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ABSTRACT

MicroRNAs (miRNAs) are involved in the regulation
of gene expression at a post-transcriptional level.
As such, monitoring miRNA expression has been
increasingly used to assess their role in regulatory
mechanisms of biological processes. In large scale
studies, once miRNAs of interest have been iden-
tified, the target genes they regulate are often in-
ferred using algorithms or databases. A pathway
analysis is then often performed in order to gener-
ate hypotheses about the relevant biological func-
tions controlled by the miRNA signature. Here we
show that the method widely used in scientific liter-
ature to identify these pathways is biased and leads
to inaccurate results. In addition to describing the
bias and its origin we present an alternative strategy
to identify potential biological functions specifically
impacted by a miRNA signature. More generally, our
study exemplifies the crucial need of relevant nega-
tive controls when developing, and using, bioinfor-
matics methods.

INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNA (∼22
nt) involved in the post-transcriptional regulation of gene
expression. miRNAs promote the degradation or inhibit
the expression of messenger RNA by binding to specific se-
quences generally located in the 3′ UTR of their target (1).
Therefore, miRNAs can impact the expression of hundreds
of genes and are important regulators of biological pro-
cesses. As such profiling their expression is insightful and
has been applied to many organisms and conditions (2).

In order to interpret the biological impact of the miR-
NAs associated to a condition, studies often include an in
silico analysis of pathways based on the known or inferred
miRNA target genes. In human, for example, miRNA sig-
natures of different diseases such as cancer (3), diabetes
(4), infectious disease (5) or various neurodegenerative dis-

orders (6–10) have been described along with hypotheses
about the biological processes they ultimately regulate.

Here we show that the in silico approach widely applied
in such studies, to identify pathways regulated by miRNA
signatures, is strongly biased and always leads to the iden-
tification of highly-related biological processes. We also ex-
plore alternatives to this approach, deliberately focusing on
one particular review related to miRNAs in Alzheimer dis-
ease (10). We finally describe a strategy which is not biased
by the current knowledge and we argue it should be applied
in preference to future studies based on a similar design.

MATERIALS AND METHODS

Identification of miRNA targets

Three resources were used to identify miRNA targets. mir-
TarBase (11) (version 4.5) is a database of experimentally
validated miRNA-target interactions. For human, 1324 tar-
gets are associated to 344 miRNAs. TargetScan (12–14)
is an online software provided by MIT for prediction of
miRNA targets. For human, 11 161 targets are predicted
for 277 miRNAs. The Thomson-Reuters MetaBase (http:
//thomsonreuters.com/metabase/) is a comprehensive man-
ually curated database of mammalian biology and medici-
nal chemistry data. For human, 2247 targets are associated
to 699 miRNAs.

Pathways

Two pathway databases were used in the frame of this study.
The KEGG.db package (15) provides 229 KEGG (16) path-
ways. The Thomson-Reuters MetaBase provides a list of
1283 pathways.

Enrichment analyses

All enrichment analyses described in this study are based on
the hypergeometric test:

P−value = R!n!(N−R)!(N−n)!
N!

min(n,R)∑

i=r

1
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with N the number of elements in the universe under fo-
cus, R the number of element in the query, n the number
of elements in the reference and r the overlap between the
query and the reference. Correction for multiple testing was
done using Benjamini–Hochberg method (17) and signifi-
cantly enriched pathways were selected according to a false
discovery rate (FDR) <0.05.

RESULTS

In order to compare the different strategies for associating
pathways to miRNA signatures, the following results are
mainly derived from a re-analysis of miRNAs differentially
expressed in Alzheimer’s disease (AD) (10), one of our re-
search interests. In his review, Satoh identified 16 miRNAs
over-expressed (AD-up) and 113 miRNAs under-expressed
(AD-down) in AD patients compared to healthy controls.

