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Abstract

Diatoms play a key role in the marine carbon cycle with their high primary productivity and

release of exudates such as extracellular polymeric substances (EPS) and transparent exo-

polymeric particles (TEP). These exudates contribute to aggregates (marine snow) that

rapidly transport organic material to the seafloor, potentially capturing contaminants like

petroleum components. Ocean acidification (OA) impacts marine organisms, especially

those that utilize inorganic carbon for photosynthesis and EPS production. Here we investi-

gated the response of the diatom Thalassiosira pseudonana grown to present day and

future ocean conditions in the presence of a water accommodated fraction (WAF and

OAWAF) of oil and a diluted chemically enhanced WAF (DCEWAF and OADCEWAF). T.

pseudonana responded to WAF/DCEWAF but not OA and no multiplicative effect of the two

factors (i.e., OA and oil/dispersant) was observed. T. pseudonana released more colloidal

EPS (< 0.7 μm to > 3 kDa) in the presence of WAF/DCEWAF/OAWAF/OADCEWAF than in

the corresponding Controls. Colloidal EPS and particulate EPS in the oil/dispersant treat-

ments have higher protein-to-carbohydrate ratios than those in the control treatments,

and thus are likely stickier and have a greater potential to form aggregates of marine oil

snow. More TEP was produced in response to WAF than in Controls; OA did not influence

its production. Polyaromatic hydrocarbon (PAH) concentrations and distributions were sig-

nificantly impacted by the presence of dispersants but not OA. PAHs especially Phenan-

threnes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Dibenzothiophenes

and 1-Methylphenanthrene show major variations in the aggregate and surrounding seawa-

ter fraction of oil and oil plus dispersant treatments. Studies like this add to the current

knowledge of the combined effects of aggregation, marine snow formation, and the potential

impacts of oil spills under ocean acidification scenarios.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0235473 July 7, 2020 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Genzer JL, Kamalanathan M, Bretherton

L, Hillhouse J, Xu C, Santschi PH, et al. (2020)

Diatom aggregation when exposed to crude oil and

chemical dispersant: Potential impacts of ocean

acidification. PLoS ONE 15(7): e0235473. https://

doi.org/10.1371/journal.pone.0235473

Editor: Leonidas Matsakas, Luleå University of

Technology, SWEDEN

Received: May 1, 2020

Accepted: June 17, 2020

Published: July 7, 2020

Copyright: © 2020 Genzer et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are publicly

available through the Gulf of Mexico Research

Initiative Information and Data Cooperative

(GRIIDC) at https://data.gulfresearchinitiative.org/

data/R6.x807.000:0058.

Funding: This research was supported by the Gulf

of Mexico Research Initiative (GOMRI) funded

consortium research entitled ADDOMEx

(Aggregation and Degradation of Dispersants and

Oil by Microbial Exopolymers) and ADDOMEx-2

(SA15-22 and SA18-13). One semester of funding

http://orcid.org/0000-0001-5640-1426
https://doi.org/10.1371/journal.pone.0235473
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235473&domain=pdf&date_stamp=2020-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235473&domain=pdf&date_stamp=2020-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235473&domain=pdf&date_stamp=2020-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235473&domain=pdf&date_stamp=2020-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235473&domain=pdf&date_stamp=2020-07-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0235473&domain=pdf&date_stamp=2020-07-07
https://doi.org/10.1371/journal.pone.0235473
https://doi.org/10.1371/journal.pone.0235473
http://creativecommons.org/licenses/by/4.0/
https://data.gulfresearchinitiative.org/data/R6.x807.000:0058
https://data.gulfresearchinitiative.org/data/R6.x807.000:0058


Introduction

The Deepwater Horizon (DwH) blowout occurred on April 20, 2010, killing 11 people, and

leaking crude oil and natural gas over 87 days, resulting in an estimated 4.1 million barrels of

Louisiana Sweet Oil entering the Gulf of Mexico [1, 2]. In attempts to mitigate the effects of

the oil spill on the surface of the ocean, coastline and marshes, an estimated 37,500 barrels of

dispersant (Corexit), more than during any previous spill, was applied at surface and at depth

[3]. In the weeks following the DwH oil spill, large, fast sinking marine snow was observed [4,

5, 6, 7]. When oil is present in the environment, marine oil snow (MOS) sedimentation and

flocculent accumulation (MOSSFA) is a natural mechanism for transporting the oil to the sea-

floor [4, 5, 6]. This MOSSFA phenomenon has been intensively studied as it is thought to have

significantly contributed to bioremediation of the oil [e.g., 4, 5, 6, 7], with calculations suggest-

ing up to 31% was returned to the seafloor [8, 9, 10, 11]. Previous work has shown that phyto-

plankton responses towards oil and/or oil plus dispersant are species-specific [e.g., 12, 13]. The

relative abundance of diatoms actually increased following DwH [14]. They were found to be

significant contributors to the MOS [14, 15, 16], making this an important group to focus on

in oil spill-related studies.

