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Background
The repetitive sequences are patterns of nucleic acids, which occur multiple times 
in genome with the same or approximate form. Based on their structure and distri-
bution in the genome, repetitive sequences are classified into several types, i.e. tan-
dem repeats, interspersed repeats and so on. Tandem repeats consists of repetitive 
elements adjacent to each other and they are categorized into satellites, minisatel-
lites and microsatellites based on their repetitive element size and repetitive level. 

Abstract 

Background: Repetitive sequences account for a large proportion of eukaryotes 
genomes. Identification of repetitive sequences plays a significant role in many appli‑
cations, such as structural variation detection and genome assembly. Many existing 
de novo repeat identification pipelines or tools make use of assembly of the high‑
frequency k-mers to obtain repeats. However, a certain degree of sequence coverage is 
required for assemblers to get the desired assemblies. On the other hand, assemblers 
cut the reads into shorter k-mers for assembly, which may destroy the structure of the 
repetitive regions. For the above reasons, it is difficult to obtain complete and accurate 
repetitive regions in the genome by using existing tools.

Results: In this study, we present a new method called RepAHR for de novo repeat 
identification by assembly of the high‑frequency reads. Firstly, RepAHR scans next‑gen‑
eration sequencing (NGS) reads to find the high‑frequency k-mers. Secondly, RepAHR 
filters the high‑frequency reads from whole NGS reads according to certain rules based 
on the high‑frequency k-mer. Finally, the high‑frequency reads are assembled to gener‑
ate repeats by using SPAdes, which is considered as an outstanding genome assembler 
with NGS sequences.

Conlusions: We test RepAHR on five data sets, and the experimental results show that 
RepAHR outperforms RepARK and REPdenovo for detecting repeats in terms of N50, 
reference alignment ratio, coverage ratio of reference, mask ratio of Repbase and some 
other metrics.
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Interspersed repeats are dispersed throughout the genome and mainly composed 
of transposable elements (TEs). Transposable elements account for a large frac-
tion of the genome and have influence on much of the mass of DNA in eukaryotic 
genomes [1]. In many organisms, repeated sequences make up a significant part of 
whole genomes, e.g. over two-thirds of the human genome [2], over 75% of the maize 
genome [3] and about 20% of the Drosophila melanogaster genome [4] are repetitive. 
For many basic analysis methods of genome sequences, such as de novo assembly, 
sequence alignment, sequence error correction, etc., repetitive sequences pose a chal-
lenge to these tasks [5].

In recent years, many methods have been proposed with the developments and appli-
cations of the high-throughput sequencing and single molecule sequencing. Tallymer 
[6] counts k-mer occurrences from sequence sets and puts k-mer into enhanced suffix 
arrays to find repetitive sequences. RepeatExplorer [7] is a collection of software tools 
with a web interface and utilizes a graph-based sequence clustering algorithm to facili-
tate de novo repeat identification. RepARK [8] creates repeat libraries from NGS reads 
by assembly of the high-frequency k-mer without using a reference genome, which has 
two working modes based on the assembly tools, RepARK Velvet and RepARK CLC. 
MixTaR [9] firstly detects raw tandem repeat patterns from short reads, then selects 
out long reads containing raw tandem repeat patterns, and finally regards the assem-
bly of the short reads which overlap long reads as TR repeats. RepLong [10] creates a 
read overlap network and uses community detection algorithm to detect long repeats 
by using only Pacbio long reads. REPdenovo [11] counts k-mer frequency and assembles 
k-mer into raw contigs, then merges contigs from directed contig graph into scaffolds to 
obtain repeats. The k-mer frequency is typically calculated from the NGS reads and the 
repeats are obtained by assembly of the high frequency k-mers. For example, RepARK 
and REPdenovo are both methods based on this principle. However, these approaches 
have some drawbacks.

Firstly, the higher sequence coverage is a requirement for common assemblers to work 
properly. For example, EPGA [12] ,EPGA2 [13] and SPAdes [14] usually require read 
coverage of more than 30× , in which SPAdes is considered as an outstanding genome 
assembler with NGS sequences. Compared with other sequence assemblers, SPAdes 
uses multiple de Bruijn graphs to construct contigs. This strategy can effectively reduce 
assembly errors while making full use of a variety of k-mers of different sizes to build 
more complete assemblies [15]. Due to the dual effects of sequencing bias and the 
complexity of the repetitive region structure, the fragment can be repeated from sev-
eral times to serval thousand times. For k-mers converted from fragments with a large 
number of repetitions, their frequencies usually much higher than the average cover-
age of sequencing, and for others with few repetitions may not meet the basic coverage 
requirement. Therefore, the repetitive fragments with low repeatability are difficult to 
obtain by assembly, and the integrity of the test results is greatly affected.

Secondly, most of the widely-used NGS assemblers are designed based on the paired-
end reads, which often resolve the branch path resulting from the repetitive region by 
using paired-end reads of large insertsizes. However, the length of the high frequency 
k-mers is too short compared with the reads, which is detrimental to the recovery of the 
repetitive segments. In addition, splitting reads into k-mers may destroy the structure 
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of the repetitive regions, which means that assemblers do not perform well under such 
conditions.

Finally, due to the length of the k-mer is short, the sequencing error has a great influ-
ence on the result of the k-mer frequency counting. Assembly of k-mers may bring the 
sequencing errors within these k-mers into repeats, resulting the accuracy of the repeti-
tive regions decreases. In this study, a method called RepAHR is proposed to over-
come the shortcomings mentioned above and get more accurate repeats. Compared the 
repeats identified by RepAHR with these of RepARK and REPdenovo on five NGS data-
sets, the experimental results show that RepAHR outperforms RepARK Velvet, RepARK 
CLC and REPdenovo in some aspects.

