
RepAHR: an improved approach for de
novo repeat identification by assembly
of the high‑frequency reads
Xingyu Liao1*† , Xin Gao2†, Xiankai Zhang1, Fang‑Xiang Wu3 and Jianxin Wang1

Background
The repetitive sequences are patterns of nucleic acids, which occur multiple times
in genome with the same or approximate form. Based on their structure and distri-
bution in the genome, repetitive sequences are classified into several types, i.e. tan-
dem repeats, interspersed repeats and so on. Tandem repeats consists of repetitive
elements adjacent to each other and they are categorized into satellites, minisatel-
lites and microsatellites based on their repetitive element size and repetitive level.

Abstract

Background: Repetitive sequences account for a large proportion of eukaryotes
genomes. Identification of repetitive sequences plays a significant role in many appli‑
cations, such as structural variation detection and genome assembly. Many existing
de novo repeat identification pipelines or tools make use of assembly of the high‑
frequency k-mers to obtain repeats. However, a certain degree of sequence coverage is
required for assemblers to get the desired assemblies. On the other hand, assemblers
cut the reads into shorter k-mers for assembly, which may destroy the structure of the
repetitive regions. For the above reasons, it is difficult to obtain complete and accurate
repetitive regions in the genome by using existing tools.

Results: In this study, we present a new method called RepAHR for de novo repeat
identification by assembly of the high‑frequency reads. Firstly, RepAHR scans next‑gen‑
eration sequencing (NGS) reads to find the high‑frequency k-mers. Secondly, RepAHR
filters the high‑frequency reads from whole NGS reads according to certain rules based
on the high‑frequency k-mer. Finally, the high‑frequency reads are assembled to gener‑
ate repeats by using SPAdes, which is considered as an outstanding genome assembler
with NGS sequences.

Conlusions: We test RepAHR on five data sets, and the experimental results show that
RepAHR outperforms RepARK and REPdenovo for detecting repeats in terms of N50,
reference alignment ratio, coverage ratio of reference, mask ratio of Repbase and some
other metrics.

Keywords: De novo repeat identification, NGS reads, The high‑frequency k-mers, The
high‑frequency reads, Assembly

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi
cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Liao et al. BMC Bioinformatics (2020) 21:463
https://doi.org/10.1186/s12859‑020‑03779‑w

*Correspondence:
liaoxingyu@csu.edu.cn
†Xingyu Liao and Xin Gao
have contribututed equally
to this work.
1 School of Computer
Science and Engineering,
Central South University,
932 South Lushan Rd,
ChangSha 410083, China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-0061-1317
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03779-w&domain=pdf

Page 2 of 24Liao et al. BMC Bioinformatics (2020) 21:463

Interspersed repeats are dispersed throughout the genome and mainly composed
of transposable elements (TEs). Transposable elements account for a large frac-
tion of the genome and have influence on much of the mass of DNA in eukaryotic
genomes [1]. In many organisms, repeated sequences make up a significant part of
whole genomes, e.g. over two-thirds of the human genome [2], over 75% of the maize
genome [3] and about 20% of the Drosophila melanogaster genome [4] are repetitive.
For many basic analysis methods of genome sequences, such as de novo assembly,
sequence alignment, sequence error correction, etc., repetitive sequences pose a chal-
lenge to these tasks [5].

In recent years, many methods have been proposed with the developments and appli-
cations of the high-throughput sequencing and single molecule sequencing. Tallymer
[6] counts k-mer occurrences from sequence sets and puts k-mer into enhanced suffix
arrays to find repetitive sequences. RepeatExplorer [7] is a collection of software tools
with a web interface and utilizes a graph-based sequence clustering algorithm to facili-
tate de novo repeat identification. RepARK [8] creates repeat libraries from NGS reads
by assembly of the high-frequency k-mer without using a reference genome, which has
two working modes based on the assembly tools, RepARK Velvet and RepARK CLC.
MixTaR [9] firstly detects raw tandem repeat patterns from short reads, then selects
out long reads containing raw tandem repeat patterns, and finally regards the assem-
bly of the short reads which overlap long reads as TR repeats. RepLong [10] creates a
read overlap network and uses community detection algorithm to detect long repeats
by using only Pacbio long reads. REPdenovo [11] counts k-mer frequency and assembles
k-mer into raw contigs, then merges contigs from directed contig graph into scaffolds to
obtain repeats. The k-mer frequency is typically calculated from the NGS reads and the
repeats are obtained by assembly of the high frequency k-mers. For example, RepARK
and REPdenovo are both methods based on this principle. However, these approaches
have some drawbacks.

Firstly, the higher sequence coverage is a requirement for common assemblers to work
properly. For example, EPGA [12] ,EPGA2 [13] and SPAdes [14] usually require read
coverage of more than 30× , in which SPAdes is considered as an outstanding genome
assembler with NGS sequences. Compared with other sequence assemblers, SPAdes
uses multiple de Bruijn graphs to construct contigs. This strategy can effectively reduce
assembly errors while making full use of a variety of k-mers of different sizes to build
more complete assemblies [15]. Due to the dual effects of sequencing bias and the
complexity of the repetitive region structure, the fragment can be repeated from sev-
eral times to serval thousand times. For k-mers converted from fragments with a large
number of repetitions, their frequencies usually much higher than the average cover-
age of sequencing, and for others with few repetitions may not meet the basic coverage
requirement. Therefore, the repetitive fragments with low repeatability are difficult to
obtain by assembly, and the integrity of the test results is greatly affected.

Secondly, most of the widely-used NGS assemblers are designed based on the paired-
end reads, which often resolve the branch path resulting from the repetitive region by
using paired-end reads of large insertsizes. However, the length of the high frequency
k-mers is too short compared with the reads, which is detrimental to the recovery of the
repetitive segments. In addition, splitting reads into k-mers may destroy the structure

Page 3 of 24Liao et al. BMC Bioinformatics (2020) 21:463

of the repetitive regions, which means that assemblers do not perform well under such
conditions.

Finally, due to the length of the k-mer is short, the sequencing error has a great influ-
ence on the result of the k-mer frequency counting. Assembly of k-mers may bring the
sequencing errors within these k-mers into repeats, resulting the accuracy of the repeti-
tive regions decreases. In this study, a method called RepAHR is proposed to over-
come the shortcomings mentioned above and get more accurate repeats. Compared the
repeats identified by RepAHR with these of RepARK and REPdenovo on five NGS data-
sets, the experimental results show that RepAHR outperforms RepARK Velvet, RepARK
CLC and REPdenovo in some aspects.

Results and discussion
Metrics for evaluation

In order to comprehensively evaluate the performance of each tool, we use seventeen
evaluation metrics in this experiment, which are Num, Max (bp), Min (bp), N50 (bp),
N90 (bp), Avg_length (bp), AR (%), Alignment ratio (%), Multiple alignment ratio (%),
Masked ratios on reference genome (%), Masked ratios on RepBase sequences (%), User
Time (s), System Time (s), Percent of CPU this job got (%), Maximum resident set size
(kbytes), Virtual Memory (kb) and File system outputs. Among them, ’Num’ denotes the
number of segments in detection results, ’Max (kb)’ denotes the length of the largest
segment in detection results, ’N50 (kb)’ is the length of the longest segment such that
all the segments longer than this segment cover at least half (50%) of the total length of
all segments, ’N90’ are calculated in a similar way, ’Avg_length (bp)’ denotes the average
length of segments, ’AR (%)’ denotes alignment ratio of the high-frequency k-mer or the
high frequency reads on RepBase sequences, ’Alignment ratio (%)’ is the proportion of
fragments in the detected results that can be aligned to the reference genome, ’Multi-
ple alignment ratio (%)’ is the proportion of fragments in the detection results that can
be aligned to multiple locations on the reference genome, ’Masked ratios on reference
genome (%)’ is the proportion of bases on the reference genome that can be covered
by the detection results, ’Masked ratios on RepBase sequences (%)’ is the proportion of
bases in RepBase that can be covered by the detection results, ’Virtual Memory (kb)’
indicates the peak virtual memory consumption of algorithms.

