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Abstract
Introduction: Individualized treatment prediction is crucial for the development and 
selection	of	personalized	psychiatric	interventions.	Here,	we	use	random	forest	clas-
sification	via	pretreatment	clinical	and	demographical	(CD),	functional,	and	structural	
magnetic	 resonance	 imaging	 (MRI)	 data	 from	 patients	with	 borderline	 personality	
disorder (BPD) to predict individual treatment response.
Methods: Before	dialectical	behavior	therapy	(DBT),	31	female	patients	underwent	
functional	 (three	 different	 emotion	 regulation	 tasks)	 and	 structural	MRI.	 DBT	 re-
sponse	was	predicted	using	CD	and	MRI	data	in	previously	identified	anatomical	re-
gions,	which	have	been	reported	to	be	multimodally	affected	in	BPD.
Results: Amygdala	 and	 parahippocampus	 activation	 during	 a	 cognitive	 reappraisal	
task (in contrasts displaying neural activation for emotional challenge and for regula-
tion),	along	with	severity	measures	of	BPD	psychopathology	and	gray	matter	volume	
of	 the	amygdala,	provided	best	predictive	power	with	neuronal	hyperractivities	 in	
nonresponders.	 All	models,	 except	 one	model	 using	CD	data	 solely,	 achieved	 sig-
nificantly	better	accuracy	(>70.25%)	than	a	simple	all-respond	model,	with	sensitivity	
and	 specificity	 of	 >0.7	 and	>0.7,	 as	well	 as	 positive	 and	negative	 likelihood	 ratios	
of	 >2.74	 and	<0.36	 each.	 Surprisingly,	 a	model	 combining	 all	 data	modalities	 only	
reached	rank	five	of	seven.	Among	the	functional	tasks,	only	the	activation	elicited	
by a cognitive reappraisal paradigm yielded sufficient predictive power to enter the 
final models.
Conclusion: This proof of principle study shows that it is possible to achieve good 
predictions of psychotherapy outcome to find the most valid predictors among nu-
merous variables via using a random forest classification approach.
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1  | INTRODUC TION

Although	dialectical	behavior	therapy	(DBT)	is	the	currently	best-es-
tablished psychosocial treatment for borderline personality disorder 
(BPD;	Cristea	et	al.,	2017;	Kliem,	Kroger,	&	Kosfelder,	2010;	Stoffers	
et	al.,	2012),	it	is	unclear	who	will	respond	best	to	this	therapy.	Since	
psychotherapy	is	quite	expensive,	a	prognostic	tool	to	predict	which	
patient	will	benefit	from	DBT	is	desirable.	However,	so	far	only	few	
investigations have been made to gain a better understanding of in-
dividual predictors of therapy response in BPD.

In	anxiety	disorders,	it	has	been	shown	that	functional	and	struc-
tural	magnetic	resonance	imaging	(MRI)	data	in	addition	to	variables	
such as clinical characteristics and demographics (CD) or electro-
encephalography	 (EEG)	 can	provide	useful	 information	 for	models	
predicting	treatment	response	(Ball,	Stein,	Ramsawh,	Campbell-Sills,	
&	Paulus,	2014;	Lueken	et	al.,	2016).	Most	studies	used	only	one	or	
two	of	these	modalities	to	predict	treatment	response,	and	none	(to	
the knowledge of the authors) so far combined functional and struc-
tural	MRI	(fMRI,	sMRI,	respectively)	in	addition	to	CD	data	to	predict	
BPD therapy response.

Such a multimodal and integrative approach to predict treat-
ment outcome is of major interest in a disorder with a psycho-
therapy	 response	 rate	not	 significantly	exceeding	50%	of	patients	
(Stoffers	et	al.,	2012).	 It	 is	also	 in	 line	with	the	 leading	 idea	of	 the	
Research	 Domain	 Criteria	 (RDoC)	 Initiative,	 which	 is	 to	 ground	
treatment development and outcome prediction on dimensions of 
equally weighted neurobiological measures and behavioral functions 
(Cuthbert	&	Kozak,	2013).

