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Simple Summary: Identifying new prognostic markers can provide a reference for the treatment
of lung adenocarcinoma (LUAD) to improve its prognosis. Circadian rhythm disturbances are
closely linked to the initiation, progression and prognosis of lung cancer. We aimed to explore
the value of circadian miRNA (cmiRNA) as a prognostic marker of LUAD. A prognostic signature
comprising seven pairs of cmiRNAs was established, and it exhibited excellent predictive value
for overall and progression-free survival. High-risk patients showed higher sensitivity to primary
chemotherapy drugs and targeted medicine compared with low-risk patients. Overall, the novel
circadian-related miRNA pair signature could provide a precise prognostic evaluation with the
potential capacity to guide individualized treatment regimens for LUAD. The cmiRNA–Cgenes
network and corresponding enrichment analysis might provide clues for studying the underlying
circadian dysregulation mechanisms involved in the progression of LUAD in the future.

Abstract: Lung adenocarcinoma (LUAD) is the primary histological subtype of lung cancer with a
markedly heterogeneous prognosis. Therefore, there is an urgent need to identify optimal prognostic
biomarkers. We aimed to explore the value of the circadian miRNA (cmiRNA) pair in predicting
prognosis and guiding the treatment of LUAD. We first retrieved circadian genes (Cgenes) from the
CGDB database, based on which cmiRNAs were predicted using the miRDB and mirDIP databases.
The sequencing data of Cgenes and cmiRNAs were retrieved from TCGA and GEO databases. Two
random cmiRNAs were matched to a single cmiRNA pair. Finally, univariate Cox proportional hazard
analysis, LASSO regression, and multivariate Cox proportional hazard analysis were performed to
develop a prognostic signature consisting of seven cmiRNA pairs. The signature exhibited good
performance in predicting the overall and progression-free survival. Patients in the high-risk group
also showed lower IC50 values for several common chemotherapy and targeted medicines. In
addition, we constructed a cmiRNA–Cgenes network and performed a corresponding Gene Ontology
and Gene Set enrichment analysis. In conclusion, the novel circadian-related miRNA pair signature
could provide a precise prognostic evaluation with the potential capacity to guide individualized
treatment regimens for LUAD.
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1. Introduction

Lung cancer remains the leading cause of cancer-related deaths in the world [1,2], with
lung adenocarcinoma (LUAD) being the primary histological subtype [3,4]. The prognosis
of patients with LUAD is markedly heterogeneous [5]. Therefore, the identification of
effective biomarkers that are related to prognosis and drug efficacy in patients with LUAD
is important: (1) providing early intervention and assisting clinical strategies to improve
prognosis; and (2) revealing the underlying mechanism that may contribute to the discovery
of new underlying therapeutic targets for preventing lung adenocarcinoma recurrence
or progression.

Chronic circadian rhythm disturbances are closely linked to the initiation, progression
and prognosis of tumors [6,7]. For example, a long period (more than 20 years) of shift
work is related to an increased risk of breast and prostate cancers [8]. Disturbed daily sleep–
activity cycles often occur in patients with lung cancer [9]. Mice harboring key circadian
rhythm gene alterations accelerate the initiation and progression of lung cancer [6,10]. A
study by Ye et al. revealed extensive alterations in clock genes across multiple cancer
types. The correlations between clock genes, key oncogenic pathways, and clinical features
might explain the underlying mechanisms of circadian rhythm disruption and tumor
progression [11]. In addition, metastatic colorectal cancer patients with circadian rhythm
disruptions have significantly lower survival rates and poorer quality of life than those
with normal circadian rhythms [7,12]. The rhythm of cortisol is relatively “flat” in some
lung cancer patients with poor survival [13]. Therefore, circadian rhythm disturbance may
serve as a potential prognostic risk factors for lung adenocarcinoma.