We evaluate the repeats identified by RepAHR, RepARK and REPdenovo on five NGS
data sets. Table 1 shows the comparison of the repeats identified by RepAHR, RepARK
and REPdenovo in terms of number of repeats, total bases number of repeats, N50 and
length of repeats. REPdenovo can identify few repeats and its bases number is the least
among the four methods, but the average length of its repeats is the longest. RepARK
CLC identifies more repeats and bases number than REPdenovo, but repeats identified
by RepARK CLC are shorter than repeats identified by REPdenovo. Compared with the
other three tools, RepARK Velvet can identify more repeats, but the bases number of
its repeats is less than RepAHR in Drosophila melanogaster, Homo sapiens chr14 and
Mus musculus. The repeats identified by RepARK Velvet have the shortest average
length, which can be seen from the N50 and N90. RepAHR identifies fewer repeats than
RepARK Velvet, but the size of repeats identified by RepAHR is larger than that obtained
by RepARK Velvet. In terms of sequence length, the maximum repeat length identified

Page 4 of 24Liao et al. BMC Bioinformatics (2020) 21:463

by RepAHR is the longest of the four methods, but it can be seen from the N50 and N90
that the repeats identified by RepAHR also contains many short fragments. The long and
short fragments combined together make the final repeats identified by RepAHR more
complete.

The high‑frequency k‑mers and reads

Among RepAHR, RepARK Velvet, RepARK CLC and REPdenovo, the most obvious dif-
ference between RepAHR and the other three methods is that RepAHR does not directly
use the high-frequency k-mers for sequence assembly. RepAHR first uses the high-
frequency k-mers to find the high-frequency reads, then assembles the high-frequency
reads to obtain repeats. In order to prove that the high-frequency reads have some
advantages over the high-frequency k-mers, we compare the high-frequency k-mers and
the high-frequency reads in experiments.

Repbase is the most widely-used database of repetitive DNA sequences in which the
currently known repetitive DNA sequences of many eukaryotes are stored [16]. The
similarity between a sequence and the sequences in Repbase can be used as a criterion
for determining whether the sequence is a repetitive sequence. In the test, three NGS
datasets (D.mela, M.musc and H.sapi) are used to obtain the high-frequency k-mers, and
the high-frequency reads are selected by RepAHR from all reads according to the high-
frequency k-mers. RepARK, REPdenovo and RepAHR differ in the method of deter-
mining the high-frequency k-mers threshold. In our test, the high-frequency k-mers is

Table 1 Metrics of repeats on five datasets

′Num′ indicates the number of repeats. ′Size′ indicates the total length of all repeats. ′Max′ represents the length of the
longest segment in the repeats. ′Min′ represents the length of the shortest segment in the repeats. ′N50 or N90′ represents
the length of the longest segment such that all the segments longer than this segment cover at least 50% or 90% of the
total length of the assemblies

Species Method Num Size (kbp) Max/min N50 (bp) N90 (bp)

Drosophila melanogaster RepARK CLC 818 518 6833/200 1040 255

RepARK Velvet 4561 873 7587/57 285 87

REPdenovo 52 61 8339/102 2843 397

RepAHR 2647 1350 12,787/56 1350 98

Saccharomyces cerevisiae RepARK CLC 545 291 8271/200 626 266

RepARK Velvet 1457 394 9129/57 423 111

REPdenovo 3 0.72 265/213 258 213

RepAHR 392 219 9523/128 2089 183

Acromyrmex echinatior RepARK CLC 485 249 8272/200 659 240

RepARK Velvet 3931 559 5547/57 160 68

REPdenovo 249 99 2143/100 597 182

RepAHR 2699 514 10,701/88 285 86

Homo sapiens chr14 RepARK CLC 105 29 594/201 273 216

RepARK Velvet 846 106 574/57 140 80

REPdenovo 14 9 5545/101 5545 211

RepAHR 1738 219 2177/45 213 61

Mus musculus RepARK CLC 3839 1835 17,062/200 565 236

RepARK Velvet 47,232 2302 16,526/57 129 57

REPdenovo 9376 12,652 14,827/100 3129 848

RepAHR 77,891 19,201 28,893/150 503 222

Page 5 of 24Liao et al. BMC Bioinformatics (2020) 21:463

obtained using the high-frequency threshold of RepARK. The high-frequency k-mers
and reads separated from three datasets (D.mela, M.musc and H.sapi) are aligned to the
corresponding Repbase library for each species, respectively. The aligned sequences with
overlaps are connected together to form a long segment called alignment segment.

The comparison of the number, N50, the average length and the maximum length of
aligned segments obtained based on the high-frequency k-mers and reads is shown in
Table 2. N50 is the length of the longest contig such that all the contigs longer than this
contig cover at least half of the genome being assembled [17]. In addition, the alignment
ratios of the high-frequency k-mers and reads compared with the Repbase are shown in
Table 2. In Table 2, the alignment ratios of the high-frequency reads are much higher
than the alignment ratios of the high-frequency k-mers. It also can been seen that the
number of aligned segments obtained by the high-frequency k-mers is much larger
than that obtained by the high-frequency reads in three species. At the same time, the
length of the alignment segments obtained by the high-frequency reads is greater than
that obtained by the high-frequency k-mers, which can be seen from the variation of the
N50 and the average length of detection results in Table 3. The maximum length of the
aligned segments covered by the high-frequency reads is the same as the k-mers. This
shows that the high-frequency reads and k-mers are similar in covering the long align-
ment segments. As can be seen from Table 3, the total number of alignment segments
obtained by the high-frequency reads is less than that obtained by the high-frequency
k-mers, but the number of alignment segments obtained by the high-frequency reads
is greater than that obtained by the high-frequency k-mers in the long length portion.
It can be inferred that the short alignment segments obtained by the high-frequency
k-mers are formed by gaps in which continuous regions cannot be communicated. The
visualization tool IGV [18] is used to demonstrate the alignment of the high-frequency
reads and k-mers with Repbase sequences. Figure 1 shows the case where the sequence
named BATUM_I in the Drosophila melanogaster Repbase library is covered by the
high-frequency reads and k-mers. There is a gap on the region that is not covered by the
high-frequency k-mers, while this region is completely covered by the high-frequency
reads, which proves that the high-frequency reads is easier to obtain a complete repeat
region.

Based on the above results and analysis, it can be considered that the high-frequency
reads is longer, more continuous, and more accurate than the high-frequency k-mers,
and it is more suitable for obtaining repeats by sequence assembly. Compared with the
previous two methods, RepAHR not only replaces the high-frequency k-mers with the
high-frequency reads, but also preserves the information of the paired-end reads as
much as possible to assist in the assembly of repetitive regions. It is well known that the
paired-end reads can span hundreds to thousands of bp (base pair), so using its support-
ing information [19], RepAHR can assemble and identify longer repetitive regions.

