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Objective: The aim of this study was to examine whether the timing of sleep in the break between consecutive night-shifts affects the
quantity and quality of sleep obtained during the daytime and/or neurobehavioural function and self-perceived capacity during the
night-time.
Methods: Participants (n = 12, all male, aged 22.9±5.2 y) completed three randomised, counterbalanced conditions in a sleep
laboratory, consisting of two consecutive 12-hour night-shifts (18:00–06:00) with 7 hours in bed in the break between shifts. The three
conditions differed only in the timing of the sleep opportunities – immediate (07:00–14:00), delayed (10:00–17:00), split (07:00–10:30
and 13:30–17:00). Neurobehavioural function (attention, memory, throughput) and self-perceived capacity (sleepiness, alertness,
fatigue, mood) were assessed at 2-hour intervals during the night-shifts.
Results: Condition did not affect total sleep time (p = 0.465), but it did affect sleep onset latency (p < 0.001; W = 0.780; large effect),
wake after sleep onset (p = 0.018; W = 0.333; moderate effect) and the amount of Stage N3 sleep (p < 0.001; η2=0.510; small effect).
Compared to the immediate and delayed sleep conditions, the split sleep condition had less wake after sleep onset and more Stage N3
sleep; and compared to the delayed condition, the split sleep condition had longer latency to sleep onset. There was no effect of
condition on measures of neurobehavioural function or self-perceived capacity during the second night-shift.
Conclusion: None of the three sleep strategies examined here – immediate, delayed or split – are clearly superior or inferior to the
others in terms of the capacity to sleep during the daytime or to work at night. Therefore, those who work consecutive night-shifts
should employ the strategy that best suits their personal preferences and/or circumstances.
Keywords: shift work, sleep duration, slow wave sleep, performance, sleepiness, split sleep

Introduction
Individuals who perform night work face considerable challenges in terms of obtaining adequate sleep during the day1–3

and maintaining acceptable levels of performance during the night.4,5 This is because it is more difficult to function
effectively at night-time compared to daytime,6,7 and it is more difficult to obtain sleep during the day compared to
night.6–9 Night work poses a significant risk because it almost doubles the likelihood of making errors, having an
accident, and being injured.10–12

A number of countermeasures have been examined to improve alertness and performance during the night-shift. For
example, caffeine administration during a shift reduces the physiological tendency for sleep,13 exposure to bright light in
the work place improves alertness and cognitive performance,14 and a short 30-min nap during a night-shift (ie, ~02:00)
reduces self-reported sleepiness and improves psychomotor performance.15 These countermeasures are effective, but in
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some workplaces, they are not practical or feasible. In such cases, an alternative approach could be to strategically
organise daytime sleep around the work schedule.

Night-shift workers generally adopt one of three sleep ‘strategies’ in the breaks between consecutive night-shifts: (i) ~45%
obtain a single sleep episode in the morning soon after night work (ie, immediate strategy); (ii) ~15% attempt to sleep in the
afternoon, preferring to delay sleep after work in a manner similar to day workers (ie, delayed strategy); and (iii) ~40% choose
to divide their sleep across their breaks, obtaining some sleep in the morning and some sleep later in the afternoon/evening (ie,
split strategy).16–19 Each strategy has advantages and disadvantages, but their relative efficacy to sustain alertness and
performance during night-shifts has not been systematically compared.20

The impact of a delayed sleep strategy on subsequent performance and sleepiness during consecutive night-shifts has been
examined in both younger21 and older healthy adults.22,23 Individuals on a delayed sleep strategy—where sleep is scheduled to
end 1–2 hours before the start of the subsequent night-shift—obtain more sleep23 and perform better21–23 and report less
sleepiness over consecutive night-shifts21–23 compared to individuals on an immediate sleep strategy—where sleep is
scheduled to begin as soon as the night-shift ends. One of the benefits of a delayed sleep strategy compared to an immediate
strategy is that individuals spend less time awake prior to the start of the night-shift because the sleep period ends close to the
start of the work period (ie, wake duration prior to the start of the shift is ~1-2 h with a delayed strategy compared to ~6-7 h
with an immediate strategy). The reduction in the duration of wake prior to beginning night work is the most likely explanation
for the improvements associated with a delayed strategy. However, in two of these studies, the delayed sleep strategy also
involved exposure to bright light during the night-shifts. The light exposure was timed to promote an advance of the circadian
system, which most likely facilitated sleep in the early evening.21,22