The microRNAs participate in crucial physiological balance and pathological processes,
including the malignant characteristics of cancer, and have been identified as excellent
signatures associated with the diagnosis and prognosis of cancer [14–16]. Increasing
evidence indicates that miRNAs play a major role in circadian rhythm regulation [17–19].
However, the value of circadian miRNAs (cmiRNAs) in lung adenocarcinoma has not yet
been investigated. Moreover, a gene pair-based strategy is a promising approach that is
compatible with the data from various gene detection platforms and has a wide range
of applicability [20]. Therefore, our study aimed to develop a personalized prognostic
signature for patients with LUAD based on cmiRNA pairs. We also preliminarily explored
the value of the signature in guiding treatment approaches and the potential mechanism.

2. Materials and Methods
2.1. Study Design and Patients

We downloaded the miRNA and RNA-seq expression data of LUAD from TCGA
and GEO databases. Patients lacking corresponding clinical information and those who
survived for <30 days were excluded. Postoperative tumor and adjacent normal tissues
of 11 patients with LUAD in the Union Hospital (Wuhan, China, WHUH cohort) were
collected. All the patients signed an informed consent form. The study complied with the
Declaration of Helsinki and was approved by the Institutional Review Board of Union Hos-
pital, Tongji Medical College, Huazhong University of Science and Technology (protocol:
[2020](S363), 30 December 2020).

The samples and data were collected from 10 March to 10 July 2022. Figure 1 shows
the overall design of this study. The TCGA dataset was randomly split into training and
testing datasets. The GSE63805 dataset was selected for independent validation.

2.2. Pairing of Differentially Expressed Circadian miRNAs (DEcmiRNA)

Circadian genes (Cgenes) were retrieved from the circadian gene database (CGDB,
http://cgdb.biocuckoo.org (accessed on 5 March 2022)) [21]. Circadian miRNAs (cmiRNAs)
were predicted according to the Cgenes through the microRNA data integration portal
(miRDIP) database (http://ophid.utoronto.ca/mirDIP/ (accessed on 20 March 2022)) [22]
and the microRNA target prediction (miRDB) database (http://www.mirdb.org (accessed
on 21 March 2022)) [23]. To improve the accuracy of predictions, we set strict filter criteria

http://cgdb.biocuckoo.org
http://ophid.utoronto.ca/mirDIP/
http://www.mirdb.org
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as follows: mirDIP (score class: very high, integrated score more than 0.5 and number of
sources more than 8); and miRDB (Include functional miRNAs only and exclude those
with a target prediction score below 80, and those with more than 800 predicted targets
in the genome). The “edgeR” package was employed in screening out the differentially
expressed miRNAs (DEmiRNAs) between tumor and normal tissues (|log2FC| > 1 and
FDR < 0.05). Then the differentially expressed cmiRNAs (DEcmiRNAs) were obtained via
the intersection of DEmiRNA sets with cmiRNAs predicted by the mirDIP and miRDB
databases for subsequent pairing and construction of the model.
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This pairing strategy was consistent with that reported in previous studies [20,24].
Specifically, cmiRNAs were randomly paired. If the value of cmiRNA x was greater than
that of cmiRNA y, then the score of cmiRNA pair (cmiRNA x/cmiRNA y) was defined as 1,
and 0 otherwise. Moreover, cmiRNAs pairs with frequencies of 0 or 1 above 80% or below
20% were considered unrelated to prognosis and therefore excluded.

2.3. Establishment and Verification of a Prognostic cmiRNA Pair Signature

Clinical data (including survival information) were integrated into the cmiRNA pair-
ing matrix. In the training dataset, prognostic cmiRNA pairs were filtrated by univariate
Cox regression (p < 0.01). We further performed LASSO to minimize the risk of overfitting.
Finally, the stepwise regression method (method = “both”) and the Akaike Information Cri-
terion (AIC) were applied to screen cmiRNA pairs to construct the optimal Multivariate Cox
regression model with the formula as follows: Risk score = h0 (t) × exp (score of cmiRNA
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pair 1 × β1 cmiRNA pair 1 + score of cmiRNA pair 2 × β2 cmiRNA pair 2 + . . . . . . + score
of cmiRNA pair n × βn cmiRNA pairs n). The risk scores of the samples in the testing and
validation datasets were calculated on the basis of the above formula. The median risk
score was set as the cutoff point for the high- or low-risk group classification.