All of the following analyses were based on considering
pathways as lists of protein coding genes. Thus, one impor-
tant step common to all the strategies is to first identify
the target genes of miRNAs. Several resources are avail-
able to perform this step (see ‘Materials and Methods’ sec-
tion). Again, in order to compare the strategies as such,
we deliberately focused on one of these resources: mirTar-
Base (11). AD-up and AD-down miRNAs were compared
to miRNA identifiers available in mirTarBase leading to
slightly smaller lists of 16 and 99 miRNAs (Supplemen-
tary Table S1). Also the main list of pathways with which
the following analyses were performed are from the KEGG
database (16) as provided by the KEGG.db package (15).

Strategy 1: indirect enrichment of miRNA target genes in na-
tive pathways

The most straightforward and widely used strategy to iden-
tify pathways associated to a list of miRNAs is to per-
form an enrichment analysis of the miRNA target genes
(Figure 1a) (e.g. (3,4,6–10)). First, genes targeted by any
miRNA of interest are identified using a reference database
or a prediction algorithm. Then the significance of the over-
lap between target genes and pathway genes is measured by
an enrichment analysis (see ‘Materials and Methods’). This
strategy was applied with the AD-up and AD-down lists of
miRNAs.

According to mirTarBase, 70 genes are targeted by at
least one of the 16 AD-up miRNAs. These target genes are
significantly enriched (FDR < 0.05) in genes of 38 KEGG
pathways (Supplementary Table S1––AD-up S1 pathways).
Similarly, the 99 AD-down miRNAs led to the identifica-
tion of 762 target genes (Supplementary Table S1––AD-
down targets) significantly enriched in genes of 73 KEGG
pathways (Supplementary Table S1––AD-down S1 path-
ways). Intriguingly, 37 pathways are common to the two
lists of miRNAs even if, by definition, no miRNA belongs
to both lists. This observation raised doubts about the va-
lidity of the approach and the results it generates.

In order to assess the specificity of this strategy, the
same workflow was applied to 1000 random selections of 16
(RAND-16) and 99 (RAND-99) miRNAs, lists of lengths
equal to the AD-up and AD-down miRNAs respectively.
On average 120 genes (SD = 46) are targeted by RAND-
16 and 555 (SD = 78) by RAND-99 miRNAs. Among the

229 KEGG pathways, 14 are enriched (FDR < 0.05) in at
least 90% of RAND-16 targets and 64 KEGG pathways
are enriched in at least 10% of RAND-16 targets. These 64
pathways include 37 of the previously identified 38 AD-up
S1 pathways (97%). Similarly, 51 KEGG pathways are en-
riched in at least 90% of RAND-99 targets and 78 pathways
are enriched in at least 10% of RAND-99 targets, including
72 of the 73 AD-down S1 pathways (99%). This result shows
that this broadly used strategy in miRNA-related literature
is biased and leads to highly unspecific outcomes, i.e. the
same pathways are typically identified whatever the initial
input list of miRNAs.

The results with random selections of mirRNAs indicate
that the whole list of miRNA targets is biased for a sub-
set of biological functions. In order to test this hypothe-
sis, an enrichment analysis was performed starting from the
whole list of 1324 genes targeted by at least one miRNA in
mirTarBase. 73 KEGG pathways are significantly enriched
(FDR < 0.05) with these 1324 miRNA target genes and
they mainly relate to cancer and cell cycle (Supplementary
Table S2). Table 1 shows the 20 most significant ones. When
compared to previous AD use case, it turned out that 37 out
of 38 AD-up and 70 out of 73 AD-down S1 pathways are
common to pathways non-specifically enriched in whole list
of miRNA target genes (Figure 2a). This result shows that
the targets available in mirTarBase are strongly biased for
some KEGG pathways.

In order to check if the bias is only related to mirTar-
Base and KEGG pathways, the same approach was applied
using other resources for miRNA target identification and
biological pathways. Many KEGG pathways are also en-
riched with two other lists of miRNA targets provided by
targetScan (12–14) and by the Thomson-Reuters MetaBase
(Figure 2b). Moreover, a similar bias was observed when
performing the enrichment analysis on the MetaBase path-
ways whatever the source of miRNA targets (Figure 2a and
b). Taken together these results show that the bias is com-
mon to different methods to identify miRNA targets or to
different biological pathways resources.