Phytoplankton, the primary drivers of the biological carbon pump [e.g., 17], are respond-

ing to the downward shift in seawater pH associated with ocean acidification (OA) [18, 19,

20]. Before the Industrial Revolution, the ocean’s pH was 8.2; it is projected to reach 7.9

by the end of this century [18,19]. To date, the pH of the surface ocean has dropped to 8.1,

which on a logarithmic scale is a 25% change with long-term effects [18,19]. Concurrently,

climate change is altering ocean temperatures, stratification, nutrient availability and

cycling, and ultimately phytoplankton primary productivity and community composition

[21, 22, 23]. Diatoms, a group of phytoplankton responsible for ~40% of marine inorganic

carbon fixation [24, 25], exude extracellular polymeric substances (EPS), some of which

form transparent exopolymer particles (TEP) [5, 6, 26, 27, 28, 29]. These exudates mix with

particulates and other organic materials to form marine snow, which is ubiquitous through-

out the marine environment and responsible for the majority of downward carbon trans-

port [17, 30, 31, 32, 33]. Changes in the composition and amount of exudates released by

microbes as a result of variation/stimuli from their surrounding environment, may ulti-

mately affect the carbon flux, as was observed after the DwH oil spill. Indeed, Riebesell et al.

[34] speculated that more TEP may be released in future ocean conditions, and could poten-

tially result in increased aggregation. Others have found that because TEP are buoyant

particles, a higher proportion accumulated within aggregates slows their sinking rates, so

increased TEP may not actually increase the carbon flux [35]. TEP will stay suspended in

surface waters unless the particles attach to heavier materials (fecal pellets, mineral ballast,

particulates) [36]. The stickiness of these macromolecules may be affected by changing

ocean conditions [29, 35], so there is the potential for compounding effects to the biological

carbon pump.

Larger diatoms may be limited in future oceans with increased acidification and declining

nutrient availability, potentially leading to a shift towards smaller species [22, 37]. Thalassiosira
pseudonana, a small and globally abundant diatom often used as a model species, does not

appear to be impacted by OA in its growth or photosynthesis [25, 38, 39]. This may be due to

its use of a carbon concentrating mechanism, or its small size (2–10 μm) and high surface area

to volume ratio which facilitates diffusion of CO2 into the cell. Yet, other studies have found T.

pseudonana responds to OA by altering its physiological behavior [40, 41]. Further, OA does

affect aggregation processes in this and other species [23, 35, 42]; with precursor concentra-

tions being important [26, 28, 43].
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Hence, how phytoplankton will respond to oil spills in the context of ocean acidification is

of great interest, i.e., if the OA and oil spills have a synergistic, antagonistic or additive effect

on the biological carbon pump, and in particular, MOSSFA-facilitated oil transport. This

study used a multifactorial laboratory experiment to investigate the diatom T. pseudonana. Six

treatments: (i) Control with current pCO2 levels (400 ppm), (ii) an elevated pCO2 representa-

tive of future conditions (750 ppm), (iii) a water accommodated fraction (WAF) of oil, (iv)

WAF prepared with elevated pCO2 seawater (OAWAF), (v) diluted chemically enhanced

WAF (DCEWAF), and (vi) DCEWAF prepared with elevated pCO2 (OADCEWAF). Roller

table experiments were performed with cultures of T. pseudonana grown in exponential

growth phase, and EPS, TEP and marine snow formation were measured along with the oil

composition.

Methods

All glassware, roller tanks and culture bottles, were acid washed. Equipment exposed to oil was

cleaned sequentially with dichloromethane (DCM), methanol and DI water to remove residual

oil compounds.

Culturing

Thalassiosira. pseudonana (CCMP 1335; National Center for Marine Algae) was grown in nat-

ural seawater collected from the Gulf of Mexico and enriched with f/2 + Si nutrients [44, 45]

after autoclaving (121˚C, 30 min). One month prior to the experiments, T. pseudonana was

transferred into artificial seawater media [46] prepared with a few modifications. The deion-

ized (DI) water was not sterilized in the autoclave in order to avoid altering the carbonate

system [23]. The pH was adjusted to 8.1 using Trizma base. Cultures were maintained at an

irradiance of 100–130 μmol m-2 s-1 and kept at 19 ± 1˚C under a 12h:12h light:dark cycle and

grown in exponential growth for each of the experiments.

Carbonate chemistry

Three days prior to starting a roller table experiment, cultures were split into Controls and ele-

vated pCO2 treatments [38]. Based on previous studies [38, 39], it has been shown that 3 days

is sufficient for exponentially growing T. pseudonana to acclimate changes in pCO2 concentra-

tions. The pH was maintained at 8.1 for Control and 7.9 for elevated pCO2 cultures according

to Gattuso and Lavigne [47]. The carbonate chemistry was measured according to Seebah et al.

[23] after pH and total alkalinity (TA) were determined using a calibrated Accumet AB15 pH

meter. The Seacarb R package (version 3.1.1) and CO2SYS [48] were used to calculate pCO2

levels using salinity, temperature, pH, and TA (https://CRAN.R-project.org/package=seacarb)

(Table 1).

Roller tanks

The morning prior to starting experiments, cell counts were performed to determine the vol-

ume of T. pseudonana to add to the roller tanks so the final cell density would be ~10,000 cells

mL-1. The cylindrical glass roller tanks were carefully filled with cell cultures and treatment

media as to avoid air bubbles. Triplicate tanks were prepared for each of the six treatments (18

roller tanks total). Immediately before closing the tanks, bicarbonate and acid were added to

reach desired elevated pCO2 conditions [23, 47]. Tanks were processed individually after three

days of continuously rolling (3 turns/min; 19 ± 3˚C, in darkness) to simulate sinking through
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the water column [49]. From each roller tank, the aggregate slurry (AGG) and the surrounding

seawater (SSW) were collected and either immediately processed or stored at -20˚C.