Receiver operating characteristic (ROC) curve and Kaplan–Meier survival analysis
were performed to evaluate the correlation between the signature and prognosis in the
training, testing, total TCGA, and independent GEO (GSE63805) datasets. Moreover, we
assessed the predictive value of the signature for progression-free survival (PFS) in the
TCGA dataset. To further validate the clinical implications of the cmiRNA pair signature,
we conducted multivariate analyses to explore the correlation between the signature and
clinical features. The predictive values of the signature and the clinical variables for
prognosis were also compared.

2.4. Formulation and Assessment of the Nomogram

Based on the results of multivariate analyses, we integrated smoking, age, sex, stage,
and risk score into a composite nomogram by applying Cox proportional hazards regression
to the TCGA dataset. The prognostic accuracy of the nomogram is shown by the ROC and
calibration curves. The “M” stage (28% missing) was not included to ensure consistency.
The R package “rms” was employed in drawing the nomogram plot.

2.5. Analysis of Tumor Immune Microenvironment

Immune cells in the tumor microenvironment were estimated using seven previously
reported algorithms [25–31]. Spearman correlation analyses were conducted to investigate
the correlation between the risk score and the immune cell composition. The Wilcoxon
signed-rank test was performed to explore the differences in immune cells between the
high- and low-risk patients.

2.6. Assessment of Drug Sensitivity

The IC50 values of common antitumor medicines for each sample were predicted using
pRRophetic [32]. The Wilcoxon signed-rank test was applied to compare IC50 between
high- and low-risk patients.

2.7. MiRNA Extraction and Quantification

Total RNA from postoperative tumor and normal tissues was extracted by RNAiso
Plus (#9109 Takara Bio, Beijing, China). The RNA concentration was measured via Nan-
oDrop 2000 (NanoDrop Technologies, Wilmington, DE, USA). The miRNA first-strand
cDNA was synthesized using a tailing reaction (#B532451, Sangon Biotech, Shanghai,
China) with total RNA (1 µg). Forward primers for the miRNAs (listed in Table S1) were
obtained from Sangon Biotech. Quantitative real-time polymerase chain reaction (qRT-PCR)
was carried out using the TB Green® Premix Ex Taq™ II (#RR820A, Takara Bio, Beijing,
China) and CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The
relative expression of miRNAs was calculated using the 2−∆∆Ct method, with U6 as an
internal reference.

2.8. Key cmiRNA–Cgene Network Construction and Gene Ontology (GO) Enrichment Analysis

The Cgenes matched to the cmiRNAs of the signature were obtained by the intersection
of the above cmiRNA-target Cgene prediction analysis from the mirDIP and miRDB
databases. Differential expression of the cmiRNAs and Cgenes in tumor and normal tissues
in the TCGA cohort was calculated. Experimentally confirmed cmiRNA-target Cgene
relationships were retrieved from the miRWalk database for miRNA-target interactions
(which includes data from the miRTarBase database) [33]. We then used Cytoscape software
to construct the cmiRNA–Cgene network. Spearman correlation analysis between cmiRNA
expression and target Cgene in the TCGA-LUAD cohort was conducted using the Origin
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2021 software. GO enrichment analysis of these target Cgenes was conducted using the
DAVID database (https://david.ncifcrf.gov (accessed on 18 April 2022)).

2.9. Gene Set Enrichment Analysis (GSEA)

GSEA was performed using GSEA v4.2.1 software to explore the enrichment pathways
and biological processes between the high- and low-risk groups in the TCGA dataset.
Cancer hallmark and circadian rhythm-related gene sets were also investigated.

2.10. Statistical Analysis

Data analysis and graphical presentation were performed using R (version 4.1.3), Perl
(version 5.32.1.1), SPSS Statistics 26, Adobe Illustrator and Origin 2021 software. Statistical
significance was set at p < 0.05 (unless otherwise specified).