In the absence of exposure to bright light, a delayed sleep strategy still appears advantageous in terms of night-time
performance and alertness.23 However, this has only been established in older adults who may be suited to a delayed strategy
because of advanced rhythms of core body temperature and melatonin.24 Furthermore, in all three of the aforementioned studies,
only consolidated strategies were examined. A split sleep strategy could be advantageous in that it provides some of the benefits
of both immediate and delayed strategies—ie, immediate relief from being awake overnight and reduced prior wakefulness prior
to the start of the subsequent night-shift. To date, however, the amount of sleep obtained during a daytime split sleep strategy, and
its subsequent effect on night-time performance, has not been ascertained. The aim of this study was to determine the best sleep
strategy (immediate, delayed or split) to adopt between consecutive night-shifts in healthy adults by comparing the effectiveness
of each at sustaining performance at night and maximising sleep quantity and quality during the day.

Materials and Methods
Participants
Twelve male volunteers (22.9±5.2 y; mean±SD) gave written, informed consent to participate in the study. Participants
were in good mental and physical health; were non-smokers, medication free and had not undertaken shift work or flight
across more than two time zones in the three months prior to the study. The study was approved by CQUniversity’s
Human Research Ethics Committee (H12/11-206) and was conducted in accordance with the Declaration of Helsinki.

Setting
The study was conducted in a sound-attenuated, windowless sleep laboratory. Participants were isolated from environ-
mental time cues during the protocol but they had access to clocks. Ambient light levels were ~300 lux during wake
periods. Lights were extinguished during all sleep periods.

Experimental Design
A randomised, counter-balanced, repeated-measures design was employed. Participants attended the laboratory on three
separate occasions approximately one week apart. On each occasion, participants spent three consecutive days in the
laboratory and completed one of three experimental conditions. Each visit consisted of a 9.5-hour night-time sleep
opportunity, a 1-hour afternoon nap, two 12-hour simulated night-shifts separated by a 7-hour sleep opportunity, and one
daytime recovery sleep (Figure 1). The only difference between conditions was the timing of the sleep opportunity that
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was provided in the 12-hour break between the two night-shifts (ie, immediate, delayed, split). The participants were not
permitted to leave the laboratory during the protocol, nor were they permitted to consume alcohol or caffeine.

Protocol
In the week prior to each visit, participants maintained a consistent sleep/wake schedule. This was verified using wrist
activity monitors (Actical Z-series; Philips Respironics; Oregon, USA) in conjunction with self-report sleep diaries.
There was no difference in the amount of sleep obtained at home in the week prior to the commencement of the
immediate (407.0± 6.4 min), delayed (410.6±20.3 min) and split (443.0±30.1 min) conditions (F2,22 = 1.747; p = 0.198).

On the evening of the first visit, participants were trained on the performance tasks. Participants were given 9.5 hours
in bed on Night 1 (22:30–08:00) and were given a 1-hour nap opportunity on Day 1 (16:00–17:00) to prepare for the first
night-shift on Day 1 (18:00–06:00). At the start of Day 2, participants were given a 7-hour sleep opportunity. The timing
of the sleep opportunity differed for each condition: immediate (07:00–14:00), delayed (10:00–17:00), and split (07:00–
10:30 and 13:30–17:00). In the 30 min prior to sleep opportunities, polysomnography (PSG) electrodes were attached to
participants. At the end of Day 2, participants performed their second night-shift (18:00–06:00). During the night-shift,
participants completed a 30-min test battery every two hours, with the first test battery beginning at 18:30. At the start of
Day 3, participants were given a 9-hour recovery sleep before exiting the laboratory.