Verification of the authenticity of repeated sequences detected by RepAHR

In order to prove that the repeats recognized by RepAHR are not only long , but also
are the true repeats in the genome. We take a special repetitive region detected by three
tools on dataset of human-r14 as an example to analyze, just as shown in Fig. 2. In Fig. 2,
the first block shows the alignment relationships between the repetitive fragments

Page 6 of 24Liao et al. BMC Bioinformatics (2020) 21:463

Fig. 1 A visual example of the alignment of the high frequency k-mers and the high frequency reads with
the segments in Repbase library

Table 2 Metrics of alignment segments

′Num′ indicates the number of alignment segments. ′N50′ indicates the length of the longest segment such that all the
segments longer than this segment cover at least 50% of the total length of all segments. ′Avg Length(bp)′ indicates the
average length of segments. ′Max′ indicates the maximum length of a repeat. ′AR(%)′ indicates alignment ratio of the
high‑frequency k-mers or the high‑frequency reads on Repbase sequences

Species Segment type Num N50 (bp) Avg length (bp) Max (bp) AR (%)

Drosophila melanogaster High‑frequency k-mers 4105 1291 187.36 8256 58.90

High‑frequency reads 1336 3336 542.81 8256 80.55

Mus musculus High‑frequency k-mers 2612 1142 262.49 7673 24.73

High‑frequency reads 421 5943 1203.55 7673 82.64

Homo sapiens chr14 High‑frequency k-mers 1481 239 112.05 6064 38.32

High‑frequency reads 242 394 338.63 6064 75.23

Table 3 Length distribution of alignment segments

′Total Num′ indicates the number of alignment segments. >1000′ indicates the number of alignment segments whose
length is greater than 1000 bp, and the rest is the same

Species Segment type Total Num > 1000 bp > 2000 bp > 4000 bp > 6000 bp

Drosophila mela-
nogaster

High‑frequency k-mers 4105 113 78 52 14

High‑frequency reads 1336 139 87 60 19

Mus musculus High‑frequency k-mers 2612 93 58 41 30

High‑frequency reads 421 83 65 52 36

Homo sapiens chr14 High‑frequency k-mers 1481 5 3 2 0

High‑frequency reads 242 11 3 3 0

Page 7 of 24Liao et al. BMC Bioinformatics (2020) 21:463

detected by RepARK and the reference genome, the second block shows the alignment
relationships between the repetitive fragments detected by REPdenovo and the refer-
ence genome, and the third block shows the alignment relationships between the repeti-
tive fragments detected by RepAHR and the reference genome. From Fig. 2, we can find
that the repetitive fragment detected by RepAHR is more complete than that obtained
by RepARK, and there is no fragment detected by REPdenovo in this region. Therefore,
RepAHR obtains the longest and the most complete repetitive fragment in this region.
Next, we need to prove whether the repetitive fragment obtained by RepAHR is real.
In order to achieve the purpose of verification, we collected the repeated fragments
obtained by different tools in this region, and aligned them to the human-r14 reference
sequence by using the bowtie2 [20] aligner. The alignment results show that the repeti-
tive fragment detected by RepAHR can be aligned to different locations on the human-
r14 reference sequence, and its coverage regions include the coverage regions of the
RepARK’s detection results. The sequence fragment detected by RepAHR is not only
a true repeat in the genome, but also the longest and most complete fragment in the
detection results of three tools.

In order to prove that the repetitive regions detected by RepAHR which cannot or can-
not fully be identified by other tools, we compared the repetitive regions detected by the
three tools on the human-r14 dataset. The benchmark for comparison is the repetitive
regions on the human-r14 dataset provided by a third-party library, and the comparison
results are shown in Fig. 3. From Fig. 3, we find that RepAHR can detect some specific
regions that other tools cannot identify or cannot fully identify. In this step, Bowtie2 [20]
is used as a aligner.

In order to verify the influence of read coverage on the detection effect of each tools,
we designed a simulation experiment based on the human-r14 reference sequence. The
specific process of the simulation experiment is as follows: Firstly, four sets of simulation
sequencing libraries with different coverage are generated by ART (an NGS read simula-
tor) using the human-r14 reference sequence as the template. Secondly, we have tested
the three tools on four simulated sequencing libraries, and the test results are shown

Fig. 2 A special repetitive region on the human‑r14 genome is covered by the detection results of each
tools.

Page 8 of 24Liao et al. BMC Bioinformatics (2020) 21:463

in Table 4 The average read coverage represents the average sequencing depth at each
regions of the genome, which reflects the sequencing level of the entire genome. From
Table 4, we can see that the average read coverage have a certain influence on the detec-
tion results of each tools. From the overall trend, the max length and N50 of the frag-
ments in the test results increases as the average coverage of the reads increases. The
main reason for this phenomenon is that the sequence assembly process is extremely
susceptible to changes in read coverage. For example, Velvet, SOAPdenovo2, Abyss,
IDBA and SPAdes usually require read coverage of more than 30X to meet the basic
requirements of assembly, otherwise the assemblies will be very fragmented. From the

a

b

Fig. 3 An practical example of the alignment of fragments obtained by different tools and the human‑r14
reference sequence

Table 4 The influence of read coverage on the detection effect of each tools

′Cov/read_len (bp)′ indicates the average coverage of sequencing and the average length of reads. ′Num′ indicates
the number of repeats. ′MA_ratio (%)′ represents the multiple alignment ratio of repeats. ′Max′ represents the length of
the longest segment in the repeats. ′Min′ represents the length of the shortest segment in detected repetitive segments.
′N50 or N90′ represents the length of the longest segment such that all the segments longer than this segment cover at
least 50% or 90% of the total length of the assemblies

Species Method Cov/read_len
(bp)

Num MA_ratio (%) Max/min N50 (bp) N90 (bp)

Homo sapiens
chr14

RepAHR 30X/100 33 100.0 833/100 286 108

RepAHR 60X/100 32 100.0 855/100 238 126

RepAHR 90X/100 35 100.0 1087/100 238 116

RepAHR 120X/100 30 100.0 2057/100 238 116

REPdenovo 30X/100 13 100.0 5079/72 5079 173

REPdenovo 60X/100 13 100.0 5079/72 5079 147

REPdenovo 90X/100 9 100.0 5079/76 5079 198

REPdenovo 120X/100 11 100.0 5078/79 5078 173

RepARK Velvet 30X/100 419 99.82 382/29 99 0

RepARK Velvet 60X/100 545 99.76 430/29 104 0

RepARK Velvet 90X/100 569 99.82 430/29 102 0

RepARK Velvet 120X/100 1992 99.85 1249/29 119 64

Page 9 of 24Liao et al. BMC Bioinformatics (2020) 21:463

experimental results shown in Table 4, we can find that the impact of read coverage on
the detection results of tools is inevitable, and this impact is not specific to RepAHR, but
also to these two similar tools.

Generally, there is a certain conversion relationship (just as shown in equation (2) of
the main text) between the average coverage of reads and the frequency of k-mers con-
verted from these reads. Therefore, we can obtain the average read coverage by using the
k-mer frequency distribution information, and we can also obtain the high-frequency
k-mers and the high-frequency reads in the global genome based on the average read
coverage. From a global perspective, assuming that the sequencing is roughly balanced,
the high-frequency k-mers must be from the repetitive regions. Therefore, the reads con-
taining more the high-frequency k-mers must also from the repetitive regions. The con-
clusion is that as long as the high-frequency k-mers contained in a read reaches a certain
proportion, this read must be included in RepAHR without being missed. On the con-
trary, the reads missed by RepAHR must be those that do not meet the above require-
ments. We are not sure whether they come from the repetitive regions.

The running time, CPU and memory consumption of RepAHR and other tools on five
datasets are shown in Table 5. From the perspective of running time, RepARK has the
most advantages among these three tools, and the longest running tool is sometimes
REPdenovo and sometimes RepAHR. From the perspective of memory consumption,
RepAHR and RepARK are more dominant on some datasets, for example, the memory

Table 5 Statistics of running time and memory consumption of each tools on five datasets

′User Time(s)′ indicates the process spent in user mode. ′System Time(s)′ indicates the process spent in system mode.
′Percent of CPU this job got′ represents the percentage of the job using CPU. ′Maximum resident set size′ represents the
maximum resident memory size of the job. ′File system outputs′ indicates the number of files output by this job

Species Method User time (s) System time
(s)

Percent
of CPU this
job got (%)

Maximum
resident set
size (kbytes)

