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A B S T R A C T   

The novel coronavirus (SARS-CoV-2) has expanded rapidly worldwide. Now it has covered more than 150 
countries worldwide. It is referred to as COVID-19. SARS-CoV-2 mainly affects the respiratory systems of humans 
that can lead up to serious illness or even death in the presence of different comorbidities. However, most 
COVID-19 infected people show mild to moderate symptoms, and no medication is suggested. Still, drugs of other 
diseases have been used to treat COVID-19. Nevertheless, the absence of vaccines and proper drugs against the 
COVID-19 virus has increased the mortality rate. Albeit sex is a risk factor for COVID-19, none of the studies 
considered this risk factor for identifying biomarkers from the RNASeq count dataset. Men are more likely to 
undertake severe symptoms with different comorbidities and show greater mortality compared with women. 
From this standpoint, we aim to identify shared gene signatures between males and females from the human 
COVID-19 RNAseq count dataset of peripheral blood cells using a robust voom approach. We identified 1341 
overlapping DEGs between male and female datasets. The gene ontology (GO) annotation and pathway 
enrichment analysis revealed that DEGs are involved in various BP categories such as nucleosome assembly, DNA 
conformation change, DNA packaging, and different KEGG pathways such as cell cycle, ECM-receptor interac
tion, progesterone-mediated oocyte maturation, etc. Ten hub-proteins (UBC, KIAA0101, APP, CDK1, SUMO2, 
SP1, FN1, CDK2, E2F1, and TP53) were unveiled using PPI network analysis. The top three miRNAs (mir-17–5p, 
mir-20a-5p, mir-93–5p) and TFs (PPARG, E2F1 and KLF5) were uncovered. In conclusion, the top ten significant 
drugs (roscovitine, curcumin, simvastatin, fulvestrant, troglitazone, alvocidib, L-alanine, tamoxifen, serine, and 
doxorubicin) were retrieved using drug repurposing analysis of overlapping DEGs, which might be therapeutic 
agents of COVID-19.   

1. Introduction 

Coronaviruses (CoVs) belong to the Coronaviridae family, one of 
eight families whose members infect humans and vertebrates. CoVs 
made up of single-stranded RNA. The upper respiratory tract is the main 
region of humans infected by the CoVs [1–3]. However, some other 
regions, such as the gastrointestinal, hepatic, and central nervous sys
tems of humans, can also be infected by the CoVs. In 2002–2003 severe 
acute respiratory syndromes associated with coronavirus (SARS-CoV-1) 
was emerged in China and spread to the other four countries. 
SARS-CoV-1 infected around 8000 cases with a case-fatality ratio (CFR) 
of 11% [4]. The Middle East respiratory syndrome-associated corona
virus (MERS-CoV) is another type of CoVs emerged in 2012. The number 
of reported deaths was 858 out of 2494 infected cases by MERS-CoV 

with a higher CFR, 34% [5]. The novel coronavirus-2019 (COVID-19), 
also known as SARS-CoV-2, has been declared as a pandemic by the 
world health organization (WHO) [6,7]. It has given global challenges 
and threats to the whole human with an enormous loss of lives world
wide [8]. It first appeared in Wuhan, China, in December 2019 [4]. 
There are several variants of SARS-CoV-2 such as B.1.1.7 (alpha), 
B.1.351 (beta), P.1 (gamma), B.1.427 (epsilon) and B.1.617.2 (delta) [9, 
10]. The alpha variant was the first outbreak in the United Kingdom 
(UK) in November 2020. The beta variant was first detected in South 
Africa in October 2020. Gamma variant, also known as Brazilian variant, 
was first detected in January 2021. The delta variant of SARS-CoV-2 was 
detected in late 2020 in India. Alpha variant and delta variant are both 
more transmissible than the original virus identified in China. Most 
people infected with the COVID-19 show mild to moderate respiratory 
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illness (like cold, fever, and cough), and no special treatment is required 
[11–13]. Older adults and people with different comorbid diseases such 
as cardiovascular disease, diabetes, chronic respiratory disease, and 
cancer are more likely to experience serious respiratory illness and they 
may need hospitalization, intensive care, or a ventilator to support them 
breath, or people even die [14,15]. Therefore, candidate drugs and 
vaccines of COVID-19 are urgently needed. The traditional de novo drug 
discovery procedure is expensive and requires a long time. Drug 
repurposing is another way to explore the candidate drugs amid the 
existing drugs using the bioinformatics and integrative systems biology 
approach, which could shorten the time and expense compared to the 
traditional procedure. However, the identification of biomarkers is so 
important for further downstream analysis like drug discovery. Also, it is 
very challenging because there is a large number of a gene relative to the 
small number of samples. In general, biomarkers are correlated and 
sometimes show the same activities in the complex regulatory networks 
and pathways. So it is necessary to understand the underlying mecha
nism and functions of biomarkers [16–18]. 