Affect	dysregulation	is	a	central	characteristic	of	BPD	psychopa-
thology	(Linehan,	1993)	and	a	main	target	of	intervention	across	vari-
ous	psychotherapeutic	programs.	Meanwhile,	neuronal	correlates	of	
affect	dysregulation	in	BPD	have	been	identified	with	a	meta-anal-
ysis suggesting multimodal (functional and structural) dysfunctions 
in	frontolimbic	brain	areas,	such	as	 left	amygdala,	right	parahippo-
campus,	left	hippocampus	as	well	as	left	and	right	hemisphere	infe-
rior	 and	 superior	 frontal,	 temporal,	 parietal,	 and	motor-associated	
regions	as	well	as	cerebellar	vermis	(Schulze,	Schmahl,	&	Niedtfeld,	
2016).	Therefore,	we	specifically	examined	the	role	of	functional	and	
structural alterations of these regions of interest (ROIs) in predicting 
treatment response of patients with BPD receiving a psychosocial 
treatment—dialectic behavior therapy (DBT)—which specifically fo-
cuses on improving affect regulation capacity in patients with BPD 
(Kliem	et	al.,	2010;	Stoffers	et	al.,	2012).

Among	 the	 various	 techniques	 proposed	 for	 predicting	 treat-
ment	response	via	neurobiological	markers	(Lueken	et	al.,	2016),	the	
random	 forest	method	 (Breiman,	 2001)	 stands	 out	 for	 its	 robust-
ness	 and	 excellent	 suitability	 for	 predictive	 data	 analysis	 (Qi,	 Bar-
Joseph,	&	Klein-Seetharaman,	2006).	The	overall	procedure	can	be	
summarized	 in	 three	main	steps:	decision	 tree	and	 forest	building,	
cross-validation,	 and	 selection	 of	most	 relevant	 variables	 to	 build	
a final random forest model (further details can be found in (Ball 
et	al.,	2014;	Breiman,	2001;	Bureau	et	al.,	2005;	Genuer,	Poggi,	&	
Tuleau-Malot,	2010;	Strobl,	Malley,	&	Tutz,	2009)).	With	regard	to	

psychotherapeutic	outcome	predictions,	random	forest	models	have	
already	successfully	been	used	with	fMRI	(Ball	et	al.,	2014)	and	sMRI	
data	 separately	 (Wade	 et	 al.,	 2015),	 but	 (to	 the	 knowledge	of	 the	
authors)	not	with	multimodal	 fMRI	and	structural	MRI	 (sMRI)	data	
sets in addition to CD data.

Here,	we	used	random	forests	based	on	CD,	fMRI,	and	sMRI	data	
to	 specifically	 predict	DBT	 outcomes	 in	 patients	with	 BPD.	 FMRI	
data were based on three different affect regulation tasks which 
had	been	acquired	 in	addition	to	sMRI	data	 from	31	patients	with	
BPD	before	DBT	(Niedtfeld	et	al.,	2017;	Schmitt,	Winter,	Niedtfeld,	
Herpertz,	&	Schmahl,	2016;	Winter	et	al.,	2017).	In	summary,	these	
longitudinal studies showed that successful DBT is behaviorally rep-
resented in a more efficient emotion regulation during reappraisal of 
negative	pictures,	a	normalization	of	the	processing	of	painful	stimuli,	
and lower emotional susceptibility during distraction via alterations 
of the respective functional networks (including bilateral parahippo-
campus,	amygdala,	anterior	cingulate	cortex,	orbitofrontal	cortex	as	
well	as	right	dorsolateral	prefrontal	cortex,	and	cerebellum).

We	expected	that	the	multimodally	affected	regions	(see	erratum	
on	Schulze	et	al.,	2016,	table	3	“multimodally	affected	brain	regions	
in	 patients	with	BPD”	 (Schulze	 et	 al.,	 2016))	would	 provide	 useful	
information	for	building	accurate	predictive	models.	Therefore,	we	
examined	the	utility	of	random	forest	analysis	to	specifically	predict	
treatment response to DBT in patients with BPD via multimodal data 
sets in addition to CD data.