3. Results
3.1. Construction of the Prognostic Signature Based on the cmiRNAs Pairs

The flow diagram of the study is shown in Figure 1. First, we retrieved the miRNA-seq
data of 46 normal and 521 tumor samples from the TCGA-LUAD cohort and a list of the
circadian genes from the CGDB database (Table S2). A total of 368 and 995 cmiRNAs were
predicted based on the circadian genes using miRDB and miRDIP databases, respectively
(Table S3). A total of 362 DEmiRNAs between normal and tumor samples were screened
out (Figure 2A,B). A total of 90 alternative DEcmiRNAs were obtained by the intersection
of cmiRNAs (predicted by miRDB and miRDIP databases) and DEmiRNAs (Figure 2C).
Then, 1038 valid cmiRNA pairs were identified and filtered after random pairing of the
90 DEcmiRNAs.

450 LUAD patients with complete clinical data and survival time > 30 days in the
TCGA dataset were randomly divided into a training dataset (225 cases) and a testing
dataset (225 cases). The clinicopathological features of patients in each dataset are shown
in Table 1. In the training dataset, 26 survival-related cmiRNAs pairs were extracted using
univariate Cox regression analysis (p < 0.01, Table S4). Then, nine cmiRNA pairs were
screened out by LASSO regression analysis to prevent overfitting (Figure 2D,E). Finally,
seven cmiRNA pairs were selected using the stepwise regression method (method = “both”)
based on AIC to construct a prognostic signature using the multivariate Cox proportional
hazard analysis (Figure 2F).

3.2. Evaluation and Validation of the Prognostic Signature

The testing dataset and GSE63805 cohort were used for internal and external inde-
pendent verification of the prognostic signature, respectively. Clinicopathological data
and the corresponding miRNAs in the GSE63805 cohort are presented in Table 1 and Table
S5, respectively. The risk scores of the cases in the testing and GSE63805 datasets were
calculated using the prognostic model. The ROC curves of the signature for 1-, 3-, and
5-year overall survival in the TCGA training dataset, TCGA testing dataset, TCGA total
dataset, and GSE63805 dataset were drawn (Figure 3A–C,G). The AUC values for the train-
ing, testing and independent GSE63805 dataset were 0.794, 0.693 and 0.730, respectively.
We determined the median risk score of the training dataset as the critical value for high-
or low-risk classification. Kaplan–Meier curves indicated that the low-risk patients had
significantly longer overall survival than the high-risk patients across all datasets (p < 0.001)
(Figure 3D–F,H). Additionally, the risk score model also showed a certain capacity to predict
1-, 2-, and 3-year PFS, and low-risk patients had longer PFSs (Figure 3I,J). All of the above
results showed the robust prognostic power of the established signature.

We further explored the association between the risk score and clinicopathological
features. Multivariate Cox regression analysis indicated that clinical stage (p < 0.001, hazard
ratio [HR] = 1.414, 95% confidence interval [CI] [1.112–1.797]) and risk score (p < 0.001,
HR = 1.285, 95% CI [1.194–1.383]) remained independent prognostic factors after adjusting
for clinical and pathologic factors (Figure 4A). The risk score indicated the optimal AUC

https://david.ncifcrf.gov
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value compared with sex, age, smoking, clinical stage, T and N stage (Figure 4B). Strip illus-
tration (Figure 4C) and scatter drawings (Figure 4D,E) showed that there were significant
correlations between the risk score and clinical stage and T stage.
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Figure 2. Construction of a prognostic model using cmiRNA Pairs. (A) Visualization of miRNA
expression and (B) differentially expressed miRNA between tumor and normal tissues (red and
blue dots indicate up-regulated and down-regulated miRNAs, respectively). (C) Venn diagram
showing the number of differentially expressed circadian miRNAs (DEcmiRNAs). (D,E) Filtration of
the DEcmiRNAs pairs using LASSO regression analysis (each differently colored line represents a
candidate variable in the LASSO regression analysis). (F) The forest map showed the seven cmiRNA
pairs of the established prognostic signature. (* p < 0.05; ** p < 0.01).
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Table 1. Clinicopathological features of the patients.