Demographic variables such as age and sex are the main risk factors 
of COVID-19 disease. Men are more likely to undergo severe symptoms 
with different comorbidities and show more significant mortality than 

women [19,20]. One of the main reasons is that men are more likely to 
participate in smoking and drinking alcohol [21]. Other reasons are 
chromosomal factors (sex-specific hormones and steroids) and 
gender-specific factors (behaviors and social activities). Recently, 
Blanco-Melo et al. revealed transcriptional signatures and pathways of 
SARS-CoV-2 by identifying differentially expressed genes (DEGs) from 
the RNA sequencing (RNA-Seq) data [22]. Previous studies also exam
ined DEGs and molecular gene ontology and pathway analysis using 
lung epithelial cells [8]. The premeditated HIV, Ebola, and malaria 
drugs have been tested to prevent COVID-19 [23,24]. However, the 
absence of vaccines and proper drugs against the COVID-19 has 
increased the mortality rate worldwide. Therefore, common biomarkers 
between males and females may play an important role in discovering 
drugs against the COVID-19. No specific studies were performed to 
identify biomarkers from gene expression levels by considering the sex 
differences using a robust approach. Hence, in this paper, we aim to 
identify shared gene signatures between males and females from the 
human RNAseq dataset in blood. To conduct gene ontology (GO) and 
pathway enrichment analysis, the overlapped differentially expressed 
genes (DEGs) or biomarkers between males and females were employed 
to conduct gene ontology (GO) and pathway enrichment analysis. These 

Fig. 1. Differentially expressed genes identification profiles. (A) Venn diagram of DEGs identified by robust voom approach from male and female dataset of COVID- 
19, (B) circus plot at gene level of overlapping 1341 DEGs between male and female, (C) volcano plot of COVID-19 male dataset, (D) volcano plot of COVID-19 
female dataset. 

M. Shahjaman et al.                                                                                                                                                                                                                            



Informatics in Medicine Unlocked 25 (2021) 100702

3

analyses revealed that the mutual DEGs are involved in various BP 
categories such as nucleosome assembly, DNA conformation change, 
DNA packaging, and different KEGG pathways such as cell cycle, 
ECM-receptor interaction, progesterone-mediated oocyte maturation, 
etc. Finally, the ten hub genes (UBC, KIAA0101, APP, CDK1, SUMO2, 
SP1, FN1, CDK2, E2F1, and TP53) were revealed from protein-protein 
interaction (PPI) network analysis and underwent in the online data
bases to explore the candidate drugs of COVID-19. 