2  | MATERIAL S AND METHODS

2.1 | Participants

The sample used in this study comprised 31 female patients drawn 
from	previous	 studies	 (Niedtfeld	et	al.,	2017;	Schmitt	et	 al.,	2016;	
Winter	 et	 al.,	 2017)	 meeting	 DSM-IV	 criteria	 for	 BPD	 diagnosis	
(including	 affective	 instability	 and	 self-injurious	 behavior)	who	 re-
ceived treatment in two residential DBT programs at the Center for 
Psychosocial	Medicine	and	the	Central	 Institute	of	Mental	Health,	
both	located	at	Heidelberg	University	and	providing	fMRI	data	from	
all	three	tasks	and	sMRI	data.

As	in	the	three	earlier	reports	using	the	patient	pool	(Niedtfeld	
et	al.,	2017;	Schmitt	et	al.,	2016;	Winter	et	al.,	2017),	exclusion	cri-
teria	were	 left-handedness,	 traumatic	brain	 injury,	 lifetime	diagno-
ses	of	schizophrenia	or	bipolar	I	disorder,	mental	or	developmental	
disorders,	substance	dependence	during	the	last	year,	consumption	
of	illegal	drugs	in	the	last	two	months,	current	severe	depressive	ep-
isode,	and	benzodiazepine	use.	Furthermore,	patients	who	had	sig-
nificant	DBT	skills	training	experience	and/or	did	not	meet	criteria	
for	MRI	safety	and	eligibility	were	excluded.

Since the same patient pool as in the three earlier reports 
(Niedtfeld	 et	 al.,	 2017;	 Schmitt	 et	 al.,	 2016;	Winter	 et	 al.,	 2017)	
was	used,	also	clinical	and	demographical	measures	were	adopted:	
Trained clinical psychologists assessed BPD diagnoses using the 
International	 Personality	 Disorder	 Examination	 (IPDE;	 Loranger,	
1999)	and	Axis	I	disorders	using	the	Structured	Clinical	Interview	



     |  3 of 12SCHMITGEN ET al.

for	DSM-IV	(SCID-I;	Wittchen,	Wunderlich,	Gruschwitz,	&	Zaudig,	
1997).	Accompanying	the	MRI	measurements,	BPD	symptom	se-
verity	was	assessed	using	the	Zanarini	Rating	Scale	for	BPD	(ZAN-
BPD;	Zanarini	et	al.,	2003)	and	the	Borderline	Symptom	List	(BSL;	
Bohus	et	al.,	2007).	Emotion	regulation	difficulties	were	assessed	
by	 the	 Difficulties	 in	 Emotion	 Regulation	 Scale	 (DERS;	 Gratz	 &	
Roemer,	2004)	and	dissociative	symptoms	by	a	self-report	ques-
tionnaire	 (FDS;	 German	 version	 of	 the	 Dissociative	 Experiences	
Scale	DES;	Spitzer	et	al.,	1998).	The	State-Trait	Anxiety	Inventory	
(STAI-state,	 STAI-trait;	 Spielberger,	 Gorusch,	 &	 Lushene,	 1970)	
was	 used	 to	 probe	 anxiety	 of	 the	 patients,	 depressiveness	 was	
measured	 via	 the	 Beck	Depression	 Inventory	 (BDI;	 Beck,	Ward,	
Mendelson,	 Mock,	 &	 Erbaugh,	 1961),	 and	 participants	 were	 in-
structed	to	memorize	digits	to	estimate	working-memory	capabil-
ities	 (digit	 span;	Tewes,	1991).	Additionally,	patients	were	asked,	
if they had used skills within the last three days and if they con-
sidered this skill use as successful. Identification of DBT respond-
ers was performed as in the three earlier reports (reliable change 
index	[Jacobson	&	Truax,	1991]	based	on	the	symptom	reduction	
in	the	ZAN-BPD	total	score,	cut-off	≥	1.96;	Niedtfeld	et	al.,	2017;	
Schmitt	et	al.,	2016;	Winter	et	al.,	2017)	resulting	in	an	identifica-
tion	of	16	patients	showing	a	significant	improvement	after	ther-
apy. Table 1 summarizes clinical and demographic measures and 
statistics of responder–nonresponder comparisons.