Results and discussion
Metrics for evaluation

In order to comprehensively evaluate the performance of each tool, we use seventeen 
evaluation metrics in this experiment, which are Num, Max (bp), Min (bp), N50 (bp), 
N90 (bp), Avg_length (bp), AR (%), Alignment ratio (%), Multiple alignment ratio (%), 
Masked ratios on reference genome (%), Masked ratios on RepBase sequences (%), User 
Time (s), System Time (s), Percent of CPU this job got (%), Maximum resident set size 
(kbytes), Virtual Memory (kb) and File system outputs. Among them, ’Num’ denotes the 
number of segments in detection results, ’Max (kb)’ denotes the length of the largest 
segment in detection results, ’N50 (kb)’ is the length of the longest segment such that 
all the segments longer than this segment cover at least half (50%) of the total length of 
all segments, ’N90’ are calculated in a similar way, ’Avg_length (bp)’ denotes the average 
length of segments, ’AR (%)’ denotes alignment ratio of the high-frequency k-mer or the 
high frequency reads on RepBase sequences, ’Alignment ratio (%)’ is the proportion of 
fragments in the detected results that can be aligned to the reference genome, ’Multi-
ple alignment ratio (%)’ is the proportion of fragments in the detection results that can 
be aligned to multiple locations on the reference genome, ’Masked ratios on reference 
genome (%)’ is the proportion of bases on the reference genome that can be covered 
by the detection results, ’Masked ratios on RepBase sequences (%)’ is the proportion of 
bases in RepBase that can be covered by the detection results, ’Virtual Memory (kb)’ 
indicates the peak virtual memory consumption of algorithms.

We evaluate the repeats identified by RepAHR, RepARK and REPdenovo on five NGS 
data sets. Table 1 shows the comparison of the repeats identified by RepAHR, RepARK 
and REPdenovo in terms of number of repeats, total bases number of repeats, N50 and 
length of repeats. REPdenovo can identify few repeats and its bases number is the least 
among the four methods, but the average length of its repeats is the longest. RepARK 
CLC identifies more repeats and bases number than REPdenovo, but repeats identified 
by RepARK CLC are shorter than repeats identified by REPdenovo. Compared with the 
other three tools, RepARK Velvet can identify more repeats, but the bases number of 
its repeats is less than RepAHR in Drosophila melanogaster, Homo sapiens chr14 and 
Mus musculus. The repeats identified by RepARK Velvet have the shortest average 
length, which can be seen from the N50 and N90. RepAHR identifies fewer repeats than 
RepARK Velvet, but the size of repeats identified by RepAHR is larger than that obtained 
by RepARK Velvet. In terms of sequence length, the maximum repeat length identified 
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by RepAHR is the longest of the four methods, but it can be seen from the N50 and N90 
that the repeats identified by RepAHR also contains many short fragments. The long and 
short fragments combined together make the final repeats identified by RepAHR more 
complete.

The high‑frequency k‑mers and reads

Among RepAHR, RepARK Velvet, RepARK CLC and REPdenovo, the most obvious dif-
ference between RepAHR and the other three methods is that RepAHR does not directly 
use the high-frequency k-mers for sequence assembly. RepAHR first uses the high-
frequency k-mers to find the high-frequency reads, then assembles the high-frequency 
reads to obtain repeats. In order to prove that the high-frequency reads have some 
advantages over the high-frequency k-mers, we compare the high-frequency k-mers and 
the high-frequency reads in experiments.

Repbase is the most widely-used database of repetitive DNA sequences in which the 
currently known repetitive DNA sequences of many eukaryotes are stored [16]. The 
similarity between a sequence and the sequences in Repbase can be used as a criterion 
for determining whether the sequence is a repetitive sequence. In the test, three NGS 
datasets (D.mela, M.musc and H.sapi) are used to obtain the high-frequency k-mers, and 
the high-frequency reads are selected by RepAHR from all reads according to the high-
frequency k-mers. RepARK, REPdenovo and RepAHR differ in the method of deter-
mining the high-frequency k-mers threshold. In our test, the high-frequency k-mers is 

Table 1 Metrics of repeats on five datasets

′Num′ indicates the number of repeats. ′Size′ indicates the total length of all repeats. ′Max′ represents the length of the 
longest segment in the repeats. ′Min′ represents the length of the shortest segment in the repeats. ′N50 or N90′ represents 
the length of the longest segment such that all the segments longer than this segment cover at least 50% or 90% of the 
total length of the assemblies

Species Method Num Size (kbp) Max/min N50 (bp) N90 (bp)

Drosophila melanogaster RepARK CLC 818 518 6833/200 1040 255

RepARK Velvet 4561 873 7587/57 285 87

REPdenovo 52 61 8339/102 2843 397

RepAHR 2647 1350 12,787/56 1350 98

Saccharomyces cerevisiae RepARK CLC 545 291 8271/200 626 266

RepARK Velvet 1457 394 9129/57 423 111

REPdenovo 3 0.72 265/213 258 213

RepAHR 392 219 9523/128 2089 183

Acromyrmex echinatior RepARK CLC 485 249 8272/200 659 240

RepARK Velvet 3931 559 5547/57 160 68

REPdenovo 249 99 2143/100 597 182

RepAHR 2699 514 10,701/88 285 86

Homo sapiens chr14 RepARK CLC 105 29 594/201 273 216

RepARK Velvet 846 106 574/57 140 80

REPdenovo 14 9 5545/101 5545 211

RepAHR 1738 219 2177/45 213 61

Mus musculus RepARK CLC 3839 1835 17,062/200 565 236

RepARK Velvet 47,232 2302 16,526/57 129 57

REPdenovo 9376 12,652 14,827/100 3129 848

RepAHR 77,891 19,201 28,893/150 503 222
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obtained using the high-frequency threshold of RepARK. The high-frequency k-mers 
and reads separated from three datasets (D.mela, M.musc and H.sapi) are aligned to the 
corresponding Repbase library for each species, respectively. The aligned sequences with 
overlaps are connected together to form a long segment called alignment segment.