2. Materials and methods 

2.1. Data acquisition and identification of differentially expressed genes 
from peripheral blood cells of SARS-CoV-2 

The RNA-Seq dataset of COVID-19 was retrieved from Gene 
Expression Omnibus (GEO) [25] with the accession number GSE152418 

under the platform GPL24676 [26]. This dataset comprises 34 samples. 
Among them, 17 samples came from peripheral blood cells with 
SARS-CoV-2 infected patients, and 17 samples came from peripheral 
blood cells of healthy control people. There is an outlier sample in pe
ripheral blood cells with SARS-CoV-2; therefore, we have discarded this 
sample from this dataset [27]. Among the 16 samples of SARS-CoV-2 
infected patients, 7 came from males, and 9 came from female pa
tients. For distinct identification of DEGs between males and females, 
firstly, we divided the whole dataset into two independent datasets. One 
dataset consists of 7 male SARS-CoV-2 infected patients, and the other 
datasets consist of 9 female SARS-CoV-2 infected patients, where the 
number of healthy control people was the same in both datasets (17). 
However, information on variants of SARS-CoV-2 infected patients is 
unavailable in the original publication that provided this dataset [26]. 
For robust identification of DEGs from both male and female datasets, 
we employed a robust voom approach [28]. The DEGs were identified 
using adjusted p-value <0.05 and absolute log2 fold change (FC) ≥1 
[29]. The overlapped DEGs between male and female dataset was used 
for further downstream analyses. 

2.2. Gene ontology and pathway enrichment analysis 

To decode identified DEGs’ biological functions and pathways, we 
used Database for Annotation, Visualization and Integrated Discovery 
(DAVID) and Metascape [30,31]. Different gene ontology (GO) cate
gories such as biological process (BP), cellular component (CC), mo
lecular functions (MF), and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways were mined using this database. Adjusted p-value 
<0.05 of the hypergeometric test was used to declare significant cate
gories. We also considered a minimum number of 2 genes in each 
category as the cut-off. 

2.3. Protein-protein interaction analysis and hub-protein identification 

Protein-protein interaction (PPI) has been carried out using the on
line tool NetworkAnalyst [32]. STRING was used to construct the PPI. 
The hub-proteins were extracted with a high confidence level (900) of 
PPI and based on degrees>30. The hub-protein were then visualized 
using the GeneMANIA web-server [33]. 

2.4. DEGs-miRNA network analysis to identify the potential micro RNAs 

The DEGs-miRNA interaction analysis was performed using the 
miRTarBase database and visualize via NetworkAnalyst [32]. This 
database collected fifty thousand miRNA-target interactions. To deter
mine the significant core-miRNAs, we considered the degree of inter
action >30. 

2.5. DEGs-transcription factor regulatory network analysis 

The DEGs-TFs interaction analysis was conducted using the JASPAR 
database and visualize via NetworkAnalyst. JASPAR is a collection of 
large curated and non-redundant DNA binding TFs respiratory [34]. We 
retrieved hub-TFs with a cutoff value of degree>40. 

2.6. Hub proteins specific drug repositioning 

The Drug Signatures Database (DSigDB) [35] and DrugMatrix [36] 
were used via Enrichr [37] for the identification of potential drug can
didates using hub proteins. A collection of 22,527 gene sets comprises 
17,389 distinct compounds covering 19,531 genes contain in DSigDB. 

2.7. Sensitivity and specificity analysis of the hub proteins 

Sensitivity and specificity analysis has been performed by different 
classification methods using the R package MLSeq and caret. This 

Table 1 
Gene Ontology (GO) enrichment analysis using 1341 overlapping DEGs between 
male and female dataset.  

GO of Biological Process (BP) No. of Gene Adjust.p-value 

nucleosome assembly 35 2.49E-13 
DNA conformation change 50 4.58E-13 
DNA packaging 41 4.58E-13 
mitotic nuclear division 45 8.59E-13 
chromatin assembly 35 3.30E-12 
protein-DNA complex assembly 40 2.14E-11 
nucleosome organization 35 2.70E-11 
chromosome segregation 46 2.84E-11 
chromatin assembly or disassembly 36 4.23E-11 
sister chromatid segregation 33 1.34E-10 

GO of Cellular Component (CC) No. of Gene Adjust.p-value 

DNA packaging complex 37 2.95E-19 
nucleosome 35 1.41E-18 
chromosomal region 59 1.02E-16 
condensed chromosome  1.39E-15 
kinetochore 32 4.28E-13 
condensed chromosome kinetochore 28 4.28E-13 
chromosome  6.14E-15 
protein-DNA complex 38 5.41E-13 
condensed chromosome 38 3.90E-12 
collagen-containing extracellular matrix 52 7.17E-10 

