation by using a 
simple model of interacting runners.

Synchronization is a widespread phenomenon and has been observed in various physical and biological systems 
like lasers, sperms, fireflies, and so on1–6. Winfree proposed a model of coupled oscillator system7,8 and Kuramoto 
simplified the model later to make it analytically tractable9,10. Kuramoto model has also been studied in a variety 
of different interaction structures, including d-dimensional regular lattices and complex network structures11–13.

There have been various extensions since the original Kuramoto model has been proposed. For example, 
the effect of the time delay in interaction between oscillators has been studied14,15, and the correlation between 
the characteristic frequency and the coupling strength to describe the neural activity in brain has been inves-
tigated16–18. However, most existing studies have assumed that the interaction structure is static and thus does 
not change in time. Furthermore, extension of the Kuramoto model in such a way that the dynamic states of the 
oscillators are closely coupled with interaction structure has not been tried. In reality, it is often observed that the 
interaction structure can be dynamically coupled with the internal state of individual agent, and thus the oscilla-
tor system can hardly be an exception. In our approach in this paper, the asymmetric dynamic interaction due to 
the difference of phases of oscillators is proposed, which has not been considered in existing studies. We believe 
that our proposed model is also realistic and perform computer-based experiments of human participants.

The synchronized rhythm of oscillators can be faster or slower than average frequency of isolated individual 
oscillators. For example, music play of finger tapping has been reported to show a faster paired synchronized 
rhythm when there is no timing cue by the director19. The hand clapping of students has also been studied and 
faster synchronized rhythm like for the finger tapping19 has been reported20. For applause of audiences, however, 
slower synchronized rhythm has been observed21. Although a broad range of phenomena can be described 
through the use of the Kuramoto model, above mentioned behavior of the off-the-mean synchronized rhythm 
cannot be explained by the conventional model. One can easily understand this by a simple symmetry argument: 
The equation of motion for the conventional Kuramoto model is invariant under the phase reversal transforma-
tion φ φ→ −i i for ∀i, and thus the shift of the average phase velocity φ〈 〉i  contradicts the symmetry. From this 
reason, we suggest that we need to break the phase reversal symmetry in the conventional Kuramoto model in 
order to explain the observed shift of the synchronized rhythm. In our model, the phase reversal symmetry is 
broken not explicitly, but dynamically, as will be explained below. Furthermore, we perform smartphone and 
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computer-based experiments with human participants to benchmark the model study and the results of the 
experiment supports our model which results in the off-the-mean frequency.

Model
We suggest a simple modified Kuramoto model of N coupled oscillators with dynamic interaction to mimic the 
shift of the average frequency:
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where >K( 0) is the coupling strength, and φ π π∈ −[ , )i  and ωi are the phase variable and the time-fixed 
(quenched) intrinsic frequency of the ith oscillator, respectively. The intrinsic frequency ωi is chosen randomly 
from the normal distribution g( ) (1/ 2 )exp( /2)2ω π ω= −  with zero mean and unit variance. In detail, we first 
generate N random numbers ω′i from the normal distribution and use the shifted frequency i i N i

1ω ω ω= ′ − ∑ ′  
as the intrinsic frequency in Eq. (1) to make it sure that the average intrinsic frequency ω∑N i

1  is null. The null 
value of the mean frequency suggests that all phase variables and phase velocities are to be measured in the center 
of mass frame in which 0iω∑ = . Likewise, φ = 0i  does not mean that the oscillator is not oscillating but it only 
means that it is oscillating with the average intrinsic frequency. Our model differs from the conventional 
Kuramoto model in that the interaction structure dynamically depends on phase variables: t( )iΛ  in Eq. (1) is the 
set of oscillators which the ith oscillator interact with and is written as

βπ φ φ απΛ = | − ≤ − ≤t j t t( ) { ( ) ( ) }, (2)i j i

where φ φ−t t( ) ( )j i  is defined modulo 2π. Our key parameters are α and β in t( )iΛ , which determine the condi-
tion for interaction. It is to be noted that if α = β = 1, all oscillators interact with all other oscillators and thus our 
model becomes identical to the globally-coupled Kuramoto model. If α = β < 1, the interaction becomes limited 
but is still symmetric. If α > β (α < β), on the other hand, the interaction becomes asymmetric toward oscillators 
with advanced (lagged) phases. The two asymmetric cases are equivalent to each other under the phase reversal 
transformation, i iφ φ→ −  for ∀i and α β↔ . Accordingly, we only focus on two cases: The symmetric interaction 
with α = β and forward-biased asymmetric interaction with α > β. In Fig. 1, we display a schematic diagram for 
the meaning of α and β in Eq. (2).