Sleep
Sleep was assessed using PSG (Compumedics Grael; Melbourne, Victoria, Australia). The electroencephalogram (EEG)
was recorded using a single central derivation of electrodes (C4–M1, C3–M2) in conjunction with two electrooculograms
and two electromyograms. The use of a single central derivation (as opposed to a frontal derivation)26 is not likely to
affect the measurement of sleep. In a recent study, the impact of using a montage including three EEG derivations
(frontal, central, and occipital) versus a montage including one central EEG derivation on PSG sleep scoring summary
statistics was assessed.25 The use of three EEG derivations instead of a single central EEG derivation resulted in a small
increase in the duration of Stage N3 sleep (3 EEG derivation = 63.5 min; 1 EEG derivation = 52.8 min) and had no effect
on inter-scorer or intra-scorer reliability.25 The authors concluded that there was no significant advantage in using
multiple over single EEG derivations for scoring sleep. Furthermore, any potential effects of using one, instead of two or
three, EEG derivations in the present study should be similar for the three conditions, as a repeated-measures design was
employed.

Sleep records were blinded and analysed in 30-s epochs by a single technician using established criteria.26 The
following dependent variables were calculated for each sleep record: (i) total sleep time; (ii) time spent in Stages N1, N2,

Figure 1 Study protocol. Black horizontal bars represent sleep opportunities; grey horizontal bars represent simulated 12-hour night-shifts; and black circles represent
assessments of neurobehavioural performance and self-perceived capacity. “X” represents entry to, and exit from, the laboratory. “M” represents meals.
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N3 and rapid eye movement (Stage R) sleep; (iii) sleep onset latency; (iv) wake after sleep onset; (v) sleep efficiency; and
(vi) number of arousals. For the split sleep strategy, values for each sleep episode (except for sleep onset latency and
sleep efficiency) were summed and the single value was used in all analyses. Sleep onset latency was averaged across the
two sleep episodes. Sleep efficiency was calculated as follows: (total sleep time episode 1 + total sleep time episode 2)
divided by (time in bed episode 1 + time in bed episode 2) multiplied by 100.

Neurobehavioural Performance
Sustained attention was assessed using the psychomotor vigilance task (PVT-192; Ambulatory Monitoring Inc., New York,
USA). The PVT is a hand-held device with an upper surface that contains an LED display and two push-button response
keys. Participants attended to the LED display for 10 min and pressed the appropriate response key with their dominant
thumb as quickly as possible after the appearance of a visual stimulus. The dependent measures derived from the PVTwere
reciprocal response time (RRT, 1/ms × 1000) and the number of lapses (ie, response latency exceeding 500 ms). For all
analyses, anticipated responses (ie, response times less than 100 ms) were excluded.

Cognitive throughput was assessed using the digit symbol substitution task (DSST)27 and a serial addition/subtrac-
tions task (SAS). For the DSST, participants were provided with a pen and a sheet of paper containing a key associating
the digits 0 to 9 with different symbols. The participants were given 90 seconds to make as many substitutions as
possible. The dependent measures derived from the DSST included the total number of substitutions attempted and the
percentage of correct substitutions. The SAS task is operated on a computer and requires participants to perform addition
and subtraction using integers between 1 and 9. Operations were presented at a variable interval of 1 to 5 seconds. The
participants were given five min to complete as many operations as possible. The dependent measures derived from the
SAS task were RRT and the percentage of correct responses.

Self-Perceived Capacity
Sleepiness was assessed using the Karolinska Sleepiness Scale (KSS);28 alertness was assessed using a visual analogue
scale (VAS alertness);29 fatigue was assessed using the Samn–Perelli fatigue scale;30 and mood was assessed using the
Profile of Mood States (ie, total mood disturbance).31