GO of Molecular Function (MF) No. of Gene Adjust.p-value 

protein heterodimerization activity 56 3.07E-06 
heparin binding 21 0.002536 
sulfur compound binding 27 0.002536 
extracellular matrix structural constituent 21 0.005097 
glycosaminoglycan binding 24 0.005741 
icosanoid receptor activity 5 0.015201 
cGMP binding 5 0.015201 
peptidase regulator activity 22 0.015201 
extracellular matrix binding 9 0.015201 
amyloid-beta binding 11 0.043064  

Table 2 
Top ten KEGG pathways using 1341 overlapping DEGs between male and female 
dataset.  

KEGG pathway No. of Gene Adjust. p-value 

Cell cycle 29 1.58E-07 
ECM-receptor interaction 21 6.57E-06 
Progesterone-mediated oocyte maturation 20 7.16E-05 
Oocyte meiosis 23 9.88E-05 
Systemic lupus erythematosus 22 0.000135 
Alcoholism 25 0.00017 
Dilated cardiomyopathy 16 0.006848 
Focal adhesion 27 0.007077 
Platelet activation 17 0.033341 
Arrhythmogenic right ventricular cardiomyopathy 12 0.049718 
Regulation of lipolysis in adipocytes 10 0.049718  
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analysis was accomplished to verify the sample classification perfor
mance of the identified hub proteins based on two independent datasets. 

3. Results 

Identification of differentially expressed genes from peripheral blood 
cells of SARS-CoV-2. 

We applied a robust voom approach to identify the DEGs from the 
male and female SARS-CoV-2 dataset. A total of 2067 and 1900 DEGs 
were identified from the male and female datasets, respectively. There 
are 1341 overlapping mutual DEGs identified between males and fe
males, depicted in a Venn diagram of Fig. 1A. These overlapping DEGs 
were then used for further downstream analyses. The overlapping DEGs 

between male and female has been shown in a circus at the gene level 
(Fig. 1B). The DEGs between SAR-CoV-2 infected male and female pa
tients versus healthy control have been shown in volcano plots of Fig. 1C 
and D, respectively. In these figures, the green and red colors represent 
the down-regulated and up-regulated DEGs. 

3.1. Functional annotation and pathway enrichment analysis 

Genes like to interact with each other, and they do not work alone. 
Sometimes most of the genes show similar biological functions and 
pathways. To interpret the biological mechanism of 1341 overlapping 
DEGs, we performed GO and KEGG pathway enrichment analysis. GO 
analysis revealed that BPs are mainly enriched in nucleosome assembly, 

Fig. 2. Heatmap and pathway enrichment analysis of DEGs. (A) KEGG pathway enrichment analysis, (B) heatmap of 10 hub-proteins.  

Fig. 3. Gene ontology analysis of DEGs. (A) network of enriched terms colored by cluster identity, (B) barplot of enriched terms using overlapping DEGs colored by 
p-value. 
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DNA conformation change, DNA packaging, etc. The top three signifi
cantly enriched CCs are DNA packaging complex, nucleosome, chro
mosomal region. The MFs are enriched in protein heterodimerization 
activity, heparin-binding, sulfur compound binding. The top-ranked 
significant GO categories were summarized in Table .1. From KEGG 
pathway enrichment analysis, we uncovered various pathways such as 
cell cycle, ECM-receptor interaction, progesterone-mediated oocyte 
maturation, alcoholism, and so on that are statistically significantly 
using a hypergeometric test with adjusted p-value <0.05. The top ten 
KEGG pathways have been summarized in Table .2 and plotted against 
enrichment ratio using a dot diagram in Fig. 2A. In addition, from 
Metascape, we explored that overlapping DEGs were significantly 
enriched in the immune system process, response to stimulus, metabolic 
process, developmental process (P < 0.05, Fig. 3A and Fig. 3B). 