numerical results. We numerically integrate Eq. (1) using the Heun’s method, which is the second-order 
algorithm, with the discrete time step t 0 01∆ = .  for 2 105×  time steps, corresponding to ∈t [0, 2000]. After a 
sufficiently long time, the system arrives at the steady state, and the first half 105 time steps are discarded before we 
start to measure observables for the later half time steps. All the results in the present paper are obtained from the 
averages over 100 (200 for =N 25) independent and different random initial phase variables and intrinsic fre-
quency realizations.

We measure the standard order parameter R for the synchronization transition defined as

∑≡ φR
N

e1 ,
(3)j

N
i t( )j

Figure 1. Schematic diagram for the interaction structure. The black filled circle denotes the ith oscillator with the 
phase φ t( )i , and the red (blue) ones the oscillators with phases ahead (behind) of t( )iφ . The interaction set Λ t( )i  for 
the ith oscillator contains the oscillators denoted as red and blue filled circles with |Λ |=t( ) 6i  [see Eq. (2)]. All the 
other gray ones are the oscillators outside of the interaction range. We call the interaction symmetric when 
α β= , and asymmetric when α β≠ . The conventional Kuramoto model corresponds to the symmetric case 
with 1α β= = .
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where 〈 〉 and 


 denote the ensemble and the temporal averages, respectively. We also measure the average 
phase velocity Ω in the steady state defined as

∑φΩ ≡ .˙
N

t1 ( )
(4)i

N

i

We first present our result for the symmetric case that 1/2α β= =  in Fig. 2 for =N 200. Results for other 
symmetric cases 1/4, 3/4α β= = , and 1 exhibit qualitatively the same behavior and thus are not presented here. 
From Fig. 2a, we notice that the synchronization order parameter R in Eq. (3) clearly exhibits the synchronization 
transition around the transition point ≈K 2c , which separates the asynchronous ≈R( 0) phase for K Kc<  and 
the synchronous OR( (1))=  phase for K Kc> . In contrast, at any value of K, the average phase velocity Ω in Eq. 
(4) remains close to 0. A small bump in Fig. 2b around ≈K Kc does not depend much on the system size, but it 
becomes shallower as the number of samples used in the ensemble average is increased. We believe that the bump 
structure is a reminiscent of the large fluctuation of the phase velocity around the critically. We thus conclude that 
the symmetric interaction characterized by 0α β= >  does not change the average phase velocity from the 
average intrinsic frequency, which is set to null, irrespective of whether the system is in the asynchronous or in 
the synchronous phase.

Our observation of null average phase velocity for α β=  can be understood through a simple symmetry 
argument: Due to the phase reversal symmetry under the transformation i iφ φ→ −  for ∀i for the symmetric case 
of α β= , there is no reason that the phase velocity is biased toward a positive or a negative value. Consequently, 
the average phase velocity Ω must be identical to the average intrinsic frequency ω∑N i i

1 , which is set to null as 
described above. In contrast, the off-the-mean synchronized rhythm has been often reported in music play and 
hand clapping19–21. Accordingly, we suggest that such observation of the shift can be explained by the biased (or 
asymmetric) interaction.

For the asymmetric cases α β>( ), we first display our results for 1α =  and 0 1β< <  in Fig. 3 for 
=N 200. As shown in Fig. 3(a), the system again exhibits a well-defined synchronization transition and the order 