Statistical Analyses
Variables were examined for normality using the Shapiro–Wilks test. Differences in normally distributed sleep variables
between conditions were examined using separate repeated measures ANOVAs with “condition” (immediate, delayed,
split) as a within-subjects factor. Differences in non-normally distributed sleep variables between conditions were
examined using Friedman test. In addition, the probability distribution of sleep stages during the 7-hour sleep episodes
in each condition was examined using a sleep histogram. Sleep stage probability was calculated as the percentage of
epochs (in 5-min bins) scored as either Stage N1, Stage N2, Stage N3, Stage R or Wake. For normally distributed
variables related to neurobehavioural performance and self-perceived capacity, separate repeated measures ANOVAs
were conducted with “condition” (immediate, delayed, split) and “time of test session” (18:30, 20:30, 22:30, 00:30,
02:30, 04:30) as within-subjects factors. For non-normally distributed variables related to neurobehavioural performance
and self-perceived capacity, differences between conditions and between test sessions were examined using Friedman
test. Only neurobehavioural performance and self-perceived capacity data from the second night-shift (ie, the shift
following each strategy) were included in the analyses. Sphericity was examined in all ANOVAs using Mauchly’s test of
sphericity. If the assumption of sphericity was violated, p values were based on Greenhouse-Geisser’s corrected degrees
of freedom, but the original degrees of freedom are reported. Where appropriate, pairwise comparisons were performed
with a Bonferroni correction for multiple comparisons. Effect sizes for ANOVAs were calculated using partial eta
squared (η2) and interpreted as small (0.01), medium (0.06), and large (0.14). Effect sizes for Friedman tests were
calculated using Kendall’s W and interpreted as small (0.2), medium (0.5), and large (0.8). For all analyses, the critical
level of alpha was set at p < 0.05. Statistical analyses were performed using SPSS (Version 27, IBM, Armonk, NY) and
data are presented as mean ± SEM.
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Results
Sleep Prior to the First Night-Shift
There was no difference in the amount of sleep obtained on the night prior to the first night shift between conditions
(χ22=3.500; p = 0.174); or in the amount of time spent in Stage N1 (χ22=3.910; p = 0.822), Stage N2 (χ22=0.667; p =
0.717), Stage N3 (F2,22=0.766; p = 0.472) or Stage R (F2,22=1.917; p = 0.175). On the night prior to the first night shift,
average sleep duration was 493.5±25.2 min for the immediate condition; 526.3±8.7 min for the delayed condition; and
514.1±8.7 min for the split condition.

There was no difference in the amount of sleep obtained during the afternoon nap prior to the first night-shift in each
condition (χ22=0.298; p = 0.862); or in the amount of time spent in Stage N1 (χ22=3.511; p = 0.173), Stage N2
(F2,22=1.715; p = 0.206), Stage N3 (F2,22=0.822; p = 0.447) or Stage R (χ22=0.300; p = 0.861). Average sleep duration
during the 1-hour nap was 53.6±0.9 min in the immediate condition; 46.5±5.3 min in the delayed condition; and 52.6±2.1
min in the split condition.

Sleep During the Immediate, Delayed and Split Conditions
There was no effect of condition on any of the sleep measures, except for sleep onset latency (W = 0.882; large effect), the
amount of Stage N3 (η2=0.510; small effect), and WASO (W = 0.333; moderate effect) (Table 1). Sleep onset latency was
longer in the split condition than for both the immediate (p = 0.032) and delayed (p < 0.001) conditions; the amount of Stage
N3 was greater in the split condition than for both the immediate (p < 0.001) and delayed (p = 0.042) conditions; the amount of
Stage N3 was greater in the delayed condition compared to the immediate condition (p = 0.018); and WASO was lower in the
split condition compared with both the immediate (p = 0.043) and delayed (p = 0.043) conditions.

The probability distribution of sleep stages for each condition is illustrated in Figure 2. In all three conditions, Stage
N3 was predominant in the first 3.5 hours of the sleep episode. In the immediate and delayed conditions, Stage N3
gradually declined over the 7-hour sleep episode. However, in the split condition there was a burst of Stage N3 at the start
of the second sleep episode. Towards the end of the sleep episode in the immediate and delayed conditions, and to a
lesser extent in the second sleep in the split condition, there was a gradual increase in wake.