File system
outputs

Drosophila
melanogaster

RepARK CLC 1462.63 57.80 101 9,519,212 53,956,504

RepARK Velvet 1537.49 55.53 101 9,519,228 54,155,904

REPdenovo 4643.07 44.52 1211 13,194,748 42,044,664

RepAHR 4735.17 125.72 868 9,530,504 60,185,232

Saccharomyces
cerevisiae

RepARK CLC 792.39 25.27 101 4,875,512 29,969,488

RepARK Velvet 943.62 27.16 100 4,875,512 29,878,280

REPdenovo 11,229.97 5803.70 316 59,960,388 74,127,816

RepAHR 2507.21 102.31 856 4,876,644 34,047,800

Acromyrmex
echinatior

RepARK CLC 3437.92 154.23 96 18,693,376 86,491,600

RepARK Velvet 3929.52 194.82 100 18,693,376 86,459,800

REPdenovo 17,487.81 112.37 1272 25,530,952 77,131,304

RepAHR 20,763.21 288.73 1554 18,694,492 97,486,232

Homo sapiens
chr14

RepARK CLC 1224.70 48.64 102 4,875,512 43,523,184

RepARK Velvet 1341.06 42.27 101 4,875,532 43,620,064

REPdenovo 5482.66 40.12 1280 5,853,720 37,027,688

RepAHR 4273.05 173.32 771 26,354,272 47,734,280

Mus musculus RepARK CLC 9245.10 709.18 101 36,635,684 329,177,184

RepARK Velvet 8977.43 421.34 100 36,635,676 333,214,224

REPdenovo 52,429.50 1047.07 1178 133,069,768 312,131,728

RepAHR 633,171.42 8987.20 2701 257,398,252 598,113,592

Page 10 of 24Liao et al. BMC Bioinformatics (2020) 21:463

consumption of the two tools on the first three datasets is almost the same. From the
perspective of CPU usage, REPdenovo has the highest degree of parallelism. From the
perspective of system throughout, RepAHR is dominant in most cases.

Repeats on reference genomes

In the experiment, Bowtie2 [20] is used as a aligner to obtain the overall and the multiple
alignment ratios between the repeats and their respective reference sequences on the
five data sets. The overall alignment ratio refers to the ratio of the number of repeats
that can be aligned to the reference genome at least one position to the total number of
repeats. The multiple alignment ratio refers to the ratio of the number of repeats that can
be aligned to the reference genome multiple positions to the total number of repeats.

As can be seen from Table 6 and Fig. 4, RepAHR gets the higher multiple alignment
ratios than the other three methods on the five data sets. In particular, RepAHR has
obvious advantages in the multiple alignment ratio on Saccharomyces cerevisiae dataset.
The experimental results show that the repeats identified by RepAHR are more repeti-
tive and accurate than the other three methods. As can be seen from Table 6, the pro-
portion of repeats identified by RepAHR can be aligned with multiple positions of the
reference genome is higher than the other tools. For example, Bowtie2 is used to align
repeats identified by RepAHR to the reference genome of D. melanogaster. The align-
ment results show that more than half of these repeats can be aligned to more than 100
positions of the reference genome, just as shown in Fig. 5.

RepeatMasker [21] is a tool for masking interspersed repeats and simple tandem
repeats by using sequence alignment, which is used to obtain the masked ratio of the
repeats identified by RepAHR, RepARK CLC, RepARK Velvet and REPdenvo on the
reference, respectively. As can be seen from Fig. 6, the masking ratio of the repetitive
sequences generated by RepAHR is higher than that of the repetitive sequences gener-
ated by RepARK CLC, RepARK Velvet and REPdenovo.

Repeats on Repbase sequences

Repbase [22] is the most commonly used database of repetitive DNA sequences. In this
study, we use RepeatMakser [21] to compute the ratio of bases in Repbase library that
can be covered by detection results of tools. As can be seen from Fig. 7, the masked
ratio of RepAHR is higher than that of RepARK CLC, RepARK Velvet and REPdenovo.
It is indicated that the repeats identified by RepAHR is closer to the repeats collected in
the Repbase database. Therefore, the repeats identified by RepAHR is more accurate and
reliable.

BLAST [23] can be used to find the similarity between sequences based on sequence
alignment, which is applied to obtain the coverage ratio of the repeats in Repbase that
can be covered by the repetitive fragments detected from RepARK CLC, RepARK Vel-
vet, REPdenovo and RepAHR in this study. There are two strategies used to perform
the alignment of the repeats identified by each tools with the corresponding Repbase
library, which indicate that the fragments in Repbase library can be covered by the sin-
gle alignment repeats and multiple alignment repeats, respectively. The coverage ratios
obtained by using these two strategies are called the best coverage ratio and maximum
coverage ratio, which can be abbreviated as BCR and MCR, respectively. Then, we count

Page 11 of 24Liao et al. BMC Bioinformatics (2020) 21:463

the number of sequences in Repbase that can be covered by repeats with BCR and MCR
from 0% to 100% . The number of sequences in Repbase with BCR and MCR more than
50%, 70% and 90% of the four methods is shown in Table 7, respectively. It can be seen
that the sequences in Repbase with high BCR and MCR covered by the repeats identified
by RepAHR are more than the other three methods.

Figure 8 shows the distribution of the coverage ratio obtained from the four methods
by using the BLAST. Each box shows the range of 50% in the middle, and the horizontal
line in the box represents the median of the coverage ratios, the x marked in the box
indicates the mean of the coverage ratios. Figure 8a shows the distribution of BCR on
the Repbase sequences. As can be seen from this figure,the BCR of the repeats identified

Fig. 4 Alignment ratios and multiple alignment ratios of repeats which generated from four tools on five
different datasets. ‘Alignment ratios(%)’ is the proportion of fragments in the detected results that can be
aligned to the reference genome, and ‘Multiple alignment ratios(%)’ is the proportion of fragments in the
detected results that can be aligned to multiple locations on the reference genome

Page 12 of 24Liao et al. BMC Bioinformatics (2020) 21:463

by RepAHR is higher than that of the other three methods. This is manifested that the
median, mean, and upper quartile and lower quartile of the repeats generated from
RepAHR are greater than that of the other three methods. Similarly, the distribution of

385

171 157 147
91 91 77

50 51 34

1284

0

500

1000

[2,10] (10,20] (20,30] (30,40] (40,50] (50,60] (60,70] (70,80] (80,90] (90,100] >100
repeat frequency

n
u

m
b

er
 o

f
re

p
ea

ts

Fig. 5 The frequency distribution of segments in detected results generated from RepAHR on dataset of
Drosophila melanogaster

Table 6 Alignment ratios and multiple alignment ratios of repeats on five data sets

′alignment ratio′ indicates the ratio of the number of repeats aligned to the reference genome at least one position to the
total number of repeats. ′multiple alignment ratio′ indicates the ratio of the number of repeats aligned to the reference
genome multiple positions to the total number of repeats

Species Method Num Alignment ratio
(%)

Multiple
alignment ratio
(%)

Drosophila melanogaster RepARK CLC 818 97.43 92.42

RepARK Velvet 4561 99.28 94.04

REPdenovo 52 88.46 86.54

RepAHR 2647 97.96 95.35

Saccharomyces cerevisiae RepARK CLC 545 97.42 25.32

RepARK Velvet 1457 98.76 41.39

REPdenovo 3 100.0 33.33

RepAHR 392 97.70 90.56

Acromyrmex echinatior RepARK CLC 485 84.95 69.69

RepARK Velvet 3931 93.64 87.75

REPdenovo 249 65.46 61.45

RepAHR 2699 94.89 89.14

Homo sapiens chr14 RepARK CLC 105 97.14 95.24

RepARK Velvet 846 98.23 97.52

REPdenovo 14 100.0 100.0

RepAHR 1738 99.71 98.85

Mus musculus RepARK CLC 3839 96.77 92.81

RepARK Velvet 47,232 90.47 88.20

REPdenovo 9376 50.53 48.54

RepAHR 77,891 95.56 93.05

Page 13 of 24Liao et al. BMC Bioinformatics (2020) 21:463

MCR on the Repbase sequences is shown in Fig. 8b. The upper quartile of the repeats
generated from RepAHR is close to 100%, which means that more than 25% of the Rep-
base sequences are 100% covered by the repeats identified by RepAHR. In addition, the
median, mean, and lower quartiles of the repeats generated from RepAHR are higher
than those obtained from the other three methods. It is indicated that the repetitive
sequences identified by RepAHR are more similar to the repeats in Repbase, and also
closer to the standard repetitive sequences.