This	study	was	approved	by	the	local	ethics	boards	of	Mannheim	
and	 Heidelberg,	 Germany,	 and	 conducted	 according	 to	 the	
Declaration	 of	 Helsinki.	 After	 complete	 explanation	 of	 the	 study,	

written informed consent was provided. The study was part of a 
larger	 project	 on	 the	 neural	 correlates	 of	DBT	 in	 BPD,	 registered	
as	a	 clinical	 trial	 (German	Clinical	Trial	 registration,	 registration	 ID	
DRKS00000778).

2.2 | Dialectical behavior therapy

Patients	 participated	 in	 a	well-established	 and	 evaluated	12-week	
standard	residential	DBT-based	treatment	(Bohus	et	al.,	2004).	The	
program comprised weekly skills training groups (emotion regulation 
skills,	 mindfulness,	 self-esteem,	 and	 social	 competence)	 and	 indi-
vidual	treatment	twice	a	week.	Therapists	were	experienced	Ph.D.,	
M.D.,	 and	M.Sc.	 level	 clinicians	 (psychologists	 and	physicians)	 and	
were supervised regularly. The treatment program has already been 
described	in	Schmitt	et	al.	(2016),	Niedtfeld	et	al.	(2017)	and	Winter	
et	al.	(2017).

2.3 | Cognitive reappraisal task

The cognitive reappraisal task (reap) is described in detail in Schmitt 
et	al.	(2016).	In	brief,	participants	were	instructed	for	2	s	to	either	
look at or decrease their emotions via cognitive reappraisal dur-
ing the presentation of the following image. The following negative 
or	neutral	 images	were	 selected	 from	 the	 International	Affective	
Picture	System	(Lang,	Bradley,	&	Cuthbert,	1997)	or	the	Emotional	
Picture	 Set	 (Wessa	 et	 al.,	 2010)	 and	 presented	 for	 6	 s.	Negative	
images	 were	 low	 in	 valence	 and	 high	 in	 arousal.	 Neutral	 images	

TA B L E  1   Clinical and demographic measures

All (n = 31; 
SD)

Responders 
(n = 16; SD)

Nonresponders 
(n = 15; SD) Statistic (df)

All (n = 31; 
SD)

Responders 
(n = 16; SD)

Nonresponders 
(n = 15; SD) Statistic (df)

Pretreatment Post‐treatment

Age	in	years 27.8	(7.5) 27.5	(7.4) 28.1	(7.8) t(29) = 0.23

Education	in	
yearsa

11.1	(1.7) 10.6	(1.5) 11.5	(1.9) t(29)	=	1.51

Medication	in	
percent

48.4%	
(50.8%)

50%	(51.6%) 46.7%	(51.6%) t(29) = 0.18

Digit-span 13.9 (3.2) 14.2	(2.6) 13.6	(3.8) t(29)	=	0.45 15.2	(3.4) 14.6	(2.3) 15.7	(4.3) t(29)	=	0.96

BDIa 29.0 (8.0) 31.5	(6.0) 26.3	(9.2) t(29)	=	1.86 22.2 (11.4) 20.9	(11.6) 23.7	(11.4) t(29)	=	0.67

BSLa 2.1	(0.6) 2.3 (0.4) 1.8	(0.6) t(29)	=	2.65*  1.7	(0.8) 1.7	(0.9) 1.7	(0.8) t(29) = 0.11

DERS 132.1	(22.6) 134.9 (19.0) 129.2	(26.3) t(29)	=	0.70 108.0 (23.8) 108.0 (22.1) 108.1	(26.2) t(29) = 0.03