The comparison of the number, N50, the average length and the maximum length of 
aligned segments obtained based on the high-frequency k-mers and reads is shown in 
Table 2. N50 is the length of the longest contig such that all the contigs longer than this 
contig cover at least half of the genome being assembled [17]. In addition, the alignment 
ratios of the high-frequency k-mers and reads compared with the Repbase are shown in 
Table 2. In Table 2, the alignment ratios of the high-frequency reads are much higher 
than the alignment ratios of the high-frequency k-mers. It also can been seen that the 
number of aligned segments obtained by the high-frequency k-mers is much larger 
than that obtained by the high-frequency reads in three species. At the same time, the 
length of the alignment segments obtained by the high-frequency reads is greater than 
that obtained by the high-frequency k-mers, which can be seen from the variation of the 
N50 and the average length of detection results in Table 3. The maximum length of the 
aligned segments covered by the high-frequency reads is the same as the k-mers. This 
shows that the high-frequency reads and k-mers are similar in covering the long align-
ment segments. As can be seen from Table 3, the total number of alignment segments 
obtained by the high-frequency reads is less than that obtained by the high-frequency 
k-mers, but the number of alignment segments obtained by the high-frequency reads 
is greater than that obtained by the high-frequency k-mers in the long length portion. 
It can be inferred that the short alignment segments obtained by the high-frequency 
k-mers are formed by gaps in which continuous regions cannot be communicated. The 
visualization tool IGV [18] is used to demonstrate the alignment of the high-frequency 
reads and k-mers with Repbase sequences. Figure 1 shows the case where the sequence 
named BATUM_I in the Drosophila melanogaster Repbase library is covered by the 
high-frequency reads and k-mers. There is a gap on the region that is not covered by the 
high-frequency k-mers, while this region is completely covered by the high-frequency 
reads, which proves that the high-frequency reads is easier to obtain a complete repeat 
region.

Based on the above results and analysis, it can be considered that the high-frequency 
reads is longer, more continuous, and more accurate than the high-frequency k-mers, 
and it is more suitable for obtaining repeats by sequence assembly. Compared with the 
previous two methods, RepAHR not only replaces the high-frequency k-mers with the 
high-frequency reads, but also preserves the information of the paired-end reads as 
much as possible to assist in the assembly of repetitive regions. It is well known that the 
paired-end reads can span hundreds to thousands of bp (base pair), so using its support-
ing information [19], RepAHR can assemble and identify longer repetitive regions.

Verification of the authenticity of repeated sequences detected by RepAHR

In order to prove that the repeats recognized by RepAHR are not only long , but also 
are the true repeats in the genome. We take a special repetitive region detected by three 
tools on dataset of human-r14 as an example to analyze, just as shown in Fig. 2. In Fig. 2, 
the first block shows the alignment relationships between the repetitive fragments 
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Fig. 1 A visual example of the alignment of the high frequency k-mers and the high frequency reads with 
the segments in Repbase library

Table 2 Metrics of alignment segments

′Num′ indicates the number of alignment segments. ′N50′ indicates the length of the longest segment such that all the 
segments longer than this segment cover at least 50% of the total length of all segments. ′Avg Length(bp)′ indicates the 
average length of segments. ′Max′ indicates the maximum length of a repeat. ′AR(%)′ indicates alignment ratio of the 
high‑frequency k-mers or the high‑frequency reads on Repbase sequences

Species Segment type Num N50 (bp) Avg length (bp) Max (bp) AR (%)

Drosophila melanogaster High‑frequency k-mers 4105 1291 187.36 8256 58.90

High‑frequency reads 1336 3336 542.81 8256 80.55

Mus musculus High‑frequency k-mers 2612 1142 262.49 7673 24.73

High‑frequency reads 421 5943 1203.55 7673 82.64

Homo sapiens chr14 High‑frequency k-mers 1481 239 112.05 6064 38.32

High‑frequency reads 242 394 338.63 6064 75.23

Table 3 Length distribution of alignment segments

′Total Num′ indicates the number of alignment segments. >1000′ indicates the number of alignment segments whose 
length is greater than 1000 bp, and the rest is the same

Species Segment type Total Num > 1000 bp > 2000 bp > 4000 bp > 6000 bp

Drosophila mela-
nogaster

High‑frequency k-mers 4105 113 78 52 14

High‑frequency reads 1336 139 87 60 19

Mus musculus High‑frequency k-mers 2612 93 58 41 30

High‑frequency reads 421 83 65 52 36

Homo sapiens chr14 High‑frequency k-mers 1481 5 3 2 0

High‑frequency reads 242 11 3 3 0
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detected by RepARK and the reference genome, the second block shows the alignment 
relationships between the repetitive fragments detected by REPdenovo and the refer-
ence genome, and the third block shows the alignment relationships between the repeti-
tive fragments detected by RepAHR and the reference genome. From Fig. 2, we can find 
that the repetitive fragment detected by RepAHR is more complete than that obtained 
by RepARK, and there is no fragment detected by REPdenovo in this region. Therefore, 
RepAHR obtains the longest and the most complete repetitive fragment in this region. 
Next, we need to prove whether the repetitive fragment obtained by RepAHR is real. 
In order to achieve the purpose of verification, we collected the repeated fragments 
obtained by different tools in this region, and aligned them to the human-r14 reference 
sequence by using the bowtie2 [20] aligner. The alignment results show that the repeti-
tive fragment detected by RepAHR can be aligned to different locations on the human-
r14 reference sequence, and its coverage regions include the coverage regions of the 
RepARK’s detection results. The sequence fragment detected by RepAHR is not only 
a true repeat in the genome, but also the longest and most complete fragment in the 
detection results of three tools.

In order to prove that the repetitive regions detected by RepAHR which cannot or can-
not fully be identified by other tools, we compared the repetitive regions detected by the 
three tools on the human-r14 dataset. The benchmark for comparison is the repetitive 
regions on the human-r14 dataset provided by a third-party library, and the comparison 
results are shown in Fig. 3. From Fig. 3, we find that RepAHR can detect some specific 
regions that other tools cannot identify or cannot fully identify. In this step, Bowtie2 [20] 
is used as a aligner.