Oil and dispersant treatments

The WAF was prepared in a continuous flow-through baffled recirculating tank system [50]

filled with artificial seawater (120 L) and Macondo surrogate oil (0.4 mL L-1). This was mixed

for 24 hrs in the dark before being transferred into the roller tanks. Corexit was pre-mixed

with the oil (Corexit-to-oil ratio of 1:20) in order to prepare the DCEWAF following similar

procedures to WAF except small (9 L) aspirator bottles were used as smaller volumes were

required. The concentrations of oil in the WAF and DCEWAF at the start of the experiments,

as estimated oil equivalents (EOE), were measured using a RF-5301 PC Spectrofluorophot-

ometer (322 nm excitation, 376 nm emission) according to Wade et al. [51], with modifications

as described in [12, 13]. EOE concentration was determined using a five-point calibration

curve prepared with the Macondo surrogate oil (0–5 mg L-1).

Polycyclic aromatic hydrocarbons (PAHs) analysis was performed on AGG and SSW sam-

ples collected at the end of the experiment. Prior to PAH extraction, each sample was spiked

with 50 μL of internal standards (d8-naphthalene, d10-acenaphthene, d10-phenanthrene,

d12-chrysene and d12-perylene). SSW samples (700 mL) and AGG samples (5 mL) were

extracted with DCM and analyzed with GC/MS as described previously [52, 53]. The concen-

trations of oil used in this study were well below the 200 mg L-1 limit to simulate authentic spill

conditions, as this has been a critique among some recent oil toxicity work [50]. Further, the

DCEWAF treatments were prepared with EOEs more dilute than those used in previous stud-

ies [12, 13, 50] for two reasons. First, efforts were made to manipulate a similar oil concentra-

tion in WAF and DCEWAF, the latter of which, if not diluted, could be one to two orders of

magnitude higher than WAF. Second, it has been documented that T. pseudonana is very sen-

sitive to high concentrations of oil in DCEWAF [12]. These treatments were designed to be

effective at initiating a response from the diatom but at a dose low enough to be environmen-

tally relevant.

Biomass

Chlorophyll (chl) a was measured as a proxy for diatom biomass according to EPA Method

445 [54]. Both SSW and AGG samples were filtered onto 0.7 μm GF/F and stored at -20˚C.

Pigment was extracted overnight in the dark at 4˚C with a 40:60 dimethyl sulfoxide: 90%

Table 1. Initial (start of the roller table experiments) carbonate chemistry. Outputs from both CO2SYS and Seacarb R for pCO2 (ppm), TCO2 (μmol kg SW-1), HCO3-

(μmol kg SW-1), CO3
2- (μmol kg SW-1), and CO2 (μmol kg SW-1) are provided.

Measurement Control OA WAF OAWAF DCEWAF OADCEWAF

Target pH 8.1 7.9 8.1 7.9 8.1 7.9

pCO2 400 750 400 750 400 750

Measured pH 8.1 7.9 8.1 7.9 8.17 7.99

TA 2450 2450 2420 2420 2485 2485

CO2SYS pCO2 381 651 376 643 318 521

TCO2 2175 2275 2148 2246 2167 2266

HCO3 1965 2118 1940 2092 1928 2086

CO3 197 134 195 132 227 162

CO2 12 22 1 21 10 17

Seacarb R pCO2 381 651 376 643 318 521

https://doi.org/10.1371/journal.pone.0235473.t001
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acetone solution and then measured using a benchtop 10AU Turner Designs fluorometer. A

chlorophyll standard extracted from the alga Anacystis nidulans (Sigma—Aldrich) was used to

prepare a standard curve.

Aggregate analysis

SSW and AGG fractions were separated, harvested, and processed as described in detail in

Genzer [55]. Tanks were removed from the rollers and the total time for aggregates to settle

recorded. Tanks were placed on gridline paper and photographs taken for size analysis using

ImageJ software (Version 1.51j8). Photos were converted to greyscale and individual aggregate

size was calibrated against the gridline paper. Each of the individual aggregates was outlined

using the Polygon Selections tool (400-x magnification), and assessed for a detailed aggregate

morphology using area, grey scale color density, perimeter, length and width. These qualitative

descriptions were converted into quantitative measures by determining the mean grey value as

an optical density unit (ODU) for each aggregate [55]. ImageJ aggregate area measurements

from experiment were processed using RStudio (Version 0.99.903) to create an agglomerative

dendrogram with limited bias for size classes. Four size classes were identified using this tech-

nique: Large (>4.683 cm2), Medium (1.551 to 4.682 cm2), Small (0.591 to 1.550 cm2), and

Extra Small (XS) (<0.590 cm2) [55]. These size classes were then applied to the analysis of the

aggregates. Equivalent spherical diameter (ESD) measurements [56] are commonly used in

marine snow studies to normalize aggregate size and shape [4] and determine sinking velocity

[15].