parameter R changes from ≈R 0 to =R( (1))O  as the coupling strength K is increased. The average phase velocity 
Ω in Fig. 3b, in contrast, shows a very interesting behavior, which sharply differs from what has been observed for 
the symmetric interaction in Fig. 2. As K is increased from null value, Ω first increases with K, and displays a peak, 
beyond which Ω decreases with K, as shown in Fig. 3b. The observed nonmonotonous behavior of Ω in Fig. 3b 
can be understood as follows: In the limit of the vanishing coupling strength →K 0, all oscillators are completely 
decoupled and the phase reversal symmetry is preserved to yield Ω = 0. As K is increased, the asymmetric inter-
action breaks the symmetry and Ω increases. In the opposite limit of the strong coupling → ∞K( ), all oscillators 
are fully synchronized and interact with all other oscillators as in the globally-coupled Kuramoto model. 
Consequently, we expect 0Ω →  in both limits of K 0→  and K → ∞, which suggests that the existence of a peak 
of Ω in the middle is inevitable. It appears that the peak position of Ω is close to the synchronization transition 
point in Fig. 3a. Although not shown here, we also check the finite-size effect on the shift of Ω, only to find that 
the peak structure becomes more enhanced in a larger system. We thus conclude that our modified Kuramoto 
model with asymmetric interaction reveals the observed off-the-mean synchronized rhythm in previous 
studies19,20.

We next investigate the limiting case of the asymmetric interaction characterized by α > 0 and 0β = . In 
words, this type of interaction means that each oscillator interacts with other oscillators only when their phases 
are ahead. Figure 4a displays the average phase velocity Ω for β = 0 and 1, 3/4, 1/2α = , and 1/4 for =N 200. We 

Figure 2. Numerical results for symmetric case 1/2α β= = . (a) The order parameter R and (b) the average 
phase velocity Ω versus the coupling strength K for the system size N 200=  when the interaction is symmetric 
( 1/2)α β= = . R in (a) clearly indicates the existence of the synchronization transition around ≈K 2c  and Ω in 
(b) remains close to zero irrespective of K.
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find that the decrease of Ω in the strong-coupling limit observed in Fig. 3b disappears for β = 0, and Ω stays at a 
positive value even when K  is increased to a very large value. We emphasize that the strong-coupling limit for 
β = 0 is different from the same limit for 0β ≠ : The interaction cannot be of all-to-all type for the former case 
due to the strict bound 0β = . We thus expect that the finite positive value of Ω should persist even when the 
coupling strength → ∞K .

Similarly to the peak structure in Fig. 3b for 0β > , the peak of Ω is clearly seen in Fig. 4a for β = 0, near the 
synchronization transition point. We believe that the height of the peak of Ω can be related with maximum intrin-
sic frequency. The maximum value MN  of N random numbers generated from the normal distribution is given by 
M m m m/(1 )N N N N

2γ= + +  with m N N[ ln( /2 ) lnln( /2 )]N
2 2 1/2π π≡ −  and the Euler’s constant γ22,23. In Fig. 4b, 

we display the peak height Ωmax [see Fig. 4a], the measured value of max i imaxω ω= , and MN , versus N  for 
( , ) (1, 0)α β = . The latter two values, maxω  and MN , almost coincide as expected, and maxΩ  follows the similar 
form of the logarithmic increase. However, the peak height Ωmax is significantly larger than MN  (e.g, 
Ω ≈ .M/ 1 36Nmax  for =N 200), which means that the average phase velocity of oscillators is larger than the max-
imum intrinsic frequency. We believe that this result is particularly interesting, since the forward-only asymmet-
ric interaction drives all oscillators to have angular velocity beyond the maximum intrinsic frequency. In contrast, 
the peak height in Fig. 3b for 1/10β =  is found to be less than the maximum intrinsic frequency (we find 

M/ 0 68)NmaxΩ ≈ . .
In order to examine details of the dynamics of the system, we also integrate Eq. (1) starting from a single ran-

dom initial condition and a single configuration of ω{ }i  for α β =( , ) (1,0) at coupling strengths =K 1 and 5. In 
Fig. 5a,b we display individual phase trajectories for N 25=  oscillators in the moving reference frame of the 

Figure 3. Numerical results for several asymmetric cases. (a) R and (b) Ω versus K for N 200=  when the 
interaction is asymmetric ( 1α =  and 1/10, 1/5, 2/5β = ). The average phase velocity Ω in (b) clearly displays 
the shift from the average intrinsic frequency ω〈 〉 = 0, but the shift becomes negligible in the limit of the strong 
coupling.