In his review, Satoh (10) describes 20 top KEGG path-
ways related to miRNAs down regulated in AD brains (Sup-
plementary Table S2). However, according to our results,
these pathways strongly overlap with the non-specifically
identified ones. Thus no conclusion can be drawn about the
involvement of the miRNAs under expressed in AD brain
in the regulation of these 20 pathways, contrary to what the
author claims.

Other similar studies related to miRNA signatures use
this strategy to identify impacted pathways. For instance
one identified miRNAs differentially expressed during hu-
man brain development (18), another those deregulated in
peripheral arterial disease (19) and a third one in chordo-
mas (3). Most of the pathways described in these publica-
tions are also enriched with the whole list of miRNA tar-
gets (respectively 9/11, 51/56 and 34/44), preventing any
conclusion about their specific regulation by miRNAs as-
sociated to the conditions under focus (Table 1 and Sup-
plementary Table S2). These results show a strong negative
impact of this biased strategy in miRNA-related literature
and bring out the need to establish a new unbiased analysis
strategy for pathway identification from miRNA signatures.
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Figure 1. Strategies to identify pathways associated to a miRNA signature. Circles represent protein coding genes and hairpins miRNAs. Gene having the
same color of a miRNA are targeted by this miRNA. White genes are not known to be targeted by any miRNA. (a) Strategy 1: targets of the miRNAs of
interest are identified using in silico resources and then compared to protein coding genes belonging to each native pathway. (b) Strategy 2: same as strategy
1 but pathways are tailored to only keep genes targeted by at least one miRNA. (c) Strategy 3: pathways of protein coding genes are converted in lists of
miRNAs that target at least one of their genes. Then the miRNA signature is directly compared to miRNAs-converted pathways.

Figure 2. Pathways associated to miRNA signatures when applying strategy 1. (a) AD-up S1 pathways, AD-down S1 pathways and pathways enriched in
genes targeted by at least one miRNA according to mirTarBase. (b) Pathways enriched in genes targeted by at least one miRNA according to MetaBase,
TargetScan or mirTarBase. Numbers in red correspond to KEGG pathways and those in blue to MetaBase pathways.
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Table 1. Top 20 pathways enriched in all protein coding genes targeted by at least one miRNA according to mirTarBase

Rank P-value FDR
Alzheimer’s
disease (10)

Chordoma
(3)

Developing
human brain
(18)

Peripheral
arterial
disease (19)

Pathways in cancer 1 2.68E-61 6.15E-59 YES YES YES
Prostate cancer 2 3.17E-32 3.63E-30 YES YES YES YES
Pancreatic cancer 3 2.5E-29 1.72E-27 YES YES YES YES
Chronic myeloid leukemia 3 3.01E-29 1.72E-27 YES YES YES
Colorectal cancer 5 1.09E-26 4.99E-25 YES YES
Focal adhesion 6 1.5E-23 5.71E-22 YES YES YES
Neurotrophin signaling pathway 7 3.65E-23 1.19E-21 YES YES
MAPK signaling pathway 8 7.01E-22 2.01E-20 YES YES YES
Small cell lung cancer 9 8.74E-22 2.23E-20 YES YES YES
Osteoclast differentiation 10 2.81E-21 5.84E-20 YES
Cell cycle 10 2.81E-21 5.84E-20 YES YES YES
Bladder cancer 12 7.62E-21 1.45E-19 YES YES
Renal cell carcinoma 13 2.96E-20 5.21E-19 YES YES YES YES
Chagas disease (American trypanosomiasis) 14 1E-19 1.64E-18 YES
Toxoplasmosis 15 5.59E-18 8.24E-17 YES
Melanoma 15 5.76E-18 8.24E-17 YES YES
Endometrial cancer 17 8.94E-18 1.2E-16 YES YES
Toll-like receptor signaling pathway 18 1.23E-17 1.57E-16 YES
T cell receptor signaling pathway 19 3.15E-17 3.8E-16 YES YES YES
Glioma 20 9.45E-17 1.08E-15 YES YES YES YES

The first three columns show the significance of the association. The remaining column indicate pathways identified in different studies focused on different
topics.