Extracellular materials

TEP analysis was only performed on Control and WAF samples according to Passow and All-

dredge [57] as Corexit interferes with the assay [58]. SSW samples and blanks were filtered,

stained with Alcian Blue, and stored at -20˚C for shipment to the University of California at

Santa Barbara (UCSB) for processing. Filters were extracted in 80% H2SO4 for 2 hrs, and the

extract was measured at 787 nm on a Genesys 10S UV-Vis spectrophotometer. A Gum Xan-

than (Gxan) equivalents curve was prepared to determine TEP concentrations.

EPS was measured as the sum of proteins and carbohydrates in the AGG (0.5 mL) and SSW

(200 mL) at the end of the roller table experiments. These correspond to different pools of

EPS, herein called particulate and colloidal, respectively. Samples were filtered using ultra-cen-

trifugal membranes (3 kDa) to collect the particulate fraction of the AGG and the colloidal

fraction of SSW, triple rinsed with 18 MO –cm Milli-Q Type I water, and concentrated to 2

mL. Proteins were measured using a modified bicinchoninic acid method [59] and a bovine

serum albumin (ThermoFisher, Pierce protein assay kit) standard. Neutral sugar concentra-

tions were measured with a glucose standard following the anthrone method [60], and uronic

acids were measured with a glucuronic acid (Sigma, CAS 6556-12-3) standard [61]. The sum

of neutral sugars and uronic acids was used to calculate carbohydrate concentrations [62]. The

ratio of proteins to carbohydrates (P/C) in organic carbon equivalents (i.e., a 40% of neutral

sugar mass as organic carbon, 37% of uronic acid, and 53% of protein content) [62] was used

to assess the stickiness (coagulation efficiency) of the material [29].

Statistical analysis

Data is presented as mean ± standard deviation. All statistical tests were performed using

built-in RStudio (Version 0.99.903) functions with spreadsheets built in Excel 2016. Student’s

t-tests were used to compare measurements between two treatments with 95% confidence.

Two-way Analysis of Variance Model (ANOVA), which utilized the Tukey’s ‘Honest
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Significant Difference’ method, compared a measurement between all treatments. P-values

<0.05 were considered significant for both tests. PAH composition across all the treatments in

different fractions were visualized via non-metric dimensional scaling (NMDS) and the simi-

larities in compositions were analyzed with ANOSIM and SIMPER available through vegan

package using RStudio.

Results

T. pseudonana aggregation behavior

Images of aggregates in each of the six treatments show the variability in size, shape, and num-

ber among treatments (Fig 1A–1F). Visible aggregates formed in Control and OA within three

hrs, DCEWAF and OADCEWAF treatments after 24 hrs, and in WAF and OAWAF after 60

hrs [55]. Image analysis of the aggregates determined the variation in counts and sizes with

treatment for T. pseudonana (Table 2). Controls had the fewest total counts (53.67 ± 2.31

aggregates), while OADCEWAF tanks had the most per replicate (100.67 ± 67.88 aggregates).

There were no significant differences between treatments (p = 0.4549, F = 1.00648). There

were also no Large (>4.683 cm2) aggregates in WAF tanks, but they were present in OAWAF

(Table 2; Fig 1). Of the Large aggregates, those with the greatest area were present in the

DCEWAF (7.64 ± 2.73 cm2), OA (6.84 ± 2.20 cm2), OADCEWAF (6.49 ± 1.37 cm2) and those

with the least in the Control (5.37 cm2) OAWAF (4.68 cm2) (Table 2). Although distribution

among size classes changed due to pCO2 levels, the total aggregate was not significantly

(p = 0.06418, F = 2.84173) affected by OA (Table 2; Fig 1). Instead, total aggregate area was

driven by the presence of oil and oil plus dispersant. The total aggregate area was lowest in the

WAF and OAWAF treatments (3.46 ± 0.80 cm2 and 4.58 ± 2.96 cm2, respectively), followed by

the Controls/OA (5.19 ± 3.40 cm2 and 10.04 ± 2.40 cm2, respectively), and highest in the DCE-

WAF/OADCEWAF (8.96 ± 5.44 cm2 and 10.26 ± 1.04 cm2, respectively) (Table 2; Fig 1).

The settling times for aggregates in each roller tank were recorded at the end of the incuba-

tion period (Fig 2). Control aggregates settled the fastest (30.6 ± 8.1 sec), followed by OA

(53 ± 24.24 sec), DCEWAF (66.33 ± 13.86 sec), OADCEWAF (76.33 ± 19.29 sec), WAF

(145 ± 56.78 sec), and OAWAF (156.67 ± 32.14 sec). The differences across treatments were

significantly different (Two-way ANOVA, p = 0.00116, DF = 5, F = 8.598). Both WAF and

OAWAF treatments had remaining suspended aggregate formations after 2 mins.

Chl a measurements were taken for the beginning SSW, and the SSW and AGG fractions

collected at the end of the exponential growth phase experiment (Fig 3). The majority of T.

pseudonana cells moved into the aggregates in the Control (91%) and OA (93%) treatments,

less so in the DCEWAF and OADCEWAF (90% and 85%), and least of all in the WAF and

OAWAF treatments, 40% and 78% respectively. The effect of elevated pCO2 on AGGs (as chl a
biomass) was negligible between Control and OA (p = 0.4454) and DCEWAF and OADCE-

WAF (p = 0.5922), but there was a significant difference between WAF and OAWAF treat-

ments (p = 0.02487). There was a significant accumulation into the aggregate material in the

DCEWAF and OADCEWAF compared to Control or OA (p = 0.0233 and p = 0.06448, respec-

tively). Overall, most chl a biomass was present in WAF/OAWAF aggregates (p = 0.000819).