From the data shown in Tables 5 and 8, we can see that RepAHR has problems with
long running time and large memory requirements on some datasets (such as Acromyr-
mex echinatior and Musmusculus). Those problems have caused our great concern. To

15.315

9.8

8

28.9
27.5

23.2

14.5

22.7
21.6

11.8

20.2

33.6

29.2

31.7

22.3

9.04
10.52

8.56

1.84

0

10

20

30

A. echinatior D. melanogaster H. sapiens (chr14) M. musculus S. cerevisiae

M
as

ke
d

 r
at

io
 in

 t
h

e
g

en
o

m
e

(%
)

REPdenovo
RepARK_CLC
RepARK_Velvet
RepAHR

Fig. 6 Masked ratios on reference genome. ’Masked ratios on reference genome(%)’ is the proportion of
bases on the reference genome marked as the repeats generated from the four tools, which is measured by
RepeatMasker

43.3

39.9
38.3

8.3

14
12.5

8.1
9.6

65.9

62.1

51.650.7

0

20

40

60

D. melanogaster H. sapiens (chr14) M. musculus

M
as

ke
d

 r
at

io
 o

n
 t

h
e

R
ep

b
as

e
(%

)

REPdenovo
RepARK_CLC
RepARK_Velvet
RepAHR

Fig. 7 Masked ratios on Repbase sequences. ’Masked ratios on Repbase sequences(%)’ is the proportion of
bases on the fragments in the repbase library that are covered by the detection results of the four tools

Page 14 of 24Liao et al. BMC Bioinformatics (2020) 21:463

confirm this problem, we retested the CPU time and virtual memory consumption of the
three tools on five datasets. Now we summarize the test conclusions as follows: (1) when
RepAHR uses the default parameters to process some datasets (such as Acromyrmex
echinatior and Musmusculus), it does have the disadvantages of long calculation time
and large memory demand. The comparison of CPU time and virtual memory consump-
tion of these three tools when using default parameters to process these five datasets is

Table 7 The ratios of segments in RepBase library covered by the repetitive sequences
generated by each tools (The coverage ratios are calculated by BLAST)

’BCR’ indicates the best coverage ratio, ’MCR’ indicates the maximum coverage ratio

Metrics Method > 50% > 70% > 90%

BCR RepARK CLC 87 57 33

RepARK Velvet 84 42 24

REPdenovo 19 15 7

RepAHR 173 116 69

MCR RepARK CLC 155 115 64

RepARK Velvet 218 187 149

REPdenovo 22 19 13

RepAHR 241 206 161

Fig. 8 Distribution of BLAST coverage ratios on Repbase sequences. Box plots of BLAST alignment ratios of
the repeats identified by the four tools to the repeat segments in the repbase library. Sub‑graph a shows
the case of the distribution of single alignment, and sub‑graph b shows the case of the distribution of the
maximum alignment

Table 8 The comparison of CPU time and virtual memory consumption of these three
tools when using default parameters to process these five datasets

Species RepARK [CPU time (s)/
virtual memory (kb)]

REPdenovo [CPU time (s)/
virtual memory (kb)]

RepAHR [CPU time (s)/
virtual memory (kb)]

Drosophila melanogaster 1387.63/9,546,368 4,896.98/13,223,216 4441.25/11,333,456

Saccharomyces cerevisiae 770.96/4,887,024 12,846.08/48,140,200 2,429.36/4,921,672

Acromyrmex echinatior 3198.22/18,730,776 18,747.07/25,592,284 20,245.73/20,513,324

Human chr14 1313.54/4887,452 6,397.10/5,878,436 4,354.44/24,886,024

Musmusculus 9654.50/37,149,572 52,624.49/133,352,464 606,338.15/2,608,150,044

Page 15 of 24Liao et al. BMC Bioinformatics (2020) 21:463

shown in Table 9; (2) through the analysis, we find that there are two important parame-
ters in RepAHR (MAX_MEMORY and THREAD) that affect the running time and mem-
ory consumption. The statistics of the limit effect of the parameter of MAX_MEMORY
on the memory usage of RepAHR when processing the Human-r14 dataset is shown in
Table 9. The statistics of the impact of concurrency on the memory usage of RepAHR
when processing the Human-r14 dataset is shown in Table 10. As can be seen from the
results shown in Table 9 and Table 10, when we lower the values of the two parame-
ters MAX_MEMORY and THREAD, the memory requirements of the RepAHR will be
greatly reduced. In addition, the running time of RepAHR can also be similar to the other
two tools, especially when MAX_MEMORY and THREAD are set to 20 respectively, just
as the shown in Table 11; (3) the causes of the above phenomenon are analyzed. First,
the parameter THREAD is used to set the number of threads when the program runs in
parallel. In theory, the more threads, the shorter computing time, and the higher com-
puting cost. When we reduce the number of threads, we will get the opposite conclusion
(the memory cost is reduced, and the running time is longer). However, this statement
is only theoretical. In fact, it is not necessary to increase the thread to improve the com-
puting speed. This is because if the number of threads is set too much, it will intensify

Table 9 Statistics of the limit effect of the perameter of MAX_MEMORY on the memory
usage of RepAHR when processing the Human-r14 dataset

The parameter MAX_MEMORY is used to set the maximum memory usage of the algorithm

Species Method MAX_MEMORY CPU time (s) Virtual memory (kb)

Homo sapiens chr14 Default 4354.44 24,886,024

RepAHR 19 5321.77 4,910,644

20 5207.86 8,160,520

Table 10 Statistics of the impact of concurrency on the memory usage of RepAHR
when processing the Human-r14 dataset

The parameter THREAD is used to set the number of threads when the program runs in parallel

Species Method THREAD CPU time (s) Virtual memory (kb)

Homo sapiens chr14 10 4880.97 9,552,936

 RepAHR 20 4706.87 9,566,604

30 4671.14 19,789,184

40 4354.44 24,886,024

Table 11 The comparison of CPU time and virtual memory consumption of these three
tools when RepAHR using the specific parameters of MAX_MEMORY=20, THREAD=20
to process these five datasets

Species RepARK [CPU time (s)/
virtual memory (kb)]

REPdenovo [CPU time (s)/
virtual memory (kb)]

RepAHR [CPU time
(s)/virtual memory
(kb)]

Drosophila melanogaster 1387.63/9,546,368 4896.98/13,223,216 4387.63/9,558,308

Saccharomyces cerevisiae 770.96/4,887,024 12,846.08/48,140,200 2378.34/3,911,352

Acromyrmex echinatior 3198.22/18,730,776 18,747.07/25,592,284 19,489.55/18,750,436

Human chr14 1313.54/4,887,452 6397.10/5,878,436 4706.87/9,566,604

Musmusculus 9654.50/37,149,572 52,624.49/133,352,464 7879.77/36,734,056

Page 16 of 24Liao et al. BMC Bioinformatics (2020) 21:463

the competition of system resources and increase the delay of queuing. So in this case,
when we appropriately reduce the number of threads, the memory consumption of the
algorithm will be reduced on a large scale, and the calculation time of the algorithm will
not be greatly affected. Second, the parameter MAX_MEMORY is used to set the maxi-
mum memory usage of the algorithm. When we reduce the value of this parameter, the
operation system will control the amount of memory that the algorithm resides within
the set MAX_MEMORY range. At this time, the program needs to deal with the limita-
tions of the operation system through page scheduling. Therefore, when we reduce the
value of this parameter, the memory consumption of the algorithm will be controlled,
but the running speed of the algorithm will also be affected.