3.2. Determination of hub-proteins using protein-protein interaction 
analysis 

Ten hub-proteins (UBC, KIAA0101, APP, CDK1, SUMO2, SP1, FN1, 
CDK2, E2F1 and TP53) were discovered using protein-protein 

interaction (PPI) analysis. The PPI network has been shown in Fig. 4A. 
The hub-proteins with higher degrees of interaction determined using 
the topological analysis of PPI have also been displayed in Fig. 4B. The 
logarithmic values of RNASeq count expression of hub-proteins were 
shown in a heatmap plot in Fig. 2B. 

3.3. Identification of potential miRNAs from DEGs-miRNA network 

MicroRNAs (miRNAs) are non-coding RNAs which regulate the gene 
expression by controlling their target messenger mRNAs (mRNAs) for 
translational repression and degradation. Using DEGs-miRNA network 
analysis we extracted ten potential miRNAs (hsa-mir-17–5p, hsa-mir- 
20a-5p, hsa-mir-93–5p, hsa-mir-6499–3p, hsa-mir-92a-3p, hsa-mir- 
16–5p, hsa-mir-24–3p, hsa-mir-193b-3p, hsa-mir-192–5p, hsa-mir- 
98–5p). The DEGs-miRNA network has been shown in Fig. S1. 

3.4. Identification of potential transcription factors 

Transcription factors (TFs) are the proteins that regulate the tran
scription of genes from DNA to mRNA by binding DNA sequences. 
Therefore, the gene-TFs regulatory network has been carried out in 
Fig. S2 to revealed key TFs. The core TFs were found from this analysis 
are PPARG, E2F1, KLF5, FOXC1, and GATA2. 

3.5. Identification of candidate drugs based on hub proteins 

The top ten significant candidate drug agents identified by Enrichr 
are roscovitine, curcumin, simvastatin, fulvestrant, troglitazone, alvo
cidib, L-alanine, tamoxifen, serine, and 2-Butanone. They were sum
marized in Table .3. The other significant drug agents were also 
retrieved from this database such as water, tamoxifen, doxorubicin, 
roscovitine, ns-398, vinblastine, aflodac, resveratrol, rapamycin, 
mechlorethamine. The top 20 drug candidates have been presented in 

Fig. 4. PPI network analysis of overlapping DEGs. (A) PPI network of 1341 
common DEGs identified between male and female, (B) hub-proteins network. 

Table 3 
Top ten drug candidates identified based on the hub-proteins.  

Drug name Mechanism of 
Action 

FDA Status Treatment 

Roscovitine Kinase Inhibitors Investigational Breast cancer, lung 
cancer, leukemia 

Curcumin Tyrosinase inhibitor Approved Colorectal Cancer, 
Pancreatic Cancer, 
liver 

Simvastatin Cholesterol 
lowering agent 

Approved Hyperlipidemia, 
diabetes mellitus, 
chronic kidney 
disease 

Fulvestrant Synthetic estrogen 
receptor antagonist 

Approved Metastatic breast 
cancer 

Troglitazone Antidiabetic and 
hepatotoxic agent 

Approved Type II diabetes 
mellitus 

Alvocidib Pan-cdk inhibitor, 
Kinase Inhibitors 

Experimental Esophageal cancer, 
leukemia, lung 
cancer, liver cancer 

L-alanine Glycine receptor 
agonist 

Investigational Metabolism of sugars 
and fatty acid, 
muscle growth, 
immune system 

Tamoxifen Antineoplastic 
nonsteroidal 
selective estrogen 
receptor modulator 
(SERM) 

Approved Breast cancer 

Serine Weak endogenous 
glycine receptor 
agonist 

Approved Muscle growth, 
immune system 

Doxorubicin Topo II nhibitor, 
immunosuppresive 
antineoplastic antibiotic 
activity 

Approved Leukemia, 
neuroblastoma, 
breast cancer, 
ovarian cancer  

M. Shahjaman et al.                                                                                                                                                                                                                            



Informatics in Medicine Unlocked 25 (2021) 100702

6

Table S1. 