Characteristics

TCGA–LUAD Cohort GEO Cohort WHUH Cohort

Entire
N = 450

Training Dataset
N = 225

Testing Dataset
N = 225 p-Value # GSE63805

N = 32 N = 11

Age (years) 65.2 ± 9.9 66.1 ± 9.4 64.3 ± 10.3 0.049 65.4 ± 11.9 57.6 ± 7.4
Sex (%) 0.257

Male 212 (52.9) 112 (50.2) 100 (44.4) 15 (46.9) 8 (72.7)
Female 238 (47.1) 113 (49.8) 125 (55.6) 17 (53.1) 3 (27.3)

Smoking Status 1.0
Yes 388 (86.2) 194 (86.2) 194 (86.2) 27 (84.4) 6 (54.5)
No 62 (13.8) 31 (13.8) 31 (13.8) 4 (12.5) 5 (45.5)

TNM Stage (%) 0.144
I 249 (55.3) 136 (60.4) 113 (50.2) 27 (84.4) 7 (63.6)
II 108 (24.0) 46 (20.4) 62 (27.6) 4 (12.5) 4 (36.4)
III 74 (16.4) 33 (14.7) 41 (18.2)
IV 19 (4.2) 10 (4.4) 9 (4.0)

T stage (%) 0.713
T1 156 (34.7) 76 (33.8) 80 (35.6) 8 (72.7)
T2 237 (52.7) 123 (54.7) 114 (50.7) 3 (27.3)
T3 42 (9.3) 18 (8.0) 24 (10.7)
T4 15 (3.3) 8 (3.6) 7 (3.1)

N stage (%) 0.055 f

N0 302 (67.1) 162 (72.0) 140 (62.2) 7 (63.6)
N1 82 (18.2) 31 (13.8) 51 (22.7) 4 (36.4)
N2 64 (14.2) 31 (13.8) 33 (14.7)
N3 2 (0.4) 1 (0.4) 1 (0.4)

M stage (%) 0.638 f

M0 297 (66.0) 145 (64.4) 152 (67.6) 11 (100)
M1 19 (4.2) 10 (4.4) 9 (4.0)
Mx 132 (29.3) 68 (30.2) 64 (28.4)

OS time (days) 891 ± 877 860 ± 763 921 ± 980 0.460 2173.5 ± 1230.5
OS state 0.844

Alive 290 (64.4) 146 (64.9) 144 (64.0) 27 (84.4)
Dead 160 (35.6) 79 (35.1) 81 (36.0) 5 (15.6)

# The difference between training and testing datasets was calculated using t test or chi-square test unless specified.
f: Fisher’s exact test. Means ± standard deviation (SD) was presented. OS: overall survival.

3.3. Integrated Nomogram Combining the Risk Score with Clinical Variables

To further improve accuracy and practicality, we combined significant clinical factors
(smoking, age, sex, and clinical stage) and risk score to fit a Cox proportional hazards
regression model using the total TCGA dataset (Figure 5A). As shown in the nomogram,
each factor was assigned a point and the total nomogram point was calculated from the
sum of the individual points of all predictors. In association with the total points, the
survival rate of patients can be estimated by projecting the total points downward. The
calibration (Figure 5B) and ROC curves (Figure 5C) indicated that the integrated nomogram
achieved a higher accuracy of survival estimation than the risk score alone.