Many pathways identified by the approach described
above, whatever the databases used, are related to cancer
which suggests a knowledge bias in this field for microRNA
compared to protein coding genes. To test this hypothe-
sis, the relative representations of miRNA and protein cod-
ing genes in cancer-related scientific literature were com-
pared using text-mining approach (Supplementary Infor-
mation). The analysis confirms a significant bias in cur-
rent knowledge related to the role of miRNA in diseases
toward neoplastic and cancer-related processes. When per-
forming analysis, such as pathway identification in this case,
the method used should not be influenced by any bias in the
knowledge representation.

Strategy 2: indirect enrichment of miRNA target genes in tai-
lored pathways

In the first strategy, all the genes belonging to each path-
way were taken into account to compute the significance of
the overlap with the list of targets of the miRNA signature.
However, many of these genes are not known to be targeted
by a miRNA and we previously showed that miRNA tar-
gets are significantly enriched with genes from some path-
ways, mainly related to cancer. Thus, these pathways have
more chances to be selected if this imbalance is not taken
into account. The most straightforward way to handle this
bias is to tailor pathways to only keep genes targeted by at
least one miRNA, using the same resource to identify tar-
gets of the list of miRNAs of interest (Figure 1b). This new
strategy was again applied to AD-up and AD-down lists of
miRNAs.

When applying this strategy, 5 KEGG pathways (AD-up
S2 pathways) are enriched in AD-up targets (FDR < 0.05)
and 3 KEGG pathways (AD-down S2 pathways) show en-
richment for AD-down targets. To assess the specificity of
this strategy, the same workflow was applied on RAND-16

and RAND-99 miRNAs. 12 KEGG pathways are enriched
in at least 10% of RAND-16 targets, including all the 5 AD-
up S2 pathways. Similarly, 18 KEGG pathways are enriched
in at least 10% of RAND-99 targets, including all the three
AD-down S2 pathways (Supplementary Table S1). These
results show that this alternative strategy, based on the fil-
tering of pathway resources for miRNA target genes, is also
not specific even if fewer pathways are finally selected com-
pared to the first strategy.

The low specificity of this approach could be related to
the identification of genes targeted by miRNAs of interest.
Indeed, since the genes on which the enrichment analysis
is performed are selected indirectly, the number of miR-
NAs targeting each gene may affect the probability to in-
clude them in the enrichment analysis, with genes targeted
by many miRNAs having more chances to be selected in
the first step of the strategy. To test this hypothesis an en-
richment analysis was performed on the whole list of tar-
gets in mirTarBase but also on the 1000, 500, 100 and 50
most commonly targeted genes. By design, no pathway is
significantly enriched with the whole list of 1324 miRNA
target genes and only one is enriched with the top 1000 most
targeted genes. In contrast, 20, 12 and 18 KEGG pathways
were significantly enriched (FDR < 0.05) respectively with
the top 500, 100 and 50 targeted genes, most of these path-
ways being related to cancer biology (Supplementary Table
S2). This result shows that genes having more chances to be
selected in the first step of this approach are already signifi-
cantly enriched in some pathways, thereby unbalancing the
second step of the strategy.

Again, to check the dependence of this result toward
the tools and databases, the same workflow was applied
using alternative resources. The same kind of bias is ob-
served when using other sources for miRNA target iden-
tification and when performing the enrichment analysis on
the MetaBase pathways (Figure 3). This result indicates that
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Figure 3. Pathways enriched in the top 500 genes targeted by miRNAs ac-
cording to MetaBase, TargetScan or mirTarBase when applying strategy
2. Numbers in red correspond to KEGG pathways and those in blue to
MetaBase pathways.

this bias is related to the method as such and not to the
knowledge resources it uses.