Figure 4. Numerical results for limiting case of asymmetric interaction. (a) The average phase velocity Ω versus 
K is shown for 0β =  and α = 1, 3/4, 1/2, 1/4 for =N 200. Ω in (a) exhibits a peak around the synchronization 
transition and the plateau in the strong-coupling regime. (b) Peak height Ωmax in (a), the maximum intrinsic 
frequency ω ω= max i imax , and its analytic value MN  (see text) for α β =( , ) (1,0) versus the system size N. Ωmax 
is larger than both MN  and maxω , but follows the similar form of the logarithmic increase.
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phase ψ t( ) of the order parameter defined by ≡ ∑ψ φR t e e( ) i t
N i

i t( ) 1 ( )i . When the system is in the asynchronous 
phase at =K 1, the phase trajectories φ ψ−t t( ) ( )i  do not exhibit any correlated behavior as shown in Fig. 5a. On 
the other hand, at =K 5 near the synchronization transition point, trajectories become flat after some transient 
behavior as shown in Fig. 5b. We also display the individual phase velocity t( )i

φ  in Fig. 5c,d for K 1=  and 5, 
respectively. The behavior reported in Fig. 5d for =K 5 is particularly interesting since it shows how oscillators 
become synchronized in time. Before the system approaches the synchronized state, phase velocities are very 
different and scattered. It needs to be noticed that in this early transient stage, some oscillators have very large 
phase velocities ≈( 6) before synchronization. In the later synchronized state t( 80) , all oscillators agree on the 
frequency φ ≈ 2i , which is close to the maximum intrinsic frequency ω ≈ 2max . In words, the final synchronized 
state is approached through a transient state in which some oscillators can have very large phase velocity.

experiments. We next perform smartphone and computer-based experiments with 31 individual human 
participants. The server computer plays the periodic sound of a metronome for 15 seconds and each participant 
is asked to press the touchpad(display) button of her/his notebook computer(android phone) in accord with the 
metronome sound. After 15 seconds, the metronome sound of the server is stopped, but each participant is asked 
to keep pressing the button for about 1 minute. We use two different programs in the client side to examine the 
effect of interaction among participants: (i) Without Interaction: The beeping sound of the client device is turned 
off. Accordingly, each player tries only to continue the rhythm of metronome (s)he listened for the first 15 sec-
onds, without any interaction or interference with other participants. In this case, the interaction between players 
is unlikely since there is no sound cue in the later stage after 15 seconds and we ask players only to look at their 
computer or smartphone screens. (ii) With Interaction: The beeping sound is turned on, and all participants are 
asked to synchronize the beeping sound (s)he generates to the sound generated by other players. The advantage 
of using our platform is that the time instants of button pressing are automatically recorded in the server, which 
makes further analysis straightforward.

We use 64 and 120 BPM (beats per minute) for the metronome rhythm, which correspond to the metronome 
frequency 1.07 and 2.0 Hz, respectively. In Fig. 6a, we display partial results of our experiment for the 64 BPM 
metronome for the case of (ii) With Interaction, as an example. The time instants of button pressing are displayed 
in the form of the short vertical bars, as often used for the visualization of the neuron firing pattern in neurosci-
ence24. In Fig. 6b, we show how the average frequency changes in time for the case of (i) Without and (ii) With 
Interaction. We compute the frequency of each individual by using the time window of 5 seconds, and results 
from four independent experiments are averaged. Note that the two curves almost coincide to the metronome 

Figure 5. The phase trajectories [(a,b)] and the phase velocities [(c,d)] of N 25=  individual oscillators versus 
time t for ( , ) (1,0)α β =  and for K 1=  [(a,c)] and for =K 5 [(b,d)]. We plot the trajectories [(a,b)] in the form 
of φ ψ−t t( ) ( )i  with ψ(t) being the phase of the synchronization order parameter (see the text). When the 
synchronization occurs in (d) for =K 5 beyond t ≳ 80 after an initial transient, all the oscillators agree on the 
phase velocity close to the maximum intrinsic frequency ω ≈ 2max .
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frequency 1.07 Hz at around 10 second, before the metronome sound is stopped. As time goes on, it should be 
recognized that the average frequency for (ii) With Interaction case increases. Differently from previous study19, 
we have not observed downward shift of the synchronized frequency for (i) Without Interaction case. We believe 
that our experimental result in Fig. 6b supports our previous finding in Figs. 3 and 4, since the average frequency 
for (ii) With Interaction lies significantly higher than for (i) Without Interaction. However, for 120 BPM the dif-
ference between (i) Without and (ii) With Interaction case is found insignificant. Probably, 120 BPM could be too 
fast for some participants to comfortably follow.

interacting runners. We suggest that our main finding of the shift of the average phase velocity can also 
be tested by other more realistic phenomenon, like interacting runners. In this regard, it is interesting to note 
that researchers recorded two international marathon races and found the grouping behavior of the runners25. 
Furthermore, it has been found that the denser the group is, the faster the runners in the group are25, which indi-
cates that the speed of a runner is not only an intrinsic property of the runner, but also can be an outcome from 
interaction with other runners.