Neurobehavioural Performance During the Immediate, Delayed and Split Conditions
There was no effect of condition on PVT RRT (χ22=0.044; p = 0.978), PVT lapses (χ22=0.605; p = 0.739), SAS RRT
(χ22=0.320; p = 0.852), SAS correct number of responses (χ22=1.319; p = 0.517), DSST total attempted (χ22=1.830; p = 0.401),

Table 1 Sleep Parameters Derived from Polysomnography for the Immediate, Delayed and Split Conditions

Variable Immediate Delayed Split Statistic df p

TST (min) 383.6 ± 22.3 384.0 ± 21.3 391.6 ± 17.6 F = 0.78 2,22 0.465

Stage N1 (min) 16.3 ±10.1 17.8 ± 6.6 15.5 ± 10.1 F = 0.61 2,22 0.541

Stage N2 (min) 160.0 ± 13.3 156.5 ± 27.6 145.5 ± 23.7 F = 1.63 2,22 0.221

Stage N3 (min) 124.3 ± 5.4B,C 138.0 ± 6.6A,C 149.5 ± 0.6A,B F = 11.46 2,22 <0.001

Stage R (min) 83.0 ± 26.0 71.8 ± 27.8 81.1 ± 27.9 χ2 = 0.50 2 0.779

SOL (min) 3.2 ± 2.5C 1.8 ± 1.2C 5.5 ± 2.6A,B χ2 = 21.17 2 <0.001

WASO (min) 33.6 ± 22.4C 34.8 ± 21.0C 18.6 ± 17.7A,B χ2 = 8.00 2 0.018

Sleep efficiency (%) 91.2 ± 5.3 91.3 ± 5.0 93.0 ± 4.2 F = 0.70 2,22 0.498

Arousals (count) 65.0 ± 18.5 73.2 ± 17.3 66.6 ± 18.5 F = 1.22 2,22 0.301

Notes: ASignificantly different from the immediate condition (p<0.05), BSignificantly different from the delayed condition (p<0.05), CSignificantly different from the split
condition (p<0.05). Normally distributed data were analysed using repeated measures ANOVA (test statistic: F); non-normally distributed data were analysed using the
Friedman test (test statistic: χ2).
Abbreviations: TST, total sleep time; SOL, sleep onset latency; WASO, wake after sleep onset.
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Figure 2 Sleep histograms representing the probability distribution of sleep stages in the immediate (top panel), split (middle panel) and delayed (bottom panel) conditions. Data
represent the percentage of epochs scored as Stage N1 and Stage N2 sleep (light grey bars), Stage N3 sleep (white bars) and Stage R sleep (dark grey bars) in 5-min bins.
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or DSST percentage of correct responses (χ22=1.647; p = 0.439) (Figure 3). There was a significant effect of time of test session
on PVT RRT (χ25=28.608; p < 0.001; W = 0.477; moderate effect), PVT lapses (χ25=16.129; p = 0.006; W = 0.269; small
effect), SAS RRT (χ25=12.714; p = 0.026; W = 0.212; small effect), and DSST total number attempted (χ25=12.602; p = 0.027;

Figure 3 PVT reciprocal response time (top left panel), PVT lapses (top right panel), SAS reciprocal response time (middle left panel), SAS percentage of correct responses
(middle right panel), DSST total substitutions attempted (bottom left panel) and DSST percentage of correct responses (bottom right panel) for each test session in the
immediate (open circles), split (open triangles) and delayed (closed squares) conditions. Data are mean (± SEM).
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W= 0.210; small effect), but not on SAS percentage of correct responses (χ25=5.073; p = 0.407) or DSST percentage of correct
responses (χ25=6.099; p = 0.297). Response time during the PVT and the SAS progressively slowed between the first and last
test sessions; the number of attempts during the DSST decreased between the first and last test sessions; and the number of
lapses during the PVT increased between the first and last test sessions (Figure 3).

Self-Perceived Capacity During the Immediate, Delayed and Split Conditions
There was no effect of condition on sleepiness (F2,22=0.121; p = 0.887), fatigue (F2,22=0.474; p = 0.529), alertness
(F2,22=1.609; p = 0.223) or mood (χ22=0.500; p = 0.779) (Figure 3). There was an effect of time of test session on
sleepiness (F2,22=47.7; p < 0.001), fatigue (F2,22=47.5; p < 0.001), alertness (F2,22=44.5; p < 0.001) and mood (χ25=39.844;
p < 0.001; W = 0.664; large effect). Sleepiness, fatigue and mood disturbance increased between the first and last test
sessions; and alertness decreased between the first and last test sessions (Figure 4). There were no interactions between
condition and time of test session for any measures of self-perceived capacity.