Recommendations on the parameters configuration of the proposed tool when resources

are limited

Sequence assembly is the most time-consuming and memory-consuming step in the
entire processing flow of RepAHR. Therefore, as long as the running time and memory
consumption of this step can be controlled by adjusting the parameters MAX_MEMORY
and THREADS, the tool can still run normally under the condition of limited resources.
SPAdes uses 512 Mb per thread for buffers, which results in higher memory consump-
tion (The default value of parameters MAX_MEMORY and THREADS in SPAdes are
set to 250GB and 16 respectively). If you set memory limit manually, SPAdes will use
smaller buffers and thus less RAM. The parameter MAX_MEMORY set memory limit
in Gb. SPAdes terminates if it reaches this limit. Actual amount of consumed RAM will
be below this limit. Make sure this value is correct for the given machine. SPAdes uses
the limit value to automatically determine the sizes of various buffers, etc. The param-
eter THREADS is used to set the number of threads using in SPAdes assembly, and the
default value of it is 16. The larger the number of threads is, the faster the SPAdes assem-
bly speed, and the memory consumption will also increase.

Therefore, the value of the parameter MAX_MEMORY should be set according to
the available memory capacity of the machine. For example, if the available memory of
the machine is 300GB, then MAX_MEMORY can be set to 250GB at most. It should
be noted that SPAdes assembly usually has the minimum memory requirements. For
example, when the machine’s available memory are less than 20GB, the tool will report
an error. In summary, the value of MAX_MEMORY should be taken in the interval [20,
available_memory], and the number of threads should be calculated based on the actual
processing speed requirements and the overall memory limit.

Conclusions
In molecular biology, it is important to accurately detect repeats in the DNA sequences.
With the development of the next-generation sequencing, more and more tools have
been proposed for identification of repeats, including RepARK and REPdenovo. In this
paper, we present a new method called RepAHR for de novo repeat identification by
assembly of the high-frequency reads. The core steps of RepAHR are as follows: Firstly,
RepAHR filters the high-frequency reads from overall NGS data according to certain
rules based on the high-frequency k-mers. Secondly, it identifies repeats by assembly of

Page 17 of 24Liao et al. BMC Bioinformatics (2020) 21:463

the high-frequency reads. The main advantages of RepAHR are reflected in the following
two aspects:

1 the high-frequency reads achieve enough coverage and longer than the k-mers, which
facilitates the assembly process. Compared with the previous two methods, RepAHR
not only replaces the high-frequency k-mers with the high-frequency reads, but also
preserves the information of the paired-end reads as much as possible to assist in
the assembly of repetitive sequences. It is well known that the paired-end reads can
span hundreds to thousands of bp (base pair), so using its supporting information,
RepAHR can assemble and identify longer repetitive regions.

2 due to the sequencing errors and bias, the k-mers from the repetitive regions do not
necessarily all show high frequencies, and the k-mers with low frequencies are not
necessarily all from the non-repetitive regions. In addition, in the case of a short
k-mer size, the error k-mers also have the opportunity to couple together and behave
as high frequencies. In these cases, it is unreliable to obtain repeating regions directly
by assembly of the high-frequency k-mers. However, the strategy based on the high-
frequency reads assembly can effectively circumvent this problem. Firstly, RepAHR
has set a stricter filtering strategy in the process of selecting the high-frequency
reads, which makes it less likely that error k-mers are used to form repetitive frag-
ments. Secondly, RepAHR also set multiple verification strategies in the process of
finalizing the repetitive fragments to ensure that the detection results are authentic
and reliable.

The comparison of the repeats identified by RepAHR, RepARK CLC, RepARK Vel-
vet and REPdenovo based on the five NGS datasets. We use multiple metrics, including
some basic metrics of the repeats, alignment rate on reference genome, masked ratio
on RepBase and so on, to evaluate the performance of each tools. The experimental
results show that repeats obtained by RepAHR are more precise and reliable than that of
RepARK CLC, RepARK Velvet and REPdenovo.

Methods
As shown in Fig. 9, the proposed method(RepAHR) contains the following phases.
Firstly, RepAHR convents overall NGS short paired-end reads into unique k-mers and
gets their frequencies by using Jellyfish [24]. Secondly, RepAHR needs to determine
whether the average read coverage is known. If it is known, its value can be used to cal-
culate the threshold of the high frequency k-mer directly. Otherwise, RepAHR needs
to estimate it based on the k-mer frequency distribution. Thirdly, RepAHR generates
a high-frequency k-mer set based on overall k-mers and the high frequency threshold.
Fourthly, RepAHR obtains the high-frequency reads from whole NGS short paired-end
reads based on the high-frequency k-mer set. Finally, RepAHR gets assemblies of the
high-frequency reads, and then scans these contigs to obtain the final repeats.

Page 18 of 24Liao et al. BMC Bioinformatics (2020) 21:463

Determining the threshold of the high‑frequency k‑mer

k‑mer frequency counting

This section corresponds to Step1 in the flowchart (Fig. 9). k-mer counting can be

Start

NGS Paired-end
reads

Step1: k-mer frequency counting

Step2:Whether the average
read coverage is known

Step4: The average read coverage
estimation

NO

YES

Step3: Construction of the k-mer
frequency distribution

Step5: Getting threshold of the high
frequency k-mer based on the average

read coverage

Step6: Getting the high frequency k-
mers based on the high frequency

threshold

Step7: Filtering the high frequency reads
from overall NGS paired-end reads
based on the high frequency k-mers

Step8: Assembly of the high frequency
reads

Step9: Scanning assemblies

Repeats

End

Fig. 9 The illustration of the pipeline of RepAHR

Page 19 of 24Liao et al. BMC Bioinformatics (2020) 21:463

fulfilled by many available tools, such as Jellyfish [24] and KMC2 [25]. In this step,
RepAHR needs to generate two groups of k-mers with different lengths by using Jellyfish.
The k-mer length in the first group is about 15bp–20bp according to the literature [6],
while the second group is set to 31 bp which is an empirical value obtained through a lot
of experiments.

Determining whether the average read coverage is known

This section corresponds to Step2 in the flowchart (Fig. 9). In this section, RepAHR
needs to determine whether the average read coverage is known. If it is known, its value
can be used to calculate the threshold of the high frequency k-mer directly (the algo-
rithm moves to Step5). Otherwise, RepAHR needs to estimate it based on the k-mer fre-
quency distribution (the algorithm moves to Step3).

Constructing the k‑mer frequency distribution

This section corresponds to Step3 in the flowchart (Fig. 9). Suppose n k-mers and their
frequencies are obtained from the statistics in the previous step. Let K denote a list con-
taining all k-mer and Ki be the i-th k-mer in the list (i = 1, 2, 3..., n). While list F is used
to store the frequency of each k-mer in K, so F has a one-to-one relationship with K, for
example, Fi = t indicates that k-mer Ki appears t times in the input reads. Given a fre-
quency number of t, the number of k-mer that have a frequency number of t is denoted
as f(t), and the value of f(t) can be calculated as follows:

Based on each pair of t and f(t), RepAHR plots the k-mer frequency distribution curve
as shown in Fig. 10, which is plotted using Drosophila melanogaster sequencing data
downloaded from the Short Read Archive (http://www.ncbi.nlm.nih.gov/sra), while
the x-axis refers to the frequency of k-mer and the y-axis refers to the total number
of the frequency appearing. If the input read data is evenly distributed over the refer-
ence genome, the k-mer frequency distribution curve usually forms a Poisson distribu-
tion [26] or Gaussian distribution [27] after the steep decreasing at the beginning of the
curve, as shown in Fig. 10. According to this feature, we can always find the main peak
point of the curve.

Estimating the average read coverage

This section corresponds to Step4 in the flowchart (Fig. 9). RepAHR estimates the aver-
age read coverage using a method similar to that in literature [28]. The calculation prin-
ciple is shown as follows:

Where p is the horizontal coordinate of the main peak in the k-mer frequency distribu-
tion histogram, length is the average length of the input NGS reads, k is the k-mer length

(1)f (t) =

|K |∑

i=1

1 if (Fi = t)

(2)Cov =
p ∗ length

length− k + 1

http://www.ncbi.nlm.nih.gov/sra

Page 20 of 24Liao et al. BMC Bioinformatics (2020) 21:463

used in estimation which is settled to 15 by default, and Cov is the average read coverage
estimated.