3.6. Sensitivity and specificity analysis of the hub proteins 

To investigate the sample discriminative performance of the identi
fied ten hub-genes we computed various performance measures such as 
sensitivity, specificity, positive predictive value (PPV), negative pre
dictive value (NPV), and accuracy (ACC) by the six classifiers (SVM, 

PLDA, PLDA2, NBDLDA, voomDLDA, voomNSC). To execute this task, 
we randomly divided this dataset (GSE152418) into a training dataset 
and a test dataset. The training dataset consists of 9 control and 8 
COVID-19 samples. The rest of the samples belong to the test dataset. 
After that, ten hub-genes were selected from both datasets to construct 
the reduced training and test datasets. We performed 5-fold cross- 
validation to train the six classifiers, and the above performance mea
sures were recorded. The average values of these performance indices 
were presented in Table .4. The accuracy values in this table indicate 
that the discrete distribution-based methods such as NBDLDA, PLDA2, 
voomDLDA, and voomNSC performed well than SVM. The boxplot of the 
accuracies (Fig. 5A) also demonstrates the same results as Table .4. The 
proposed ten hub-genes were ranked according to their importance 
using SVM (Fig. 5B). We also showed count gene expression values of ten 
hub-genes between control, male and female sample in Fig. 6. This 
figure depicts that three hub-genes (CDK2, E2F1, and TP53) were down- 
regulated and seven hub-genes (UBC, KIAA0101, APP, CDK1, SUMO2, 
SP1, FN1) were up-regulated. 

4. Discussion 

Though sex-specific biomarker identification is crucial for devel
oping drugs or therapies from the RNASeq count gene expression level of 
COVID-19 disease, none of the studies considered it yet. Men are more 
likely to become a serious condition in the presence of different 
comorbidities than women, and the mortality rate of COVID-19 is larger 
in men than women. Therefore, biomarkers may also be different be
tween males and females of COVID-19. From this point of view, in this 
study, we aimed to identify the common DEGs between males and fe
males of COVID-19. We identified 1341 overlapping DEGs between 
males and females. These DEGs were then undergone for GO and KEGG 
pathway analysis using DAVID and Metascape to explore the biological 
mechanisms of DEGs. From GO analysis we revealed that the top three 
categories BP (nucleosome assembly, DNA conformation change, DNA 
packaging), CC (DNA packaging complex, nucleosome, chromosomal 
region), and MF (protein heterodimerization activity, heparin-binding, 
sulfur compound binding) were significantly enriched. Using meta
Scape, we discovered that DEGs are involved in different cancer path
ways, immune system, response to stimulus, metabolism process, and so 
on. DAVID also divulged some important KEGG pathways such as cell 
cycle, ECM-receptor interaction, progesterone-mediated cyte matura
tion etc. using the overlapping DEGs. Furthermore, we conducted PPI to 
identify hub-proteins, DEGs-miRNA to identify potential miRNAs, gene- 
TFs to determine core TFs. Ten hub-proteins (UBC, KIAA0101, APP, 
CDK1, SUMO2, SP1, FN1, CDK2, E2F1, and TP53) were identified using 
PPI topological network analysis. UBC is also known as Ubiquitin C is a 
protein-coding gene. Phlyctenulosis and cystic fibrosis diseases were 
found to associate with UBC [38]. Disease-associated with KIAA0101 
(protein-coding gene) is thyroid carcinoma and heart conduction [39]. 
The GO annotation related to amyloid-beta precursor protein (APP) is 
protein binding and enzyme binding. Different neuro-diseases such as 
app-related and Alzheimer Alzheimer’s disease are associated with this 
gene [40]. CDK1 (Cyclin-dependent kinase 1) is the protein-coding gene. 
The diseases related to genes involve retinoblastoma, breast cancer, and 
glioblastoma multiforme. Pathways associated with these genes include 

Table 4 
Performance evaluation of 10 hub-genes using six classifiers.  