Discussion
In the present study, sleep was scheduled in the break between two consecutive 12-hour night-shifts to mimic the
immediate, delayed, and split sleep strategies commonly used by shiftworkers.16–19 The aim was to determine which of

Figure 4 Karolinska Sleepiness Scale (top left panel), Samn-Perelli fatigue scale (top right panel), VAS alertness (bottom left panel) and total mood disturbance (bottom right
panel) for each test session in the immediate (open circles), split (open triangles) and delayed (closed squares) conditions. Data are mean (± SEM).
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these strategies was most effective for maximising sleep during the break between the night shifts and sustaining
performance during the second night shift. The main findings were that (i) the total amount of sleep obtained did not
differ between the three strategies, but more slow wave sleep was obtained using the split strategy than the immediate
and delayed strategies, (ii) it took longer to fall asleep, but there was less wake after sleep onset, using the split strategy
than the immediate and delayed strategies, and (iii) neurobehavioural performance and self-perceived capacity during the
night-shift did not differ between the three strategies. The results indicate that if sufficient sleep is obtained, individuals
on 12-hour schedules have some flexibility when arranging their sleep times, because none of the strategies are clearly
superior or inferior to the others.

A split sleep strategy is often used to obtain some of the benefits of both the immediate and delayed strategies.16

However, a potential limitation of this strategy is that it may affect the composition and restorative capacity of sleep. In
the present study, the sleep opportunity in the split strategy was divided into equal halves, with one episode in the
morning and one episode in the evening. Sleep duration was preserved in the split strategy and was not different from the
immediate or delayed strategies. This finding is consistent with results of other laboratory studies in which split sleep
strategies appear to result in similar durations of sleep to that obtained using a consolidated sleep strategy—regardless of
whether the split sleep episodes are scheduled as one night-time sleep opportunity in combination with one daytime sleep
opportunity32,33 or whether the split sleep episodes occur at any time of day or night.34,35 The results indicate that split
sleep schedules do not appear to result in reduced quality or quantity of sleep.

The amount of slow-wave sleep obtained during 7 hours in bed differed between the immediate, delayed and split
conditions. This may seem peculiar, given that the expectation – based on the two-process model of sleep/wake
regulation36 – would be for a similar amount of slow-wave sleep to be obtained in sleep opportunities of similar duration
after a night of sustained wakefulness. However, forced desynchrony studies have shown that (a) slow-wave sleep
definitely has a strong homeostatic component such that the drive for slow-wave sleep is highest in the 1–2 hours after
sleep is initiated6,37 and (b) slow-wave sleep may have a weak circadian component such that the drive for slow-wave
sleep is highest near the daily maximum in core body temperature,36 which typically occurs in the mid-late afternoon.
These homeostatic and circadian influences provide a good explanation for the current findings – the most amount of
slow-wave sleep was obtained in the split condition, in which sleep was initiated twice and the second sleep occurred in
the mid-late afternoon; the second-most amount of slow-wave sleep was obtained in the delayed sleep condition, in
which sleep was initiated only once, but the second half of the sleep period occurred in the mid-late afternoon; and the
least amount slow-wave sleep was obtained in the immediate condition, in which sleep was initiated only once and the
sleep ended in the early afternoon. These findings are also consistent with those of a previous forced desynchrony study,
which found that split sleep periods result in a greater amount of slow-wave sleep than consolidated sleep periods when
total time in bed is similar.33