Getting the threshold of the high‑frequency k‑mer based on the average read coverage

This section corresponds to Step5 in the flowchart (Fig. 9). If the average read cover-
age (Depth) is known, RepAHR can multiply it with the coverage factor to obtain the
threshold of the high frequency k-mer t1 (t1=c × Depth , c ∈ [1.5, 3]) directly. Otherwise,
RepAHR needs to multiply the estimated read coverage Cov generated in the previous
step by the coverage factor c to obtain the threshold t1 (t1=c × Cov , c ∈ [1.5, 3]). Where c
is reasonable to set between 1.5 and 3, the larger c is, the more stringent the selection of
the high-frequency k-mer is.

Getting the high‑frequency k‑mers based on the high frequency threshold

This section corresponds to Step6 in the flowchart (Fig. 9). In this section, RepAHR
first obtains a k-mer set with a length of about 31 bp generated in the Step1. After that,
the k −meri whose frequency f(i) is lower than the threshold t1 are discarded, and the
remaining k-mers are composed as a high-frequency k-mer set as Sh . The principle of
generating Sh is shown as follows.

Filtering the high frequency reads from overall NGS reads based on the high frequency

k‑mers

This section corresponds to Step7 in the flowchart (Fig. 9). For each read, all k-mers
included in them can be denoted as S={s1 , s2 , ..., sq }, respectively. RepAHR checks how

(3)Sh = {k −meri|∀k −meri ∈ K , f (i) ≥ t1}

Fig. 10 The k-mer frequency distribution histogram. In this figure, the blue line is the number of k-mer with
a specific frequency, the orange dotted line is a Gaussian fit to the trend near the main peak of the blue line,
and the green dotted line is the vertical line from the position at the main peak to the x‑axis, and p is the
position where the green dotted line intersects the x‑axis

Page 21 of 24Liao et al. BMC Bioinformatics (2020) 21:463

many k-mers in S appear in the high frequency k-mer set Sh . If both the k-mers at the
beginning and at the end of a read (s1 and sq) are included in set Sh , and the number of
the high-frequency k-mer in S has reach a certain percentage threshold t2 . Then the read
is classified as a high-frequency read. RepAHR sets t2 to 90% by default. The principle of
this process is shown in Fig. 11.

Assembling the high frequency reads

This section corresponds to Step8 in the flowchart (Fig. 9). In this phase, SPAdes [14] is
used to achieve the contigs of the high-frequency reads. Subsequently, the contigs with
low coverage are filtered out [29]. The contigs left are the initial repeats determined by
RepAHR.

Scanning assemblies

This section corresponds to Step9 in the flowchart (Fig. 9). In this step, RepAHR needs
to sort the initial repetitive sequences generated from SPAdes according to the fragment
length, and removes some fragments whose length cannot meet the requirements. After
that, the fragments left are the final repeats determined by RepAHR.

Fig. 11 Schematic diagram of generating the high‑frequency reads. In this figure, a green line on the left
denotes a high‑frequency k-mer, all these k-mers constitute a high‑frequency k-mer set. The blue line denotes
the NGS reads, and the green and red line segments under the blue line represent all the k-mers generated
from an NGS read. A green line denotes a k-mer which appears in the high‑frequency k-mer set, and a red line
denotes a k-mer which does not appear in the high‑frequency k-mer set. The diagram contains a matched
case and an unmatched case on the right

Page 22 of 24Liao et al. BMC Bioinformatics (2020) 21:463

Experimental datasets

In this study, five data sets are used to compare the repeats identified by RepAHR,
RepARK CLC, RepARK Velvet and REPdenovo. Five species are Drosophila mela-
nogaster, Saccharomyces cerevisiae, Acromyrmex echinatior, Mus musculus and Homo
sapiens Chromosome 14. Five data sets are downloaded from NCBI SRA database (https
://www.ncbi.nlm.nih.gov/sra/) and GAGE website (http://gage.cbcb.umd.edu/) [30] .
More information about the datasets is shown in the Table 12.

Abbreviations
NGS: next generation sequencing;; TEs: transposable elements;; TRs: tandem repeats;; BCR: the best coverage ratio;; MCR:
the maximum coverage ratio..

Acknowledgements
The authors would like to thank the editor and anonymous reviewers for their valuable comments in improving the
manuscript. Thanks the National Natural Science Foundation of China, Hunan Provincial Science and technology Pro‑
gram, 111 Project, and King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR)
for their support to this study.

Open Access
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat
iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

Author Contributions
JW conceived the project; XL, JW designed the experiments; and XL, XG and XZ performed the experiments; XL and FXW
wrote the paper. All authors read and approved the final manuscript.

Funding
This work has been supported by the National Natural Science Foundation of China under Grant: No.62002388,
No.61772557, Hunan Provincial Science and technology Program (No. 2018wk4001), 111 Project (No. B18059), and King
Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award numbers
BAS/1/1624‑01, FCC/1/1976‑18‑01, FCC/1/1976‑23‑01, FCC/1/1976‑25‑01, FCC/1/1976‑26‑01, REI/1/0018‑01‑01,
REI/1/4216‑01‑01, REI/1/4437‑01‑01, REI/1/4473‑01‑01, and URF/1/4098‑01‑01.

Availability of data and material
The tool is publicly available at https ://githu b.com/bioin fomat icsCS U/RepAH R.

Compliance with ethical standards

Declarations
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Table 12 Information about the NGS datasets

Species Dataset source Dataset name Dataset
size (GB)

Drosophila melanogaster NCBI SRA SRX040484 SRX040486 6.3

Saccharomyces cerevisiae NCBI SRA SRR6846984 1.7

Acromyrmex echinatior NCBI SRA ERR034186 10.7

Mus musculus NCBI SRA ERR2894257 ERR2894259
ERR2894260

55.6

Homo sapiens chr14 GAGE DataSet3 Library 1 9.8

https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
http://gage.cbcb.umd.edu/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/bioinfomaticsCSU/RepAHR

Page 23 of 24Liao et al. BMC Bioinformatics (2020) 21:463

Author details
1 School of Computer Science and Engineering, Central South University, 932 South Lushan Rd, ChangSha 410083, China.
2 Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division,
King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia. 3 Biomedical Engineering
and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon SKS7N5A9, Canada.

Received: 10 December 2019 Accepted: 24 September 2020

References
 1. Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic

genomes. Chromosome Res. 2011;19(6):787. https ://doi.org/10.1007/s1057 7‑011‑9230‑7.
 2. de Koning AJ, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two‑thirds of the

human genome. PLoS Genet. 2011;7(12):1002384. https ://doi.org/10.1371/journ al.pgen.10023 84.
 3. Ouyang S, Buell CR. The TIGR plant repeat databases: a collective resource for the identification of repetitive

sequences in plants. Nucleic Acids Res. 2004;32(suppl 1):360–3. https ://doi.org/10.1093/nar/gkh09 9.
 4. Castro JP, Carareto CM. Drosophila melanogaster P transposable elements: mechanisms of transposition and

regulation. Genetica. 2004;121(2):107–18. https ://doi.org/10.1023/B:GENE.00000 40382 .48039 .a.
 5. Treangen TJ, Salzberg SL. Repetitive DNA and next‑generation sequencing: computational challenges and solu‑

tions. Nat Rev Genet. 2012;13(1):36. https ://doi.org/10.1038/nrg31 17.
 6. Kurtz S, Narechania A, Stein JC, Ware D. A new method to compute K‑mer frequencies and its appli‑

cation to annotate large repetitive plant genomes. BMC Genomics. 2008;9(1):517. https ://doi.
org/10.1186/1471‑2164‑9‑517.

 7. Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a Galaxy‑based web server for genome‑wide char‑
acterization of eukaryotic repetitive elements from next‑generation sequence reads. Bioinformatics. 2013;29(6):792–
3. https ://doi.org/10.1093/bioin forma tics/btt05 4.

 8. Koch P, Platzer M, Downie BR. RepARK‑de novo creation of repeat libraries from whole‑genome NGS reads. Nucleic
Acids Res. 2014;42(9):80. https ://doi.org/10.1093/nar/gku21 0.