Methods ACC LACC UACC Sensitivity Specificity PPV NPV 

SVM 0.833 0.587 0.946 0.917 0.75 0.831 0.813 
NBLDA 0.982 0.794 0.998 0.998 0.992 0.997 0.996 
PLDA 0.868 0.635 0.951 0.847 0.889 0.914 0.871 
PLDA2 0.903 0.669 0.973 0.861 0.944 0.951 0.873 
voomDLDA 0.981 0.735 0.983 0.917 0.986 0.972 0.941 
voomNSC 0.951 0.725 0.993 0.903 0.999 0.999 0.923 

ACC = accuracy, LACC = lower limit of ACC, UACC = upper limit of ACC, PPV = positive predictive value, NPV = negative predictive value. 

Fig. 5. Performance evaluation of 10 hub-gene using boxplot of Accuracies. (A) 
boxplot of accuracies of six classifiers, (B) Ranking of 10 hub-genes according to 
their importance using SVM. 
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the ATM pathway and cell cycle [41]. SUMO2 is a protein-coding gene, 
and it is related to Gordon holmes syndrome [42]. The GO annotation 
related to SP1 includes DNA-binding transcription factor activity, and 
Huntington’s disease was associated with this gene [43]. 
Heparin-binding and protease binding are found from GO annotation of 
the FN1 gene [44]. CDK2 (Cyclin-dependent kinase 2) is also a 
protein-coding gene. Diseases associated with CDK2 include breast 
Cancer and glioblastoma multiforme [45]. Linked diseases of E2F tran
scription factor 1 (E2F1) are retinoblastoma and glioblastoma multi
forme. Pathways of this gene include regulation of activated PAK-2p34 
by proteasome-mediated degradation and E2F transcription factor 
network [46]. The GO annotation of the TP53 gene includes 
DNA-binding transcription factor activity and protein heterodimeriza
tion activity [47]. The top three miRNAs (mir-17–5p, mir-20a-5p, 
mir-93–5p) and TFs (PPARG, E2F1 and KLF5) were uncovered. 
Finally, using drug repurposing analysis top ten significant drugs 
(roscovitine, curcumin, simvastatin, fulvestrant, troglitazone, alvocidib, 
L-alanine, tamoxifen, serine, and doxorubicin) were retrieved for ther
apeutic targets of COVID-19. Most of the drugs are FDA-approved and 
have been used to treat different types of cancer diseases. 

5. Conclusions 

The novel coronavirus (SARS-CoV-2) has expanded rapidly in to
day’s world. SARS-CoV-2 mainly affects the respiratory systems of 
humans that can lead up to severe illness or even death with comor
bidities. Still, drugs of other diseases have been used to treat the COVID- 
19. Nevertheless, in the absence of vaccines and proper drugs against 
COVID-19 has increased the mortality rate. Furthermore, COVID-19 
infected men are more likely to experience severe illness than women. 
Hence, sex might be a major risk factor of COVID-19, and biomarkers 
related to the sex might be useful for discovering drugs against the 
COVID-19. Therefore, this paper attempts to identify the biomarkers by 
considering the sex effects using a robust voom approach. A total of 
1341 overlapping DEGs were identified between males and females 
datasets. Using these DEGs’ PPI analysis, we explored ten hub-proteins 
(UBC, KIAA0101, APP, CDK1, SUMO2, SP1, FN1, CDK2 E2F1, and 
TP53) that are involved in some important and interesting pathways of 
cancer-related disease. In sum, using these hub-proteins ten significant 
candidate drugs (roscovitine, curcumin, simvastatin, fulvestrant, 

troglitazone, alvocidib, L-alanine, tamoxifen, serine, and doxorubicin) 
were retrieved that might be therapeutic targets of COVID-19 disease. 
Our future work will be covered with a network-based gene co- 
expression analysis based on COVID-19 datasets. 
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Peroxisome proliferator-activated receptor gamma activates fas ligand gene 
promoter inducing apoptosis in human breast cancer cells. Breast Canc Res Treat 
2009;113(3):423–34. https://doi.org/10.1007/s10549-008-9944-1. 