FDS 22.4	(13.5) 26.5	(13.2) 18.1	(12.7) t(29)	=	1.79 22.2 (14.1) 25.0	(15.5) 19.3 (12.2) t(29) = 1.13

STAI-state 57.8	(9.5) 60.1	(6.0) 55.5	(11.9) t(29) = 1.38 54.5	(11.6) 53.3	(11.9) 55.7	(11.5) t(29)	=	0.58

STAI-trait 62.8	(7.3) 65.4	(6.2) 60.0	(7.4) t(29) = 2.21*  57.1	(9.1) 57.2	(10.5) 57.1	(7.6) t(29) = 0.03

ZANa 16.4	(5.8) 19.4 (4.3) 13.1	(5.6) t(29)	=	3.59**  10.1	(6.4) 8.3	(5.6) 11.9	(6.9) t(29)	=	1.61

Note: Values presented as mean and standard deviation (SD). Statistic refers to comparison between responders and nonresponders as t-value	and	
degrees of freedom (df).	Medication	at	pretreatment	was	missing	six	data	points	(three	from	responders),	which	were	predicted	via	decision	tree.	The	
scores	of	the	Beck	Depression	Inventory	(BDI)	at	post-treatment	were	missing	one	data	point	(responder),	which	was	predicted	via	decision	tree.
Abbreviations:	BSL,	Borderline	Symptom	List;	DERS,	Difficulties	in	Emotion	Regulation	Scale;	FDS,	German	version	of	the	Dissociative	Experiences	
Scale;	STAI-state,	STAI-trait,	State-Trait	Anxiety	Inventory;	ZAN,	Zanarini	Rating	Scale	for	borderline	personality	disorder.
aVariable was selected in any of the final models including clinical and demographic measures. 
*p	<	.05.	
**p	<	.0025	(Bonferroni	corrected	for	20	comparisons).	
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had	intermediate	valence	and	low	arousal.	After	the	picture	pres-
entation,	 the	 letter	 “O”	was	 presented	 occasionally	 (for	 2	 s)	 and	
participants had to respond to that by pressing a button as fast as 
possible.	After	each	trial,	a	fixation	cross	was	presented	for	3–8	s	
(mean	5.5	 s).	 In	 total,	 the	experiment	comprised	72	 trials	 (18	per	
condition).

2.4 | Sensory distraction task

The	sensory	distraction	task	(pain)	is	described	in	detail	in	Niedtfeld	
et	al.	(2017).	In	brief,	participants	were	instructed	to	look	at	the	fol-
lowing image for 2 s. The following negative or neutral images were 
selected	 from	 the	 International	 Affective	 Picture	 System	 or	 the	
Emotional	Picture	Set	 and	presented	 for	6	 s.	 Similar	 to	 the	 cogni-
tive	reappraisal	task,	negative	images	were	low	in	valence	and	high	
in arousal and neutral images had intermediate valence and low 
arousal.	During	50%	of	the	presented	images,	a	painful	heat	stimulus	
was delivered to the participants (individually adapted temperature). 
After	the	picture	presentation,	the	 letter	“O”	was	presented	occa-
sionally (for 2 s) and participants had to respond to that by pressing 
a	button	as	fast	as	possible.	After	each	trial,	a	fixation	cross	was	pre-
sented	for	3–8	s	(mean	5.5	s).	In	total,	the	experiment	comprised	72	
trials (18 per condition).

2.5 | Cognitive distraction task

The cognitive distraction task (distr) is described in detail in Winter 
et	al.	(2017).	In	brief,	participants	were	instructed	to	either	look	at	or	
memorize	five	consonants,	presented	for	2	s,	followed	by	a	negative	
or	neutral	image	(presented	for	6	s)	selected	from	the	International	
Affective	 Picture	 System	 or	 the	 Emotional	 Picture	 Set.	 As	 in	 the	
other	tasks,	negative	images	were	low	in	valence	and	high	in	arousal	
and neutral images had intermediate valence and low arousal. In the 
memorize	condition,	participants	had	 to	press	a	 respective	button	
as fast as possible to indicate whether a presented character (pre-
sented for 2 s) was included in the initially presented string after 
presentation	of	the	image.	In	the	view	condition,	the	letter	“O”	was	
presented after the image (presented for 2 s) and participants had 
to	 respond	 to	 that	 by	 pressing	 a	 button	 as	 fast	 as	 possible.	 After	
each	 single-letter	presentation,	 a	 fixation	cross	was	presented	 for	
3–8	s	(mean	5.5	s).	In	total,	the	experiment	comprised	72	trials	(18	
per condition).