3.4. Correlation between Risk Score and Tumor Immune Microenvironment

The immunosuppressive microenvironment is one of the main factors contributing to
poor prognosis in patients with LUAD. Therefore, we tested the correlation between the
risk score and the tumor immune landscape (Figure S1A–I). The results indicated that the
risk score had a negative correlation with the majority of immune cells, especially crucial
anti-tumor immune cells (such as CD8 + T and NKT cells), but had a positive relationship
with tumor-promoting Th2 cells in the tumor microenvironment.
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(ROC) curves for overall survival (OS) of (A) TCGA training dataset, (B) TCGA testing dataset,
(C) TCGA total dataset, (G) GSE63805 dataset. Kaplan–Meier OS analysis of (D) TCGA training
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3.5. Application of Risk Score in Predicting Primary Drug Efficacy

Based on the pRRophetic algorithm, we explored the correlation between the risk
score and drug sensitivity in the TCGA dataset. As shown in Figure 6, high-risk patients
had lower IC50 values than low-risk patients for several common chemotherapy drugs,
indicating that the former were more susceptible to cisplatin, docetaxel, gemcitabine,
and vinorelbine (Figure 6A–D). Similar results were observed for targeted therapy drugs,
including the tyrosine kinase inhibitors erlotinib and gefitinib and the farnesyltransferase
inhibitor tipifarnib (Figure 6E,F). The above results indicate the potential of this signature
to predict drug sensitivity and guide treatment.
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Figure 6. Association between the risk score and drug susceptibility. The boxplots show the difference
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(D) vinorelbine, (E) erlotinib, (F) gefitinib, and (G) tipifarnib between the high- and low-risk group.

3.6. cmiRNA Quantitative Verification and Key cmiRNA—Cgene Network Construction

The relative expression of the 11 cmiRNAs between cancerous and adjacent normal
tissues of patients with LUAD were further quantified by qRT-PCR. Only eight out of
11 miRNAs were confirmed to be significantly different between tumor and normal tissues,
which might be explained by the low number of samples. (Figure 7A). The 48 targeted
Cgenes matched to the 11 cmiRNA were extracted, and the key cmiRNA–Cgene network
was established (Figure 7B). The relative expression levels (tumor vs. normal tissues)
of cmiRNAs and their target Cgenes are also displayed in Figure 7B and Table S6. In
addition, we searched the miRWalk database for experimentally validated target genes
of these miRNAs (sourced from the miRTarBase database), which are marked by the red
arrow in Figure 7B and listed in Table S7. It is clear that most relationships between these
cmiRNAs and target Cgenes require experimental verification. Therefore, we performed
Spearman correlation analysis between these cmiRNA expression and target Cgenes in
the TCGA-LUAD cohort (Figure 7C). The expression correlation between Mir-138-5p and
the ROCK2 and RMND5A genes was consistent with the classical negative regulation rela-
tionship between miRNA and target gene expression. GO enrichment analysis suggested
that these targeted Cgenes were enriched in pathways including TOR signaling, response
to DNA damage by P53 class mediator, and regulation of centrosome cycle (Figure 7D).
GSEA between the high-risk and low-risk groups showed that most of the HALLMARK
pathways, circadian regulation of gene expression, and cell cycle-related signaling path-
ways were active in high-risk patients (Figure S2A–C). Overall, these results might provide
clues to explore new potential mechanisms of cmiRNAs and Cgenes that promote lung
cancer progression.
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Figure 7. cmiRNA–Cgene network analysis and Gene Ontology (GO) enrichment analysis. (A) cmiR-
NAs of the signature quantification using qRT-PCR in tumor and normal tissues of 11 LUAD patient.
(B) cmiRNAs and targeted-Cgenes network analysis (blue, white, and red mean lower, equal and
higher expression level of cmiRNAs/Cgenes in tumor comparing to normal tissues, respectively, all
p < 0.05 except that ˆ p > 0.05, the red arrows indicate experimentally validated targeting regulatory



Cancers 2022, 14, 5106 12 of 15

relationships retrieved from the miRWalk database). (C) Spearman correlation analysis between
miRNA expression and target genes in TCGA-LUAD cohort, the red box marks the target Cgene
corresponding to each column of cmiRNA (D) GO enrichment analysis of the targeted Cgenes. (ns,
not significant; * p < 0.05; ** p < 0.01; *** p < 0.001)