In order to verify the influence of read coverage on the detection effect of each tools, 
we designed a simulation experiment based on the human-r14 reference sequence. The 
specific process of the simulation experiment is as follows: Firstly, four sets of simulation 
sequencing libraries with different coverage are generated by ART (an NGS read simula-
tor) using the human-r14 reference sequence as the template. Secondly, we have tested 
the three tools on four simulated sequencing libraries, and the test results are shown 

Fig. 2 A special repetitive region on the human‑r14 genome is covered by the detection results of each 
tools.
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in Table 4 The average read coverage represents the average sequencing depth at each 
regions of the genome, which reflects the sequencing level of the entire genome. From 
Table 4, we can see that the average read coverage have a certain influence on the detec-
tion results of each tools. From the overall trend, the max length and N50 of the frag-
ments in the test results increases as the average coverage of the reads increases. The 
main reason for this phenomenon is that the sequence assembly process is extremely 
susceptible to changes in read coverage. For example, Velvet, SOAPdenovo2, Abyss, 
IDBA and SPAdes usually require read coverage of more than 30X to meet the basic 
requirements of assembly, otherwise the assemblies will be very fragmented. From the 

a

b

Fig. 3 An practical example of the alignment of fragments obtained by different tools and the human‑r14 
reference sequence

Table 4 The influence of read coverage on the detection effect of each tools

′Cov/read_len (bp)′ indicates the average coverage of sequencing and the average length of reads. ′Num′ indicates 
the number of repeats. ′MA_ratio (%)′ represents the multiple alignment ratio of repeats. ′Max′ represents the length of 
the longest segment in the repeats. ′Min′ represents the length of the shortest segment in detected repetitive segments. 
′N50 or N90′ represents the length of the longest segment such that all the segments longer than this segment cover at 
least 50% or 90% of the total length of the assemblies

Species Method Cov/read_len 
(bp)

Num MA_ratio (%) Max/min N50 (bp) N90 (bp)

Homo sapiens 
chr14

RepAHR 30X/100 33 100.0 833/100 286 108

RepAHR 60X/100 32 100.0 855/100 238 126

RepAHR 90X/100 35 100.0 1087/100 238 116

RepAHR 120X/100 30 100.0 2057/100 238 116

REPdenovo 30X/100 13 100.0 5079/72 5079 173

REPdenovo 60X/100 13 100.0 5079/72 5079 147

REPdenovo 90X/100 9 100.0 5079/76 5079 198

REPdenovo 120X/100 11 100.0 5078/79 5078 173

RepARK Velvet 30X/100 419 99.82 382/29 99 0

RepARK Velvet 60X/100 545 99.76 430/29 104 0

RepARK Velvet 90X/100 569 99.82 430/29 102 0

RepARK Velvet 120X/100 1992 99.85 1249/29 119 64
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experimental results shown in Table 4, we can find that the impact of read coverage on 
the detection results of tools is inevitable, and this impact is not specific to RepAHR, but 
also to these two similar tools.

Generally, there is a certain conversion relationship (just as shown in equation (2) of 
the main text) between the average coverage of reads and the frequency of k-mers con-
verted from these reads. Therefore, we can obtain the average read coverage by using the 
k-mer frequency distribution information, and we can also obtain the high-frequency 
k-mers and the high-frequency reads in the global genome based on the average read 
coverage. From a global perspective, assuming that the sequencing is roughly balanced, 
the high-frequency k-mers must be from the repetitive regions. Therefore, the reads con-
taining more the high-frequency k-mers must also from the repetitive regions. The con-
clusion is that as long as the high-frequency k-mers contained in a read reaches a certain 
proportion, this read must be included in RepAHR without being missed. On the con-
trary, the reads missed by RepAHR must be those that do not meet the above require-
ments. We are not sure whether they come from the repetitive regions.

The running time, CPU and memory consumption of RepAHR and other tools on five 
datasets are shown in Table 5. From the perspective of running time, RepARK has the 
most advantages among these three tools, and the longest running tool is sometimes 
REPdenovo and sometimes RepAHR. From the perspective of memory consumption, 
RepAHR and RepARK are more dominant on some datasets, for example, the memory 

Table 5 Statistics of running time and memory consumption of each tools on five datasets

′User Time(s)′ indicates the process spent in user mode. ′System Time(s)′ indicates the process spent in system mode. 
′Percent of CPU this job got′ represents the percentage of the job using CPU. ′Maximum resident set size′ represents the 
maximum resident memory size of the job. ′File system outputs′ indicates the number of files output by this job

Species Method User time (s) System time 
(s)

Percent 
of CPU this 
job got (%)

Maximum 
resident set 
size (kbytes)

File system 
outputs

Drosophila 
melanogaster

RepARK CLC 1462.63 57.80 101 9,519,212 53,956,504

RepARK Velvet 1537.49 55.53 101 9,519,228 54,155,904

REPdenovo 4643.07 44.52 1211 13,194,748 42,044,664

RepAHR 4735.17 125.72 868 9,530,504 60,185,232

Saccharomyces 
cerevisiae

RepARK CLC 792.39 25.27 101 4,875,512 29,969,488

RepARK Velvet 943.62 27.16 100 4,875,512 29,878,280

REPdenovo 11,229.97 5803.70 316 59,960,388 74,127,816

RepAHR 2507.21 102.31 856 4,876,644 34,047,800

Acromyrmex 
echinatior

RepARK CLC 3437.92 154.23 96 18,693,376 86,491,600

RepARK Velvet 3929.52 194.82 100 18,693,376 86,459,800

REPdenovo 17,487.81 112.37 1272 25,530,952 77,131,304

RepAHR 20,763.21 288.73 1554 18,694,492 97,486,232

Homo sapiens 
chr14

RepARK CLC 1224.70 48.64 102 4,875,512 43,523,184

RepARK Velvet 1341.06 42.27 101 4,875,532 43,620,064

REPdenovo 5482.66 40.12 1280 5,853,720 37,027,688

RepAHR 4273.05 173.32 771 26,354,272 47,734,280

Mus musculus RepARK CLC 9245.10 709.18 101 36,635,684 329,177,184

RepARK Velvet 8977.43 421.34 100 36,635,676 333,214,224

REPdenovo 52,429.50 1047.07 1178 133,069,768 312,131,728

RepAHR 633,171.42 8987.20 2701 257,398,252 598,113,592
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consumption of the two tools on the first three datasets is almost the same. From the 
perspective of CPU usage, REPdenovo has the highest degree of parallelism. From the 
perspective of system throughout, RepAHR is dominant in most cases.