Extracellular materials produced by T. pseudonana
It was observed that WAF and OAWAF treatments led to the production of similar TEP con-

centrations in the SSW (Fig 4), but produced significantly (p<0.05) more than in either the

Control or OA treatments. TEP was not measured in DCEWAF or OADCEWAF as Corexit

interferes with the protocol [58]. The colloidal EPS (<0.7 μm to>3 kDa) of the SSW (Fig 5A)

and the particulate EPS of the AGG (Fig 5B) was measured as the sum of proteins, neutral
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sugars and uronic acids. Proteins dominated the colloidal EPS in all treatments compared to

the total carbohydrates (neutral sugars + uronic acids). The colloidal EPS was not significantly

different (p>0.05) between oil and oil plus dispersant treatments, with WAF (1.60 ± 0.34

mg L-1), OAWAF (1.63 ± 0.09 mg L-1), DCEWAF (1.52 ± 0.35 mg L-1) and OADCEWAF

(1.96 ± 0.32 mg L-1), all producing similar amounts (Fig 5A). However, there was significantly

less colloidal EPS in Control (1.17 ± 0.23 mg L-1) and OA (1.01 ± 0.23 mg L-1) treatments.

Fig 1. Photographs of marine snow formed by T. pseudonana in each treatment: (A) Control, (B) OA, (C) WAF,

(D) OAWAF, (E) DCEWAF and (F) OADCEWAF. Grid squares 0.5 cm by 0.5 cm.

https://doi.org/10.1371/journal.pone.0235473.g001
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The P/C ratio for the colloidal EPS did not vary significantly between any of the treatments

(p>0.05), ranging from 2.0 to 2.9 (Fig 5C).

Proteins also dominated the particulate EPS fraction relative to carbohydrates (Fig 5B). T.

pseudonana produced significantly (p<0.05) more particulate EPS in the DCEWAF (5.30 ±
0.40 mg L-1) and OADCEWAF (5.02 ± 0.44 mg L-1) treatments than the Control (3.73 ± 0.45

mg L-1) and WAF (2.53 ± 0.57 mg L-1) treatments (and the corresponding OA and OAWAF

treatments). The AGG P/C ratio in the particulate EPS was significantly higher in DCEWAF

(2.17 ± 0.11) and OADCEWAF (2.54 ± 0.21) than in Control (1.57 ± 0.13) (p<0.01), but was

not significantly different between any of the other treatments (Fig 5C). The lowest particulate

EPS P/C ratio was measured in WAF (1.18 ± 0.25). For the particulate EPS, it appeared that

the P/C ratios were always lower in the Control/WAF/DCEWAF than the corresponding OA

treatments, but the finding was not statistically significant.

Oil analysis

The EOE concentrations were similar between treatments at the start of the roller table experi-

ment and ranged between 0.2 to 0.26 mg L-1 in WAF, OAWAF, DCEWAF and OADCEWAF

Table 2. Aggregate counts and area (cm2) by size class in the roller table experiments. Error bars in brackets are standard deviation of triplicates.

Counts Area (cm2)

Size Class Control OA WAF OAWAF DCEWAF OADCEWAF Control OA WAF OAWAF DCEWAF OADCEWAF

Large

(>4.683)

0.33

(±0.47)

1 (± 0) 0 0.33

(±0.47)

0.67

(±0.47)

1.67 (±0.47) 5.37 (±0) 6.84

(±2.20)

0 4.68 (±0) 7.64

(±2.73)

6.49 (±1.37)

Medium

(1.551–4.002)

4 (±1.41) 3 (±1.63) 1 (±0) 1.67

(±0.47)

4.33

(±1.70)

2 (±0.82) 2.62

(±0.03)

2.32

(±0.39)

2.50

(±0.70)

2.04

(±0.30)

2.70

(±0.12)

2.60 (±0.74)

Small (0.591–

1.464)

4.33

(±3.30)

3.33

(±2.62)

6 (±2.16) 6.67

(±3.68)

4.67

(±1.70)

3 (±2.16) 1.02

(±0.01)

0.82

(±0.11)

0.84

(±0.10)

0.85

(±0.07)

1.06

(±0.11)

1.04 (±0.21)

XS (0–0.572) 45

(±4.08)

52.67

(±8.06)

68.67

(±13.3)

58.67

(±9.81)

48.67

(±4.11)

94 (±56.7) 0.09

(±0.01)

0.07

(±0.01)

0.12

(±0.01)

0.12

(±0.02)

0.10

(±0.01)

0.13 (±0.02)

Total 53.67

(±2.31)

60

(±14.9)

75.67

(±18.9)

67.33

(±7.5)

58.33

(±6.43)

100.67

(±67.88)

5.19

(±3.40)

10.04

(±2.40)

3.46

(±0.80)

4.58

(±2.96)

8.96

(±5.44)

10.26 (±1.04)

https://doi.org/10.1371/journal.pone.0235473.t002

Fig 2. Settling time (sec) for all aggregates of T. pseudonana at the end of the roller table experiments. Box and whisker plots with mean values

(dark bar) and error bars of the maximum and minimum values for replicates. Different letters indicate which treatments are significantly (p<0.05)

different from each other.

https://doi.org/10.1371/journal.pone.0235473.g002
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(Table 3). The final EOE concentrations were more variable, ranging from 0.08 to 0.18 mg L-1.