4. Discussion

The five-year survival of lung cancer is 10–20% in most countries [34]. It has increased
in some countries over the past 20 years due to early diagnosis, improved treatment
methods, and the development of precision medicine. Prognostic biomarkers for the risk
stratification of patients with lung cancer and providing references for clinical interventions
are an important part of precision medicine. Chronic circadian rhythm disturbances are
closely linked to the initiation and progression of tumors [6]. Some studies have shown
that circadian genes have promising potential as prognostic markers of lung cancer. The
miRNAs have unique advantages as prognostic markers. In this study, we established a
signature, consisting of seven cmiRNA pairs, to predict the prognosis of lung cancer for
the first time. The prognostic model has good predictive performance for the overall and
progression-free survival of patients with LUAD in the TCGA dataset, and it has been
validated in the GEO dataset (external validation). In addition, it has important reference
significance in guiding the treatment of patients with LUAD. Nomograms also increase the
usability and readability of the results.

Studies have suggested that clock genes and other genes related to the killing function
(e.g., cytolytic factors, perforin, and granzyme B) have a circadian oscillatory rhythm,
which is altered by chronic shift-lag. These alterations may be associated with the inhibited
circadian rhythm of the cytolytic activity of NK cells and the progression of lung cancer [35].
Another study showed that lung cancer can induce deep reprogramming of the liver
circadian rhythm at both the transcript and metabolite levels [36]. Further studies on the
mechanism of circadian rhythm disorders leading to poor prognosis of lung cancer can
provide potential therapeutic targets. The role of all 11 cmiRNAs in our signature in NSCLS
has been studied to varying degrees. MiR-539-3p [37], miR-584-5p [38], miR-138-5p [39],
miR-335-5p [40], miR-376a-3p [41], MiR-133b [42], MiR-382-5p [43], and miR-215 [44] were
suggested to suppress the proliferation, migration, and invasion of NSCLC. While miR-153-
3p [45], and miR-31-5p [46] were shown to promote the metastasis and invasion of lung
cancer cells. In addition, studies have shown that miR-539-3p [47] and miR -138-5p [48]
enhances chemosensitivity to cisplatin in NSCLC, and miR-136-5p promoted anlotinib
resistance in NSCLC [49]. These studies suggest that these miRNAs play important roles in
cancer development. However, whether they are involved in circadian rhythm regulation
and how they contribute to the progression of lung cancer requires further study.

The classical biological role of miRNAs is to degrade or to inhibit the translation of
target genes to reduce the level of protein-coding genes expression [50]. In addition to
a small number of verified cmiRNA–Cgene, the remaining were only predicted by the
databases to have a targeted regulatory relationship. Although the relative expression levels
between tumor and normal tissues and Spearman correlation analysis results preliminarily
showed that there was a significant negative correlation between the expression of some
miRNAs and predicted target genes, they require further experimental verification in the
future. It is worth noting that miRNA can function outside classical paradigms such as
coding for peptides, directly activating transcription, up-regulating protein expression, and
activating toll-like receptors [51]. Overall, the constructed cmiRNA–Cgene network, GO
enrichment analysis and GSEA showed potentially important cmiRNA–Cgene regulation
pathways involved in the progression of LUAD, which should be the focus of future
in-depth research.

Several shortcomings are present in this study: First, the cmiRNA was predicted
by the database based on circadian genes. Although we set strict criteria to increase the
reliability of this targeting regulation, and the partial targeting regulation relationship has
been validated by other studies, the true targeting regulation relationship of them requires
further verification. Second, owing to the difficulty in collecting clinical samples and the
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limited time, no large-scale clinical cohort study was carried out to verify the prediction
model. Finally, the cmiRNA–Cgene network pathway and its target regulation mechanism
were only preliminary explorations and require further in-depth validation.

5. Conclusions

To the best of our knowledge, as this is the first study to explore the role of cmiRNAs in
lung adenocarcinoma. The established prognostic model based on cmiRNA pairs exhibited
good performance in predicting the overall, progression-free survival and sensitivity to
chemotherapy and targeted therapy.
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and GSE63805 cohort and circadian miRNAs predicted by miRDB and miRDIP databases (Supplied
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