Strategy 3: direct enrichment of miRNAs in converted path-
ways

In order to avoid bias related to the previously described in-
direct identification of the genes to be included in the enrich-
ment analysis, a third strategy was set-up (Figure 1c). First,
pathways of protein coding genes are converted in lists of
miRNAs that target at least one of these genes. Then the
enrichment analysis is conducted by direct comparison of
the list of miRNAs of interest to the lists of miRNAs previ-
ously associated to the different pathways. This strategy en-
sures that a miRNA is only represented once in a pathway
whatever the number of its target genes in this particular
pathway.

After applying this strategy to the AD use case, not a sin-
gle pathway was found to be significantly enriched in the
16 AD-up miRNAs whereas 81 pathways were significantly
enriched (FDR < 0.05) in the 99 AD-down miRNAs (AD-
down S3 pathways) (Supplementary Table S1). Again, to
assess whether this new strategy leads to an improvement
in specificity, this methodology was applied to 1000 ran-
dom selections of 16 or 99 miRNAs. No single pathway was
selected more than three times on the 1000 trials (FDR <
0.05), clearly supporting the specificity of this approach.

Again, different tools to identify miRNA targets were
compared in order to assess their impact on pathways asso-

Figure 4. Pathways associated to AD-down miRNAs when applying strat-
egy 3. miRNAs targeting protein coding genes in the different pathways
were identified using either MetaBase, TargetScan or mirTarBase. Num-
bers in red correspond to KEGG pathways and those in blue to MetaBase
pathways.

ciated to the miRNA signature. Beside a strong overlap be-
tween the different tools, a significant number of pathways
are identified only when using only one of them (Figure 4).
Also, the same strategy was applied using MetaBase path-
ways and lead to the identification of 631 pathways enriched
in AD-down miRNAs and no pathway enriched in AD-up
miRNAs. Again, starting from 1000 random selections of
16 or 99 miRNAs, no Metabase pathway was selected more
than twice (FDR < 0.05). This observation reflects a dif-
ferent representation of the knowledge in the tools and re-
sources used and, more importantly, that the new method
can be applied to different resources, their knowledge bias
not affecting the statistical relevance of the final results.

Nevertheless, the number of pathways significantly en-
riched with AD-down miRNAs is surprisingly large (81
KEGG and 631 Metabase pathways) considering the num-
ber of miRNAs (99). This result indicates that these path-
ways share many miRNAs.

To test this hypothesis, the number of KEGG pathways
associated to each miRNA was compared to the number
of pathways containing each original protein coding gene.
As shown in Figure 5, there are many miRNAs associated
to more than 10 pathways (Figure 5b) whereas most of the
protein coding genes are associated to <5 (Figure 5a). This
result shows that pathway information is much more redun-
dant at the miRNA level than at the gene level.

The structure of this relative overlap was also compared
applying a hierarchical clustering on the Jaccard index com-
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Figure 5. KEGG pathway redundancy at the levels of protein coding genes and miRNAs. (a) Distribution of the number of pathways associated to each
Entrez gene ID in the KEGG.db package. (b) Distribution of the number of pathways associated to each miRNA using mirTarBase information. (c)
Distribution of the number of pathways per cluster of pathways sharing on average at least 20% of Entrez gene ID. (d) Distribution of the number of
pathways per cluster of pathways sharing on average at least 20% of associated miRNAs using mirTarBase information.

puted for each pathway pair at the level of protein coding
genes (J(A, B) = |A∩B|

|A∪B| ) (Supplementary Figure S1) and at
the level of miRNAs (Supplementary Figure S2). Clusters
of pathways were defined according to an average Jaccard
index of 20%. The number of pathways per cluster is shown
in Figure 5c and d. On one hand, most of the pathways do
not share more than 20% of their protein coding genes with
any other pathway (Figure 5c). On the other hand, there is
a large cluster of 70 pathways sharing on average more than
20% of their associated miRNAs and many other pathways
are related to each other at this level (Figure 5d).