Repeats on reference genomes

In the experiment, Bowtie2 [20] is used as a aligner to obtain the overall and the multiple 
alignment ratios between the repeats and their respective reference sequences on the 
five data sets. The overall alignment ratio refers to the ratio of the number of repeats 
that can be aligned to the reference genome at least one position to the total number of 
repeats. The multiple alignment ratio refers to the ratio of the number of repeats that can 
be aligned to the reference genome multiple positions to the total number of repeats.

As can be seen from Table 6 and Fig. 4, RepAHR gets the higher multiple alignment 
ratios than the other three methods on the five data sets. In particular, RepAHR has 
obvious advantages in the multiple alignment ratio on Saccharomyces cerevisiae dataset. 
The experimental results show that the repeats identified by RepAHR are more repeti-
tive and accurate than the other three methods. As can be seen from Table 6, the pro-
portion of repeats identified by RepAHR can be aligned with multiple positions of the 
reference genome is higher than the other tools. For example, Bowtie2 is used to align 
repeats identified by RepAHR to the reference genome of D. melanogaster. The align-
ment results show that more than half of these repeats can be aligned to more than 100 
positions of the reference genome, just as shown in Fig. 5.

RepeatMasker [21] is a tool for masking interspersed repeats and simple tandem 
repeats by using sequence alignment, which is used to obtain the masked ratio of the 
repeats identified by RepAHR, RepARK CLC, RepARK Velvet and REPdenvo on the 
reference, respectively. As can be seen from Fig. 6, the masking ratio of the repetitive 
sequences generated by RepAHR is higher than that of the repetitive sequences gener-
ated by RepARK CLC, RepARK Velvet and REPdenovo.

Repeats on Repbase sequences

Repbase [22] is the most commonly used database of repetitive DNA sequences. In this 
study, we use RepeatMakser [21] to compute the ratio of bases in Repbase library that 
can be covered by detection results of tools. As can be seen from Fig.  7, the masked 
ratio of RepAHR is higher than that of RepARK CLC, RepARK Velvet and REPdenovo. 
It is indicated that the repeats identified by RepAHR is closer to the repeats collected in 
the Repbase database. Therefore, the repeats identified by RepAHR is more accurate and 
reliable.

BLAST [23] can be used to find the similarity between sequences based on sequence 
alignment, which is applied to obtain the coverage ratio of the repeats in Repbase that 
can be covered by the repetitive fragments detected from RepARK CLC, RepARK Vel-
vet, REPdenovo and RepAHR in this study. There are two strategies used to perform 
the alignment of the repeats identified by each tools with the corresponding Repbase 
library, which indicate that the fragments in Repbase library can be covered by the sin-
gle alignment repeats and multiple alignment repeats, respectively. The coverage ratios 
obtained by using these two strategies are called the best coverage ratio and maximum 
coverage ratio, which can be abbreviated as BCR and MCR, respectively. Then, we count 
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the number of sequences in Repbase that can be covered by repeats with BCR and MCR 
from 0% to 100% . The number of sequences in Repbase with BCR and MCR more than 
50%, 70% and 90% of the four methods is shown in Table 7, respectively. It can be seen 
that the sequences in Repbase with high BCR and MCR covered by the repeats identified 
by RepAHR are more than the other three methods.

Figure 8 shows the distribution of the coverage ratio obtained from the four methods 
by using the BLAST. Each box shows the range of 50% in the middle, and the horizontal 
line in the box represents the median of the coverage ratios, the x marked in the box 
indicates the mean of the coverage ratios. Figure 8a shows the distribution of BCR on 
the Repbase sequences. As can be seen from this figure,the BCR of the repeats identified 

Fig. 4 Alignment ratios and multiple alignment ratios of repeats which generated from four tools on five 
different datasets. ‘Alignment ratios(%)’ is the proportion of fragments in the detected results that can be 
aligned to the reference genome, and ‘Multiple alignment ratios(%)’ is the proportion of fragments in the 
detected results that can be aligned to multiple locations on the reference genome
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by RepAHR is higher than that of the other three methods. This is manifested that the 
median, mean, and upper quartile and lower quartile of the repeats generated from 
RepAHR are greater than that of the other three methods. Similarly, the distribution of 
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Fig. 5 The frequency distribution of segments in detected results generated from RepAHR on dataset of 
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Table 6 Alignment ratios and multiple alignment ratios of repeats on five data sets

′alignment ratio′ indicates the ratio of the number of repeats aligned to the reference genome at least one position to the 
total number of repeats. ′multiple alignment ratio′ indicates the ratio of the number of repeats aligned to the reference 
genome multiple positions to the total number of repeats

Species Method Num Alignment                ratio 
(%)

Multiple 
alignment          ratio 
(%)

Drosophila melanogaster RepARK CLC 818 97.43 92.42

RepARK Velvet 4561 99.28 94.04

REPdenovo 52 88.46 86.54

RepAHR 2647 97.96 95.35

Saccharomyces cerevisiae RepARK CLC 545 97.42 25.32

RepARK Velvet 1457 98.76 41.39

REPdenovo 3 100.0 33.33

RepAHR 392 97.70 90.56

Acromyrmex echinatior RepARK CLC 485 84.95 69.69

RepARK Velvet 3931 93.64 87.75

REPdenovo 249 65.46 61.45

RepAHR 2699 94.89 89.14

Homo sapiens chr14 RepARK CLC 105 97.14 95.24

RepARK Velvet 846 98.23 97.52

REPdenovo 14 100.0 100.0

RepAHR 1738 99.71 98.85

Mus musculus RepARK CLC 3839 96.77 92.81

RepARK Velvet 47,232 90.47 88.20

REPdenovo 9376 50.53 48.54

RepAHR 77,891 95.56 93.05
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MCR on the Repbase sequences is shown in Fig. 8b. The upper quartile of the repeats 
generated from RepAHR is close to 100%, which means that more than 25% of the Rep-
base sequences are 100% covered by the repeats identified by RepAHR. In addition, the 
median, mean, and lower quartiles of the repeats generated from RepAHR are higher 
than those obtained from the other three methods. It is indicated that the repetitive 
sequences identified by RepAHR are more similar to the repeats in Repbase, and also 
closer to the standard repetitive sequences.