 9. Fertin G, Jean G, Radulescu A, Rusu I. Hybrid de novo tandem repeat detection using short and long reads. BMC
Med Genomics. 2015;8(3):5. https ://doi.org/10.1186/1755‑8794‑8‑S3‑S5.

 10. Guo R, Li Y‑R, He S, Ou‑Yang L, Sun Y, Zhu Z. RepLong: de novo repeat identification using long read sequencing
data. Bioinformatics. 2017;34(7):1099–107. https ://doi.org/10.1093/bioin forma tics/btx71 7.

 11. Chu C, Nielsen R, Wu Y. REPdenovo: inferring de novo repeat motifs from short sequence reads. PLoS ONE.
2016;11(3):0150719. https ://doi.org/10.1371/journ al.pone.01507 19.

 12. Luo J, Wang J, Zhang Z, Wu F‑X, Li M, Pan Y. EPGA: de novo assembly using the distributions of reads and insert size.
Bioinformatics. 2014;31(6):825–33. https ://doi.org/10.1093/bioin forma tics/btu76 2.

 13. Luo J, Wang J, Li W, Zhang Z, Wu F‑X, Li M, Pan Y. EPGA2: memory‑efficient de novo assembler. Bioinformatics.
2015;31(24):3988–90. https ://doi.org/10.1093/bioin forma tics/btv48 7.

 14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD,
et al. SPAdes: a new genome assembly algorithm and its applications to single‑cell sequencing. J Comput Biol.
2012;19(5):455–77. https ://doi.org/10.1089/cmb.2012.0021.

 15. Liao X, Li M, Zou Y, Wu F, Pan Y, Wang J. Current challenges and solutions of de novo assembly. Quant Biol.
2019;7:90–109. https ://doi.org/10.1007/s4048 4‑019‑0166‑9.

 16. Liao X, Zhang X, Wu F, Wang J. de novo repeat detection based on the third generation sequencing reads. In: 2019
IEEE international conference on bioinformatics and biomedicine (2019BIBM). https ://doi.org/10.1109/BIBM4
7256.2019.89829 59.

 17. Li M, Liao Z, He Y, Wang J, Luo J, Pan Y. ISEA: iterative seed‑extension algorithm for de novo assembly using paired‑
end information and insert size distribution. IEEE/ACM Trans Comput Biol Bioinform: TCBB. 2017;14(4):916–25. https
://doi.org/10.1109/TCBB.2016.25504 33.

 18. Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer.
Cancer Res. 2017;77(21):31–4. https ://doi.org/10.1158/0008‑5472.CAN‑17‑0337.

 19. Liao X, Li M, Zou Y, Wu F, Pan Y, Luo F, Wang J. EPGA‑SC: a framework for de novo assembly of single‑cell sequencing
reads. IEEE/ACM Trans Comput Biol Bioinform. 2019;. https ://doi.org/10.1109/TCBB.2019.29457 61.

 20. Langmead B, Salzberg SL. Fast gapped‑read alignment with Bowtie 2. Nat Methods. 2012;9(4):357. https ://doi.
org/10.1038/nmeth .1923.

 21. Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform.
2004;5(1):4–10. https ://doi.org/10.1002/04712 50953 .bi041 0s05.

 22. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic
repetitive elements. Cytogenet Genome Res. 2005;110(1–4):462–7. https ://doi.org/10.1159/00008 4979.

 23. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
https ://doi.org/10.1016/S0022 ‑2836(05)80360 ‑2.

 24. Marçais G, Kingsford C. A fast, lock‑free approach for efficient parallel counting of occurrences of k‑mers. Bioinfor‑
matics. 2011;27(6):764–70. https ://doi.org/10.1093/bioin forma tics/btr01 1.

 25. Deorowicz S, Kokot M, Grabowski S, Debudaj‑Grabysz A. KMC 2: fast and resource‑frugal k‑mer counting. Bioinfor‑
matics. 2015;31(10):1569–76. https ://doi.org/10.1093/bioin forma tics/btv02 2.

 26. Li X, Waterman MS. Estimating the repeat structure and length of DNA sequences using l‑tuples. Genome Res.
2003;13(8):1916–22. https ://doi.org/10.1101/gr.12518 03.

https://doi.org/10.1007/s10577-011-9230-7
https://doi.org/10.1371/journal.pgen.1002384
https://doi.org/10.1093/nar/gkh099
https://doi.org/10.1023/B:GENE.0000040382.48039.a
https://doi.org/10.1038/nrg3117
https://doi.org/10.1186/1471-2164-9-517
https://doi.org/10.1186/1471-2164-9-517
https://doi.org/10.1093/bioinformatics/btt054
https://doi.org/10.1093/nar/gku210
https://doi.org/10.1186/1755-8794-8-S3-S5
https://doi.org/10.1093/bioinformatics/btx717
https://doi.org/10.1371/journal.pone.0150719
https://doi.org/10.1093/bioinformatics/btu762
https://doi.org/10.1093/bioinformatics/btv487
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1007/s40484-019-0166-9
https://doi.org/10.1109/BIBM47256.2019.8982959
https://doi.org/10.1109/BIBM47256.2019.8982959
https://doi.org/10.1109/TCBB.2016.2550433
https://doi.org/10.1109/TCBB.2016.2550433
https://doi.org/10.1158/0008-5472.CAN-17-0337
https://doi.org/10.1109/TCBB.2019.2945761
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1002/0471250953.bi0410s05
https://doi.org/10.1159/000084979
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btv022
https://doi.org/10.1101/gr.1251803

Page 24 of 24Liao et al. BMC Bioinformatics (2020) 21:463

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 27. Kelley DR, Schatz MC, Salzberg SL. Quake: quality‑aware detection and correction of sequencing errors. Genome
Biol. 2010;11(11):116. https ://doi.org/10.1186/gb‑2010‑11‑11‑r116.

 28. Liao X, Li M, Zou Y, Wu F, Pan Y, Luo F, Wang J, et al. Improving de novo assembly based on read classification. IEEE/
ACM Trans Comput Biol Bioinform. 2018;. https ://doi.org/10.1109/TCBB.2018.28613 80.

 29. Liao X, Li M, Zou Y, Wu F, Pan Y, Wang J. An efficient trimming algorithm based on multi‑feature fusion scoring model
for NGS data. IEEE/ACM Trans Comput Biol Bioinform. 2019;. https ://doi.org/10.1109/TCBB.2019.28975 58.

 30. Wu B, Li M, Liao X, Luo J, Wu F, Pan Y, Wang J. MEC: misassembly error correction in contigs based on distribu‑
tion of paired‑end reads and statistics of gc‑contents. IEEE/ACM Trans Comput Biol Bioinform. 2018;. https ://doi.
org/10.1109/TCBB.2018.28768 55.

https://doi.org/10.1186/gb-2010-11-11-r116
https://doi.org/10.1109/TCBB.2018.2861380
https://doi.org/10.1109/TCBB.2019.2897558
https://doi.org/10.1109/TCBB.2018.2876855
https://doi.org/10.1109/TCBB.2018.2876855

	RepAHR: an improved approach for de novo repeat identification by assembly of the high-frequency reads
	Abstract
	Background:
	Results:
	Conlusions:

	Background
	Results and discussion
	Metrics for evaluation
	The high-frequency k-mers and reads
	Verification of the authenticity of repeated sequences detected by RepAHR
	Repeats on reference genomes
	Repeats on Repbase sequences
	Recommendations on the parameters configuration of the proposed tool when resources are limited

	Conclusions
	Methods
	Determining the threshold of the high-frequency k-mer
	k-mer frequency counting
	Determining whether the average read coverage is known
	Constructing the k-mer frequency distribution
	Estimating the average read coverage
	Getting the threshold of the high-frequency k-mer based on the average read coverage

	Getting the high-frequency k-mers based on the high frequency threshold
	Filtering the high frequency reads from overall NGS reads based on the high frequency k-mers
	Assembling the high frequency reads
	Scanning assemblies
	Experimental datasets

	Acknowledgements
	References