This result indicates that pathway enrichments with genes
are generally independent of each other whereas it’s not the
case with miRNAs. Indeed, the majority (58) of the 81 path-
ways significantly enriched in the 99 miRNAs under ex-
pressed in AD brains belong to the large cluster of 70 path-
ways (Supplementary Table S1). It is therefore difficult to
identify which of those are relevant to the disease.

Nevertheless, 11 pathways which are significantly en-
riched in the 99 AD-down miRNAs belong to small clus-
ters (≤2 pathways). These 11 pathways are more probably
specific to the study under focus: miRNA regulations in-
volved in Alzheimer’s disease. Strengthening this hypothe-
sis, the Alzheimer’s disease KEGG pathway belongs to this
list of 11 pathways. The FDR of the overlap between this
pathway and the 99 AD-down miRNAs is 0.007. This path-
way was not identified by the two previous strategies.

The same strategy was applied on various additional lists
of miRNA identified by former studies as being differen-
tially expressed during the development of human brain
(18), in peripheral arterial disease (19) or in chordomas (3).
22 KEGG pathways were found to be significantly associ-
ated to miRNA over expressed in chordomas (FDR < 0.05)
that also differ from the ones identified in original publica-
tion (Supplementary Table S3). Not a single pathway was
found to be significantly enriched in the other miRNA lists,
making their interpretation difficult from a pathway point
of view.
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DISCUSSION

Here we show that the most commonly applied in silico
strategy to infer pathways that are under the regulation of a
miRNA signature is not specific and leads to the systematic
identification of highly related biological processes, namely
cell cycle and cancer biology. In this indirect approach, tar-
gets of the miRNAs are compared to pathways of protein
coding genes. Many published results related to the func-
tional interpretation of differentially expressed miRNAs are
based on this biased indirect analysis (e.g. (3,10,18,19)) and
identify similar biological processes even if the conditions
of interest are very different. Our results show that, the con-
clusions of such studies regarding inferred regulated path-
ways cannot be trusted and should be reviewed after new
unbiased analyses. Moreover, these results also indicate that
tools applying this strategy, such as DIANA mirPath (20),
should be modified in order to take this bias into account.

Two alternatives are also explored to avoid this bias. One
is highly related to the previous strategy with the exception
that protein coding genes taken into account in the path-
ways are limited to known targets of miRNAs. We showed
that this other indirect strategy is also biased because of the
knowledge about miRNA biology which is highly related to
cancer. As recently discussed by Mørk (21), this bias could
be related to a study imbalance or to the underlying func-
tion of miRNAs as such. In any case, this has to be taken
into account when performing analyses using the current
knowledge, such as pathway analyses.

The last strategy we explored is the reverse of the first
two. Pathways of protein coding genes are converted into
lists of miRNAs targeting at least one gene of the origi-
nal pathway, avoiding overcounting the miRNAs targeting
multiple genes belonging to the same pathway. Then, the
enrichment analysis is directly performed with the miRNA
signature under focus. Recently, we applied this approach to
miRNA signatures of various mouse models of epilepsy (22)
and we proposed a role for these miRNAs in the regulation
of inflammatory pathways in this pathology. This approach
is not biased by the current knowledge and results are spe-
cific to each miRNA signature. However, we also show that
many pathways share a significant number of miRNAs of-
ten leading to their co-identification. In order to avoid this
issue and also to decrease useless multiple testing, these sim-
ilar converted pathways could be aggregated before any en-
richment analysis.

More generally, enrichment in protein coding gene path-
ways should be performed with care when not directly start-
ing from genes but, for example, from their upstream regu-
lators such as miRNAs, transcription factors or protein ki-
nases. In such case, the alternative strategy established in the
frame of this study could be beneficially applied. In any case,
appropriate negative controls should always be included in
the analysis in order to assess any potential bias related to
the chosen strategy.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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