From the data shown in Tables 5 and 8, we can see that RepAHR has problems with 
long running time and large memory requirements on some datasets (such as Acromyr-
mex echinatior and Musmusculus). Those problems have caused our great concern. To 
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confirm this problem, we retested the CPU time and virtual memory consumption of the 
three tools on five datasets. Now we summarize the test conclusions as follows: (1) when 
RepAHR uses the default parameters to process some datasets (such as Acromyrmex 
echinatior and Musmusculus), it does have the disadvantages of long calculation time 
and large memory demand. The comparison of CPU time and virtual memory consump-
tion of these three tools when using default parameters to process these five datasets is 

Table 7 The ratios of  segments in  RepBase library covered by  the  repetitive sequences 
generated by each tools (The coverage ratios are calculated by BLAST)

’BCR’ indicates the best coverage ratio, ’MCR’ indicates the maximum coverage ratio

Metrics Method > 50% > 70% > 90%

BCR RepARK CLC 87 57 33

RepARK Velvet 84 42 24

REPdenovo 19 15 7

RepAHR 173 116 69

MCR RepARK CLC 155 115 64

RepARK Velvet 218 187 149

REPdenovo 22 19 13

RepAHR 241 206 161

Fig. 8 Distribution of BLAST coverage ratios on Repbase sequences. Box plots of BLAST alignment ratios of 
the repeats identified by the four tools to the repeat segments in the repbase library. Sub‑graph a shows 
the case of the distribution of single alignment, and sub‑graph b shows the case of the distribution of the 
maximum alignment

Table 8 The comparison of  CPU time and  virtual memory consumption of  these three 
tools when using default parameters to process these five datasets

Species RepARK [CPU time (s)/
virtual memory (kb)]

REPdenovo [CPU time (s)/
virtual memory (kb)]

RepAHR [CPU time (s)/
virtual memory (kb)]

Drosophila melanogaster 1387.63/9,546,368 4,896.98/13,223,216 4441.25/11,333,456

Saccharomyces cerevisiae 770.96/4,887,024 12,846.08/48,140,200 2,429.36/4,921,672

Acromyrmex echinatior 3198.22/18,730,776 18,747.07/25,592,284 20,245.73/20,513,324

Human chr14 1313.54/4887,452 6,397.10/5,878,436 4,354.44/24,886,024

Musmusculus 9654.50/37,149,572 52,624.49/133,352,464 606,338.15/2,608,150,044
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shown in Table 9; (2) through the analysis, we find that there are two important parame-
ters in RepAHR (MAX_MEMORY and THREAD) that affect the running time and mem-
ory consumption. The statistics of the limit effect of the parameter of MAX_MEMORY 
on the memory usage of RepAHR when processing the Human-r14 dataset is shown in 
Table 9. The statistics of the impact of concurrency on the memory usage of RepAHR 
when processing the Human-r14 dataset is shown in Table 10. As can be seen from the 
results shown in Table  9 and Table  10, when we lower the values of the two parame-
ters MAX_MEMORY and THREAD, the memory requirements of the RepAHR will be 
greatly reduced. In addition, the running time of RepAHR can also be similar to the other 
two tools, especially when MAX_MEMORY and THREAD are set to 20 respectively, just 
as the shown in Table 11; (3) the causes of the above phenomenon are analyzed. First, 
the parameter THREAD is used to set the number of threads when the program runs in 
parallel. In theory, the more threads, the shorter computing time, and the higher com-
puting cost. When we reduce the number of threads, we will get the opposite conclusion 
(the memory cost is reduced, and the running time is longer). However, this statement 
is only theoretical. In fact, it is not necessary to increase the thread to improve the com-
puting speed. This is because if the number of threads is set too much, it will intensify 

Table 9 Statistics of  the  limit effect of  the  perameter of  MAX_MEMORY on  the  memory 
usage of RepAHR when processing the Human-r14 dataset

The parameter MAX_MEMORY is used to set the maximum memory usage of the algorithm

Species Method MAX_MEMORY CPU time (s) Virtual memory (kb)

Homo sapiens chr14 Default 4354.44 24,886,024

RepAHR 19 5321.77 4,910,644

20 5207.86 8,160,520

Table 10 Statistics of  the  impact of  concurrency on  the  memory usage of  RepAHR 
when processing the Human-r14 dataset

The parameter THREAD is used to set the number of threads when the program runs in parallel

Species Method THREAD CPU time (s) Virtual memory (kb)

Homo sapiens chr14 10 4880.97 9,552,936

 RepAHR 20 4706.87 9,566,604

30 4671.14 19,789,184

40 4354.44 24,886,024

Table 11 The comparison of  CPU time and  virtual memory consumption of  these three 
tools when  RepAHR using the  specific parameters of  MAX_MEMORY=20, THREAD=20 
to process these five datasets

Species RepARK [CPU time (s)/
virtual memory (kb)]

REPdenovo [CPU time (s)/
virtual memory (kb)]

RepAHR [CPU time 
(s)/virtual memory 
(kb)]

Drosophila melanogaster 1387.63/9,546,368 4896.98/13,223,216 4387.63/9,558,308

Saccharomyces cerevisiae 770.96/4,887,024 12,846.08/48,140,200 2378.34/3,911,352

Acromyrmex echinatior 3198.22/18,730,776 18,747.07/25,592,284 19,489.55/18,750,436

Human chr14 1313.54/4,887,452 6397.10/5,878,436 4706.87/9,566,604

Musmusculus 9654.50/37,149,572 52,624.49/133,352,464 7879.77/36,734,056
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the competition of system resources and increase the delay of queuing. So in this case, 
when we appropriately reduce the number of threads, the memory consumption of the 
algorithm will be reduced on a large scale, and the calculation time of the algorithm will 
not be greatly affected. Second, the parameter MAX_MEMORY is used to set the maxi-
mum memory usage of the algorithm. When we reduce the value of this parameter, the 
operation system will control the amount of memory that the algorithm resides within 
the set MAX_MEMORY range. At this time, the program needs to deal with the limita-
tions of the operation system through page scheduling. Therefore, when we reduce the 
value of this parameter, the memory consumption of the algorithm will be controlled, 
but the running speed of the algorithm will also be affected.