Hinted by both the previous observation25 and our results for the shift of the average phase velocity of oscilla-
tors, we propose a simple model to mimic interacting runners in a one-dimensional linear track and write the 
equation of motion for the position xi of the ith runner as

σ= + −
∈Λ

˙ ( )x t v C x t x t( ) min [ max ( ) ( )], ,
(5)i i

j t
j i v

( )i

where the characteristic speed vi is a Gaussian quenched random variable with the mean v 5 m/s〈 〉 =  and the 
standard deviation 1 m/svσ = , = .C( 0 1/s) is the competitive coupling strength, and Λ t( )i  is the set of runners within 
the ith runner’s sight limit ( 20 m)= :

t j x t x t( ) { 0 ( ) ( ) } (6)i j i Λ = | ≤ − ≤ .

In Eq. (5), we try to mimic the situation that if one sees other runners in front in close distance, the runner 
tries to speed up within his limitation. However, if the distance to the front runner is too big, the runner may not 
try hard to catch up. Only for simplicity, we assume the runner’s speed is limited by vi vσ+  from that every human 
individual runner must have some physical and biological limitation. Note that if there is no front runner in the 
distance , the runner runs at his intrinsic speed of vi. Figure 7 shows our result for the forward-interacting run-
ners for =N 50. We first observe that runners form groups of different speeds, and the runner’s speed within each 
group is identical. It is to be noted that although our model of runners with forward-biased interaction is very 
simple, it produces the grouping behavior reported in previous study25. The average speed of all runners is meas-
ured 5.5 m/s, which is larger than the average characteristic speed v 5 m/si〈 〉= . The qualitative feature of the group-
ing behavior is observed robust if the value of C is not too small, nor too large. Although our interacting runner 
model does not include physiological factors which affect the performance of runners26,27, the shift of the average 
speed is observed as in the marathon race28. We emphasize that this finding of the shift of the average speed is in 
parallel to our observation for oscillators with asymmetric interaction in Figs. 3 and 4 as well as our experimental 
observation in Fig. 6.

Figure 6. Experimental results for 31 participants. (a) Time instants of button pressings of players are displayed 
in the form of short vertical bars for 64 BPM metronome experiment with interaction. (b) The frequencies 
for individual players are measured with the time window of the size 5 seconds, and then are averaged over 
all players. We repeat the experiment four times for the 64 BPM metronome for (i) Without and (ii) With 
Interaction cases (see text). When the players are interacting with each other, the synchronized frequency in 
later time is found to be significantly larger than the metronome frequency 64 BPM(=1.07 Hz).
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Discussion
In this paper, we have suggested models of interacting oscillators and runners, in which the key ingredient is the 
forward-biased interaction. Through numerical investigations, we have observed that such asymmetric interac-
tion shifts the average velocity in the two model systems, in accord with the findings in previous studies19,20. Our 
simple model of forward-interacting runners has also been shown to produce the grouping behavior reported in 
previous study25. We have also performed a computer-based synchronization experiment of interacting human 
individuals and observed again the shift of the average frequency. We believe that when we synchronize sound 
rhythm with others we tend to catch up the sound of others slightly ahead in time. Accordingly, we suggest that 
our modified Kuramoto model can have some relevance in explaining our experimental result of sound synchro-
nization of human individuals. The asymmetric dynamic interaction has not been studied before in the research 
field of synchronization and our new computer-based experiments also show that our model study is realistic.

Methods
experiment participants. 31 undergraduate students of Sungkyunkwan University participated in the 
experiment described in this manuscript voluntarily. The experiments approved by the institutional review board 
of Sungkyunkwan University and conducted in accordance with the Declaration of Helsinki. All participants 
provided informed consent.
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