Oil concentrations (EOE and PAH) were the under detection limit for the Control and OA

treatments.

Initial PAH concentrations were higher in WAF and OAWAF (60.29 ng L-1 and 61.27 ng

L-1, respectively) than in DCEWAF and OADCEWAF (2.56 ng L-1 and 2.75 ng L-1, respec-

tively). The concentrations of PAHs incorporated into AGG at the end of the roller table

Fig 3. Chl a biomass (ug L-1) of T. pseudonana in the SSW at the start (white) and the end (black) of the roller table experiments, as well as the

Chl a biomass in the AGG (grey bars). Error bars show standard deviation of triplicates. Different letters indicate which treatments are significantly

(p<0.05) different from each other.

https://doi.org/10.1371/journal.pone.0235473.g003

Fig 4. TEP measured at the end of the roller table experiments in the SSW only for Control, OA, WAF, and OAWAF.

DCEWAF and OADCEWAF could not be measured (see Methods for technical details). Box and whisker plots with mean values

(dark bar) and error bars of the maximum and minimum values for replicates. Different letters indicate which treatments are

significantly (p<0.05) different from each other.

https://doi.org/10.1371/journal.pone.0235473.g004
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Fig 5. EPS was measured in cultures of T. pseudonana at the end of the roller table experiments. Neutral sugars (black),

uronic acids (grey), and proteins (white) are stacked to show the (A) total colloidal EPS concentration in the surround

seawater (SSW) and the (B) particulate EPS concentration in the AGGs. (C) Protein/carbohydrate (P/C) ratios of EPS in the

SSW (white) and AGGs (black). Error bars show standard deviation of triplicates. Different letters indicate which treatments

are significantly (p<0.05) different from each other.

https://doi.org/10.1371/journal.pone.0235473.g005
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experiments in the WAF (145.73 ± 76.85 μg L-1) and OAWAF (155 ± 44.16 μg L-1) treatments

were higher than in the DCEWAF (77.54 ± 13.56 μg L-1) or OADCEWAF (69.04 ± 6.40 μg L-1)

(p = 0.02242, F = 7.27566) (Table 3).

Differences in PAHs composition between AGG and SSW in every treatment are provided

in S1 Table. These were visualized in an NMDS plot (Fig 6; S1 Fig). The near absence of PAH

components in Control and OA treatments led to a clear separation between Control AGG

and SSW from all other treatments, making it difficult to assess the differences between AGG

and SSW of WAF, OAWAF, DCEWAF and OADCEWAF. Therefore, the NMDS plot was rec-

reated without Control AGG and SSW (Fig 6A). A clear separation between AGG and SSW

was observed for all WAF, OAWAF, DCEWAF and OADCEWAF treatments. In addition,

differences in clustering was observed for WAF, OAWAF vs DCEWAF and OADCEWAF in

both AGG and SSW fraction. Except for the AGG fraction of DCEWAF and OADCEWAF,

there were no differences in clustering observed between AGG and SSW of all the treatments.

Analysis of Similarities (ANOSIM) suggested that the separation observed in NMDS plot

between AGG and SSW fraction was significant (p = 0.001, R = 0.728) (Fig 6B). However,

the dissimilarities between OA and non-OA treatments were low compared to the difference

between oil (WAF and OAWAF) and oil plus dispersant (DCEWAF and OADCEWAF) treat-

ments (p = 0.001, R = 0.4485) (Fig 5B, S2a Fig).

The PAH components with significant differences were further investigated through

SIMPER analysis. PAH composition were 60.58% different between AGG and SSW, with

components such as Phenanthrenes and Anthracenes contributing the most to the overall

dissimilarity (p = 0.001), followed by Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Diben-

zothiophenes and 1-Methylphenanthrene (p = 0.001) (S1 and S2 Tables). The DCEWAF/

OADCEWAF treatments were 52.76% different from WAF/OAWAF treatments in PAH com-

position, with components such as Naphthalenes contributing the most to the overall dissimi-

larity (p = 0.001), followed by 1-Methylnaphthalene, Fluorenes, 2-Methylnaphthalene and

1-Methylphenanthrene (S3 Table).

The ANOSIM showed that AGG PAH composition was significantly different between

WAF and DCEWAF (p = 0.003, R = 0.848) (S2 Fig). SIMPER indicated that DCEWAF

AGG was ~25% different from WAF, and that Napthalenes and Fluorenes contributed the

most to overall observed dissimilarities (p = 0.004) (S2 Table). Similarly, the PAH composi-

tion of the SSW was significantly different between WAF and DCEWAF (p = 0.003, R = 1)

(S2 Fig). Naphthalenes and 2-Methylnaphthalene contributed the most to the observed

overall dissimilarities (p = 0.002), followed by 1-Methylnaphthalene, Phenanthrenes,

Anthracenes, 2,6-Dimethylnaphthalene, Biphenyls and Fluorenes (p<0.005) (S2 Table and

Fig 2).