Recommendations on the parameters configuration of the proposed tool when resources 

are limited

Sequence assembly is the most time-consuming and memory-consuming step in the 
entire processing flow of RepAHR. Therefore, as long as the running time and memory 
consumption of this step can be controlled by adjusting the parameters MAX_MEMORY 
and THREADS, the tool can still run normally under the condition of limited resources. 
SPAdes uses 512 Mb per thread for buffers, which results in higher memory consump-
tion (The default value of parameters MAX_MEMORY and THREADS in SPAdes are 
set to 250GB and 16 respectively). If you set memory limit manually, SPAdes will use 
smaller buffers and thus less RAM. The parameter MAX_MEMORY set memory limit 
in Gb. SPAdes terminates if it reaches this limit. Actual amount of consumed RAM will 
be below this limit. Make sure this value is correct for the given machine. SPAdes uses 
the limit value to automatically determine the sizes of various buffers, etc. The param-
eter THREADS is used to set the number of threads using in SPAdes assembly, and the 
default value of it is 16. The larger the number of threads is, the faster the SPAdes assem-
bly speed, and the memory consumption will also increase.

Therefore, the value of the parameter MAX_MEMORY should be set according to 
the available memory capacity of the machine. For example, if the available memory of 
the machine is 300GB, then MAX_MEMORY can be set to 250GB at most. It should 
be noted that SPAdes assembly usually has the minimum memory requirements. For 
example, when the machine’s available memory are less than 20GB, the tool will report 
an error. In summary, the value of MAX_MEMORY should be taken in the interval [20, 
available_memory], and the number of threads should be calculated based on the actual 
processing speed requirements and the overall memory limit.

Conclusions
In molecular biology, it is important to accurately detect repeats in the DNA sequences. 
With the development of the next-generation sequencing, more and more tools have 
been proposed for identification of repeats, including RepARK and REPdenovo. In this 
paper, we present a new method called RepAHR for de novo repeat identification by 
assembly of the high-frequency reads. The core steps of RepAHR are as follows: Firstly, 
RepAHR filters the high-frequency reads from overall NGS data according to certain 
rules based on the high-frequency k-mers. Secondly, it identifies repeats by assembly of 



Page 17 of 24Liao et al. BMC Bioinformatics          (2020) 21:463  

the high-frequency reads. The main advantages of RepAHR are reflected in the following 
two aspects:

1 the high-frequency reads achieve enough coverage and longer than the k-mers, which 
facilitates the assembly process. Compared with the previous two methods, RepAHR 
not only replaces the high-frequency k-mers with the high-frequency reads, but also 
preserves the information of the paired-end reads as much as possible to assist in 
the assembly of repetitive sequences. It is well known that the paired-end reads can 
span hundreds to thousands of bp (base pair), so using its supporting information, 
RepAHR can assemble and identify longer repetitive regions.

2 due to the sequencing errors and bias, the k-mers from the repetitive regions do not 
necessarily all show high frequencies, and the k-mers with low frequencies are not 
necessarily all from the non-repetitive regions. In addition, in the case of a short 
k-mer size, the error k-mers also have the opportunity to couple together and behave 
as high frequencies. In these cases, it is unreliable to obtain repeating regions directly 
by assembly of the high-frequency k-mers. However, the strategy based on the high-
frequency reads assembly can effectively circumvent this problem. Firstly, RepAHR 
has set a stricter filtering strategy in the process of selecting the high-frequency 
reads, which makes it less likely that error k-mers are used to form repetitive frag-
ments. Secondly, RepAHR also set multiple verification strategies in the process of 
finalizing the repetitive fragments to ensure that the detection results are authentic 
and reliable.

The comparison of the repeats identified by RepAHR, RepARK CLC, RepARK Vel-
vet and REPdenovo based on the five NGS datasets. We use multiple metrics, including 
some basic metrics of the repeats, alignment rate on reference genome, masked ratio 
on RepBase and so on, to evaluate the performance of each tools. The experimental 
results show that repeats obtained by RepAHR are more precise and reliable than that of 
RepARK CLC, RepARK Velvet and REPdenovo.

Methods
As shown in Fig.  9, the proposed method(RepAHR) contains the following phases. 
Firstly, RepAHR convents overall NGS short paired-end reads into unique k-mers and 
gets their frequencies by using Jellyfish [24]. Secondly, RepAHR needs to determine 
whether the average read coverage is known. If it is known, its value can be used to cal-
culate the threshold of the high frequency k-mer directly. Otherwise, RepAHR needs 
to estimate it based on the k-mer frequency distribution. Thirdly, RepAHR generates 
a high-frequency k-mer set based on overall k-mers and the high frequency threshold. 
Fourthly, RepAHR obtains the high-frequency reads from whole NGS short paired-end 
reads based on the high-frequency k-mer set. Finally, RepAHR gets assemblies of the 
high-frequency reads, and then scans these contigs to obtain the final repeats.
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Determining the threshold of the high‑frequency k‑mer

k‑mer frequency counting

This section corresponds to Step1 in the flowchart (Fig.  9). k-mer counting can be 
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Fig. 9 The illustration of the pipeline of RepAHR
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fulfilled by many available tools, such as Jellyfish [24] and KMC2 [25]. In this step, 
RepAHR needs to generate two groups of k-mers with different lengths by using Jellyfish. 
The k-mer length in the first group is about 15bp–20bp according to the literature [6], 
while the second group is set to 31 bp which is an empirical value obtained through a lot 
of experiments.

Determining whether the average read coverage is known

This section corresponds to Step2 in the flowchart (Fig.  9). In this section, RepAHR 
needs to determine whether the average read coverage is known. If it is known, its value 
can be used to calculate the threshold of the high frequency k-mer directly (the algo-
rithm moves to Step5). Otherwise, RepAHR needs to estimate it based on the k-mer fre-
quency distribution (the algorithm moves to Step3).