[44] Sage J, Leblanc-Noblesse E, Nizard C, Sasaki T, Schnebert S, Perrier E, Kurfurst R, 
Brömme D, Lalmanach G, Lecaille F. Cleavage of nidogen-1 by cathepsin S impairs 
its binding to basement membrane partners. PloS One 2012;7(8):e43494. https:// 
doi.org/10.1371/journal.pone.0043494. 

[45] Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat 
Rev Canc 2009;9(3):153–66. https://doi.org/10.1038/nrc2602. 

[46] Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human 
transcription factors: function, expression and evolution. Nat Rev Genet 2009;10 
(4):252–63. https://doi.org/10.1038/nrg2538. 

[47] Wei X, Xu H, Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene 
transcription in the genotoxic stress response. Canc Cell 2005;7(2):167–78. 
https://doi.org/10.1016/j.ccr.2005.01.008. 

M. Shahjaman et al.                                                                                                                                                                                                                            

https://doi.org/10.1038/s41579-018-0118-9
https://doi.org/10.1128/MMBR.69.4.635-664.2005
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref3
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref3
https://doi.org/10.1046/j.1440-1843.2003.00518.x
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref5
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref5
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref6
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref6
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref7
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref7
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref7
https://doi.org/10.2471/BLT.20.253591
https://doi.org/10.1136/bmj.m4944
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref11
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref11
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref12
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref12
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref12
https://doi.org/10.3390/microorganisms9030605
https://doi.org/10.3390/microorganisms9030605
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref14
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref15
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref15
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref15
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref15
https://doi.org/10.3390/medicina55060269
https://doi.org/10.3390/medicina55050191
https://doi.org/10.3390/medicina55050191
https://doi.org/10.3389/fpubh.2020.00152
https://doi.org/10.1093/cid/ciaa351
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref20
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref20
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref20
https://doi.org/10.1007/s42399-020-00341-w
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref22
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref22
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref22
https://doi.org/10.1186/s13293-020-00330-7
https://doi.org/10.1186/s13293-020-00330-7
https://doi.org/10.1007/s10096-020-03874-z
https://doi.org/10.1093/nar/gks1193.PMID:23193258
https://doi.org/10.1126/science.abc6261
https://doi.org/10.1126/science.abc6261
https://doi.org/10.1093/bib/bbab120
https://doi.org/10.1093/bib/bbab120
https://doi.org/10.1016/j.ygeno.2019.11.012
https://doi.org/10.1093/bib/bbab262
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref30
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref30
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1038/s41467-019-09234-6
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref32
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref32
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref32
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref33
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref33
http://refhub.elsevier.com/S2352-9148(21)00185-4/sref33
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1093/nar/gkz1001
https://doi.org/10.1093/bioinformatics/btv313
https://doi.org/10.2217/14622416.7.7.1025.PMID:17054413
https://doi.org/10.2217/14622416.7.7.1025.PMID:17054413
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1016/j.jmb.2010.12.026
https://doi.org/10.1038/ncb2579
https://doi.org/10.1038/ncb2579
https://doi.org/10.1016/0006-291x(90)91229-l
https://doi.org/10.1016/0006-291x(90)91229-l
https://doi.org/10.3410/B3-10
https://doi.org/10.1038/ncb1716
https://doi.org/10.1038/ncb1716
https://doi.org/10.1007/s10549-008-9944-1
https://doi.org/10.1371/journal.pone.0043494
https://doi.org/10.1371/journal.pone.0043494
https://doi.org/10.1038/nrc2602
https://doi.org/10.1038/nrg2538
https://doi.org/10.1016/j.ccr.2005.01.008