Table 3. Descriptions of the treatments used for the experiments. Initial (one sample) and final (triplicate) EOE (mg L-1) and initial PAH (ng L-1) and PAH (μg L-1) in

SSW and AGG measurements are included. Error bars in brackets are standard deviation of triplicates.

Treatment Control OA WAF OAWAF DCEWAF OADCEWAF

Inoculation

volumes

5.3 L ASW 0.351 L

culture

5.3 L ASW 0.32 L

culture

5.4 L WAF 0.27 L

culture

5.3 L WAF 0.32 L

culture

5.2 L ASW 0.001 L CEWAF

0.45 L culture

5.2 L ASW 0.001 L CEWAF

0.43 L culture

Initial EOE 0 0 0.26 0.2 0.2 0.2

EOE (SSW) 0 0 0.13 (± 0.01) 0.11 (± 0.01) 0.18 (± 0.12) 0.08 (± 0.02)

Initial PAH 0.15 0.09 61.27 60.29 2.13 2.56

PAH (SSW) 0.41 (± 0.04) 0.21 (± 0.01) 41.12 (± 6.02) 37.02 (± 3.45) 2.08 (± 0.16) 2.18 (± 0.16)

PAH (AGG) 3.38 (± 2.05) 0.80 (± 0.35) 145.73 (± 76.85) 155 (± 44.16) 77.54 (± 13.76) 69.04 (± 6.40)

https://doi.org/10.1371/journal.pone.0235473.t003
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Discussion and conclusions

After the DwH oil spill, several studies identified diatoms as major responders to the event

and contributors towards the development of MOS and MOSSFA [14, 15, 58]. Previous labo-

ratory studies, which examined the response of individual phytoplankton strains to oil and

Fig 6. Analysis of PAH composition in AGG and SSW under all the treatments excluding control and OA using

A) NMDS and B) ANOSIM.

https://doi.org/10.1371/journal.pone.0235473.g006
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chemically dispersed oil, have shown T. pseudonana to be a sensitive species with reduced

growth rates and lowered photosynthetic activity [12, 13]. Additionally, studies of this diatoms’

response to OA have found a variety of physiological responses even when the same strain was

used [25, 38, 39, 40, 41]. The results of the present investigation indicated that T. pseudonana’s

response, after acclimation to current and future ocean pCO2, was primarily due to the addi-

tion of WAF or DCEWAF, and not the OA conditions. That is, there was not a multiplicative

effect of both factors on this diatom. We did, however, find differences between exudate pro-

duction and aggregation formation by T. pseudonana between Controls, WAF and DCEWAF

(Fig 1). For the latter, similar observations have been reported previously [58, 63]. A negative

effect from the addition of Corexit on aggregate formation was also observed in a mesocosm

study with nearshore surface water [11, 62], other roller table studies [58] and bottle experi-

ments [64]. Also of great significance is that there were no differences which could be directly

associated to OA. This was a consistent result, whether aggregates were visually compared (Fig

1 and Table 3), or chemically analyzed (Figs 2–5). As a general observation, we observed aggre-

gates in the “Large” size class range in the OA treatments. We hypothesize this was driven by

the seawater chemistry on aggregate formation rather than a physiological response of T. pseu-
donana. This is also consistent with those previous publications that found T. pseudonana did

not respond to OA conditions [25, 38, 39]. There is a detailed literature which has endeavored

to address why a response of T. pseudonana was observed in some studies [40, 41] to which the

reader is directed.

EPS is integral to the formation of aggregates in the ocean [5, 6]. EPS and TEP are amphi-

philic macromolecules released into the environment by microbial organisms and are essential

for aggregation and the biological carbon pump [17]. The amphiphilic nature of these mole-

cules is similar to chemical dispersants, which decrease the surface tension of water and can

enhance interactions with oil [5, 65]. In order to produce this aggregate material, T. pseudo-
nana released exudates composed primarily of proteins and carbohydrates (polysaccharides).

Operational definitions for TEP and EPS have been defined based on established protocols [5,

66]. TEP protocols measure the polysaccharides released by phytoplankton [17, 27, 30, 36].

Previous studies have found that TEP production increases in higher pCO2 when examining

natural phytoplankton communities [67, 68] or the coccolithophore Emiliania huxleyi [69,

70], but not amongst diatoms (e.g., Thalassiosira weissflogii [23], Chaetoceros muelleri [71]. T.

pseudonana). TEP production was not influenced by OA in the current study, but T. pseudo-
nana did produce more TEP in the WAF treatments than in the corresponding Controls.

These organic materials may even be more efficient than synthetic surfactants at dispersing oil

by forming micelles [65], and have been shown to emulsify and incorporate oil into EPS, TEP

and/or marine snow [11, 63, 67].