Constructing the k‑mer frequency distribution

This section corresponds to Step3 in the flowchart (Fig. 9). Suppose n k-mers and their 
frequencies are obtained from the statistics in the previous step. Let K denote a list con-
taining all k-mer and Ki be the i-th k-mer in the list (i = 1, 2, 3..., n). While list F is used 
to store the frequency of each k-mer in K, so F has a one-to-one relationship with K, for 
example, Fi = t indicates that k-mer Ki appears t times in the input reads. Given a fre-
quency number of t, the number of k-mer that have a frequency number of t is denoted 
as f(t), and the value of f(t) can be calculated as follows:

Based on each pair of t and f(t), RepAHR plots the k-mer frequency distribution curve 
as shown in Fig.  10, which is plotted using Drosophila melanogaster sequencing data 
downloaded from the Short Read Archive (http://www.ncbi.nlm.nih.gov/sra), while 
the x-axis refers to the frequency of k-mer and the y-axis refers to the total number 
of the frequency appearing. If the input read data is evenly distributed over the refer-
ence genome, the k-mer frequency distribution curve usually forms a Poisson distribu-
tion [26] or Gaussian distribution [27] after the steep decreasing at the beginning of the 
curve, as shown in Fig. 10. According to this feature, we can always find the main peak 
point of the curve.

Estimating the average read coverage

This section corresponds to Step4 in the flowchart (Fig. 9). RepAHR estimates the aver-
age read coverage using a method similar to that in literature [28]. The calculation prin-
ciple is shown as follows:

Where p is the horizontal coordinate of the main peak in the k-mer frequency distribu-
tion histogram, length is the average length of the input NGS reads, k is the k-mer length 

(1)f (t) =

|K |∑

i=1

1 if (Fi = t)

(2)Cov =
p ∗ length

length− k + 1

http://www.ncbi.nlm.nih.gov/sra
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used in estimation which is settled to 15 by default, and Cov is the average read coverage 
estimated.

Getting the threshold of the high‑frequency k‑mer based on the average read coverage

This section corresponds to Step5 in the flowchart (Fig.  9). If the average read cover-
age (Depth) is known, RepAHR can multiply it with the coverage factor to obtain the 
threshold of the high frequency k-mer t1 ( t1=c × Depth , c ∈ [1.5, 3]) directly. Otherwise, 
RepAHR needs to multiply the estimated read coverage Cov generated in the previous 
step by the coverage factor c to obtain the threshold t1 ( t1=c × Cov , c ∈ [1.5, 3]). Where c 
is reasonable to set between 1.5 and 3, the larger c is, the more stringent the selection of 
the high-frequency k-mer is.

Getting the high‑frequency k‑mers based on the high frequency threshold

This section corresponds to Step6 in the flowchart (Fig.  9). In this section, RepAHR 
first obtains a k-mer set with a length of about 31 bp generated in the Step1. After that, 
the k −meri whose frequency f(i) is lower than the threshold t1 are discarded, and the 
remaining k-mers are composed as a high-frequency k-mer set as Sh . The principle of 
generating Sh is shown as follows.

Filtering the high frequency reads from overall NGS reads based on the high frequency 

k‑mers

This section corresponds to Step7 in the flowchart (Fig.  9). For each read, all k-mers 
included in them can be denoted as S={s1 , s2 , ..., sq }, respectively. RepAHR checks how 

(3)Sh = {k −meri|∀k −meri ∈ K , f (i) ≥ t1}

Fig. 10 The k-mer frequency distribution histogram. In this figure, the blue line is the number of k-mer with 
a specific frequency, the orange dotted line is a Gaussian fit to the trend near the main peak of the blue line, 
and the green dotted line is the vertical line from the position at the main peak to the x‑axis, and p is the 
position where the green dotted line intersects the x‑axis
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many k-mers in S appear in the high frequency k-mer set Sh . If both the k-mers at the 
beginning and at the end of a read ( s1 and sq ) are included in set Sh , and the number of 
the high-frequency k-mer in S has reach a certain percentage threshold t2 . Then the read 
is classified as a high-frequency read. RepAHR sets t2 to 90% by default. The principle of 
this process is shown in Fig. 11.

Assembling the high frequency reads

This section corresponds to Step8 in the flowchart (Fig. 9). In this phase, SPAdes [14] is 
used to achieve the contigs of the high-frequency reads. Subsequently, the contigs with 
low coverage are filtered out [29]. The contigs left are the initial repeats determined by 
RepAHR.

Scanning assemblies

This section corresponds to Step9 in the flowchart (Fig. 9). In this step, RepAHR needs 
to sort the initial repetitive sequences generated from SPAdes according to the fragment 
length, and removes some fragments whose length cannot meet the requirements. After 
that, the fragments left are the final repeats determined by RepAHR.

Fig. 11 Schematic diagram of generating the high‑frequency reads. In this figure, a green line on the left 
denotes a high‑frequency k-mer, all these k-mers constitute a high‑frequency k-mer set. The blue line denotes 
the NGS reads, and the green and red line segments under the blue line represent all the k-mers generated 
from an NGS read. A green line denotes a k-mer which appears in the high‑frequency k-mer set, and a red line 
denotes a k-mer which does not appear in the high‑frequency k-mer set. The diagram contains a matched 
case and an unmatched case on the right
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Experimental datasets

In this study, five data sets are used to compare the repeats identified by RepAHR, 
RepARK CLC, RepARK Velvet and REPdenovo. Five species are Drosophila mela-
nogaster, Saccharomyces cerevisiae, Acromyrmex echinatior, Mus musculus and Homo 
sapiens Chromosome 14. Five data sets are downloaded from NCBI SRA database (https 
://www.ncbi.nlm.nih.gov/sra/) and GAGE website (http://gage.cbcb.umd.edu/) [30] . 
More information about the datasets is shown in the Table 12.

Abbreviations
NGS: next generation sequencing;; TEs: transposable elements;; TRs: tandem repeats;; BCR: the best coverage ratio;; MCR: 
the maximum coverage ratio..
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Table 12 Information about the NGS datasets

Species Dataset source Dataset name Dataset 
size (GB)

Drosophila melanogaster NCBI SRA SRX040484 SRX040486 6.3

Saccharomyces cerevisiae NCBI SRA SRR6846984 1.7

Acromyrmex echinatior NCBI SRA ERR034186 10.7

Mus musculus NCBI SRA ERR2894257 ERR2894259 
ERR2894260

55.6

Homo sapiens chr14 GAGE DataSet3 Library 1 9.8

https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
http://gage.cbcb.umd.edu/
http://creativecommons.org/licenses/by/4.0/
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