One of the challenges for individuals who undertake nightwork is obtaining good-quality sleep during the daytime
when the wake-promoting signal from the circadian system is strong.38 In the present study, there was some evidence that
the level of disruption in daytime sleep differed between the conditions. In particular, it took longer to fall asleep in the
split condition than in the immediate and delayed conditions, whereas there was more wake after sleep onset in the
immediate and delayed conditions than in the split condition. Longer sleep onset latency and greater wake after sleep
onset are indicators of poorer sleep quality39 and the size of the between-groups effects were large and moderate,
respectively. However, sleep onset latency and wake after sleep onset were in the normal ranges, and were well below the
clinical/pathological thresholds, for all three conditions, so the differences between the conditions are unlikely to be
meaningful in practice.39–41

Despite the differences in some of the sleep variables between sleep strategies, the participants in the present study
generally slept very well during daytime sleep episodes (average sleep efficiency >90%). This value is much higher
compared to sleep efficiencies reported by shiftworkers sleeping in their own homes.42 There are several explanations for
this finding. First, the participants were young healthy males with no history of sleep disorders. Second, the sleeping
environment was well controlled—the bedrooms were cool, dark and quiet—and may have protected participants from
the usual disturbances that interfere with daytime sleep. In addition, the participants were not permitted to consume
caffeine or alcohol during the protocol, both of which can negatively affect sleep.43,44 Finally, the participants were
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required to remain in bed for the full duration of each sleep episode. If the participants were free to choose when to get
out of bed, sleep duration may have been different between conditions22,23 and this may have led to differences in
performance and/or capacity during the night-shift following each strategy.

Performance and self-perceived capacity declined across the night-shift, consistent with the effects of increasing
homeostatic sleep pressure and circadian misalignment.6,7,34 However, there was no difference in the rate of decline to
suggest a protective effect of any of the sleep strategies. The absence of a difference in performance during a night-shift
between the immediate sleep strategy and the delayed sleep strategy is in contrast with previous results.21–23 This
discrepancy could be explained by the addition of bright light exposure during the 8-hour night-shifts in previous studies
(which was timed to induce a phase advance and facilitate sleep in the early evening)21,22 and/or the inclusion of older
adults23 who may be more suited to a delayed sleep strategy because of advanced rhythms of core body temperature and
melatonin.24 It is also possible that the shorter break duration between consecutive night-shifts in the present study (12
hours) compared to the shift duration employed in previous studies (16 hours) accounts for the lack of differentiation
between sleep strategies. For example, the start of the sleep episodes for a morning and delayed sleep strategy in an 8-
hour night-shift (with a 16-hour break) vary by 6 hours. In the current study, the start and end times for the immediate
and delayed sleeps differed by only 3 hours. The delayed sleep strategy may not be substantially better than any other
strategy for shift schedules with long shifts (eg, >8 hours) because the difference in the onset times of sleep episodes
between strategies is small. In future, it may be important to establish whether similar results are observed for shift
lengths shorter than 12 hours.

When considering the results, it must be recognised that the study was conducted with young, healthy, male
participants under controlled laboratory conditions. Outside the laboratory, sleeping environments may not always be
conducive to good sleep and other factors (eg, social and family demands) may interfere with individuals’ adherence to
an optimal sleep schedule. In addition, the simulated shiftwork protocol included only one day sleep and one night-shift.
It is possible that a difference between the sleep strategies may not have emerged until after multiple consecutive
shifts.21–23 Finally, the simulated night-shift was 12 hours in duration. In Australia, and other countries, night-shifts
typically last for either 8 or 12 hours.45 It is possible that the sleep strategies could have had a different outcome on an 8-
hour schedule and thus the findings here may not generalise to night-shifts of other durations.

In conclusion, this laboratory-based simulation indicates that the three major strategies used by shiftworkers to time
sleep opportunities in the break between two night-shifts – immediate, delayed, split – produce similar outcomes in terms
of the quantity/quality of sleep obtained during the daytime and the level of cognitive function achieved at night.
Shiftworkers should be informed of the range of strategies available and encouraged to employ the strategy (or strategies)
that best suits their personal preferences and/or circumstances. It is yet to be determined whether the current findings
generalise to natural settings or to circumstances where shiftworkers work more than three consecutive night-shifts,
spend less than 7 hours in bed between consecutive night-shifts and/or work night-shifts that are less than 12 hours in
duration.
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