In this study, colloidal EPS was measured in SSW, while particulate EPS was measured

in AGG materials. In both fractions, there was a common trend of total material produced:

Controls< WAF < DCEWAF. Even though there was more EPS produced in the DCEWAF/

OADCEWAF treatments relative to the Control/OA, more biomass remained suspended in

the SSW in the DCEWAF/OADCEWAF treatments. This is consistent with observations from

image analysis of denser aggregates present in Controls relative to DCEWAF, as well as previ-

ous studies [55, 66]. The area of the aggregate material was also measured as this is known to

influence sinking rates. When comparing settling times between treatments, the aggregate

material in the WAF/OAWAF treatments were ultimately slower than in Control/OA and

DCEWAF/OADCEWAF. This may be a reflection of how much oil was associated with indi-

vidual aggregates and the role of dispersant in modifying the interaction between the oil and

aggregate material [58, 72,73]. Alternatively it maybe because the Control/OA and DCEWAF/

OADCEWAF have a higher proportion of dead cells (more diatom shells but less living
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material) in the aggregate than WAF/OAWAF, which could then also partially explain the

shorter settling time of the previous two sets of treatments than that of the WAF/OAWAF

treatments. While it is known that oil is less dense than water, thus potentially increasing

the buoyancy of aggregates [11], the inclusion of oil also affects the packaging of aggregates,

which would alter the composition of the MOS and increase sinking rates and density [4, 58,

63, 72, 73].

The EPS P/C ratio has been determined as a proxy for stickiness and is associated with

lower surface tension [29, 62, 65]. The P/C ratios for the colloidal EPS were generally higher

(2.0–2.9) than those in the particulate EPS (1.18–2.54), suggesting the material released by the

cells was stickier than that associated with the cells. These have previously been referred to as

“unattached” versus “attached” EPS [11, 62] and typically have different P/C ratios depending

on the phase of the cells growth cycle and the stresses upon the cells [29, 74, 75, 76]. Again,

there were no significant differences due to OA; only the oil and oil plus dispersant. WAF pro-

duced EPS with lower P/C ratio compared to control; CEWAF or DCEWAG produced EPS

with higher P/C ratios. Similar observations were made during mesocosm experiments with

natural communities [11, 62] dominated by diatoms, and thus the findings may be reflective of

a more general diatom response [11, 12, 13, 66]. The TEP and EPS findings build on previous

studies that found the presence of oil (WAF) and oil plus dispersant (DCEWAF) led to an

increase in exudate release and aggregation of T. pseudonana [12]. The P/C ratio for T. pseudo-
nana EPS is higher than in other phytoplankton, and therefore this exudate is more hydropho-

bic in nature [75, 77]. This hydrophobicity may explain why the aggregates were not dispersed

by the Corexit in DCEWAF, and why EPS aggregation state was elevated [77, 78]. The WAF

aggregates had the lowest ratio, meaning they were the least sticky, and had the least amount

of total aggregate area produced in the experiment. These results promote and give new

insights of the importance of proteins for marine snow formation. While some earlier studies

of Coomassie stained particles, or protein exudates, found these proteins were not essential for

aggregation [79], recent studies measuring both proteins and carbohydrates have reported

they indeed play a key role [29].

We found that there was much more PAH in the T. pseudonana DCEWAF aggregates than

in the WAF treatments (Table 2). PAHs were of particular interest because they are known to

last in the water column for years after a spill and are some of the most toxic components of

crude oil to marine organisms [14, 80, 81, 82]. Passow et al. [58] developed a conceptual dia-

gram to explore the complex interactions between the aggregate material, oil and dispersant.

Our results show that OA had very minimal effects on the PAH composition between AGG

and SSW in the presence or absence of dispersants (Fig 6). However, we found that dispersants

significantly affected the PAH composition in AGG and SSW fractions. Several studies [11, 58,

72] have found that the addition of Corexit dispersant affected the oil compounds accumulat-

ing within MOS. We found that PAHs such as Napthalenes, 1-Methylnaphthalene, Fluorenes,

2-Methylnaphthalene and 1-Methylphenanthrene were differentially present in treatments

with and without dispersant. These observations were similar if not identical to those found by

Bacosa et al. [73]. Passow et al. [63] also showed that aggregates vary in their carrying capacity

for oil compounds compared to the surrounding seawater. In agreement with this observation,

we found that the PAH composition of AGG and SSW were significantly different, with PAHs

such as Phenanthrenes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Diben-

zothiophenes and 1-Methylphenanthrene showing major variations. Overall, we found that

OA had very minimal effects on the PAH composition between AGG and SSW in the presence

or absence of dispersants. However, we found that dispersants significantly affected the PAH

composition in AGG and SSW fractions.
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The results from our studies are not only important for understanding interactions of oil/

dispersant/OA at the species level, but also for envisioning the potential of overall effects to

the ecosystem. The majority of organic carbon in the ocean is non-living, so if changes to pH

impact the aggregation and sinking of this material, then it may ultimately lead to changes in

aggregate sinking rate. Aggregates contribute a significant amount of carbon to the seafloor

[43], and sink faster than diatom cells alone [26, 28, 43], with several studies proposing that

OA will lead to increased aggregate formation and carbon flux [25, 34, 35, 36]. With increasing

oil exploration activities, oil spills will only become more common in the future, therefore

exposing the primary producers of ocean to multiple layers of threat. Our study shows that

although factors such as OA and oil spill have the potential to alter phytoplankton physiology,

the use of dispersants further alters the behavior of diatom led aggregation process, but there

was no compounding effects of these factors.
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