2.6 | MRI data acquisition

Whole-brain	fMRI	data	was	acquired	on	a	3	Tesla	Siemens	TRIO-MRI	
(Siemens)	with	a	32-channel	head	coil.	The	EPI	sequence	(same	for	
all	three	functional	tasks)	comprised	36	slices	(FOV	=	192	mm,	voxel	
size	3	×	3	×	3	mm,	voxel	matrix	64	×	64,	flip	angle	=	80°,	TE	=	30	ms,	
TR	=	2,000	ms).

Additionally,	 high-resolution	 anatomical	 data	 (sMRI)	 were	 ac-
quired	(MPRAGE,	T1-weighted	contrast,	FOV	=	256	mm,	voxel	size	
1	×	1	×	1	mm,	flip	angle	=	15°,	TE	=	2.75	ms,	TR	=	1,570	ms).

2.7 | Image processing

FMRI	 data	 were	 processed	 using	 SPM8	 (http://www.fil.ion.ucl.
ac.uk/spm/)	 as	 described	 in	 the	 corresponding	 reports,	 reap:	
Schmitt	et	al.	(2016);	pain:	Niedtfeld	et	al.	(2017);	distr:	Winter	et	al.	
(2017).	Preprocessing	comprised	slice	timing	correction,	spatial	rea-
lignment,	coregistration	onto	the	participants'	segmented	high-res-
olution	scan,	normalization	into	MNI	space,	and	spatial	smoothing.	
On	single-subject	level,	a	general	linear	model	per	time	point	using	
separate block regressors for the presentation time of each picture 
in	the	four	experimental	conditions	(6	s	each)	was	applied.	To	correct	
for	global	signal	intensity	variation	and	low-frequency	fluctuations,	
a	high-pass	filter	of	128	s	cut-off	was	applied.

SMRI	data	were	processed	using	CAT12	(http://www.neuro.uni-
jena.de/cat/)	 implemented	 in	 SPM12	 (http://www.fil.ion.ucl.ac.uk/
spm/). Preprocessing comprised data segmentation (adjusted for 
writing	 gray	 matter	 volumes	 [GMV]	 according	 to	 the	 Automated	
Anatomical	Labeling	Atlas	[AAL;	Tzourio-Mazoyer	et	al.,	2002]);	note	
that,	to	parallelize	data	with	Schulze	et	al.	(2016),	the	GMV	for	the	
vermic lobule IV/V of both hemispheres was summarized to a bilat-
eral volume. Data quality was checked visually and by sample homo-
geneity	using	CAT12.

ROIs	were	selected	according	to	Schulze	et	al.	(2016),	using	mul-
timodally	(smaller	or	higher	GMV	and	enhanced	or	decreased	acti-
vation) affected brain regions in patients with BPD in comparison 
with	 healthy	 controls	 (see	 erratum	 on	 Schulze	 et	 al.,	 2016,	 table	
3	 “Multimodally	 Affected	 Brain	 Regions	 in	 Patients	 With	 BPD”).	
Specifically,	 these	ROIs	were	 as	 follows:	 left	 amygdala,	 right	 infe-
rior	 frontal	gyrus	pars	opercularis,	 right	 inferior	 frontal	gyrus	pars	
triangularis,	 right	 superior	 frontal	 gyrus,	 left	 hippocampus,	 right	
parahippocampus,	 left	 precentral	 gyrus,	 left	 precuneus,	 right	 sup-
plementary	motor	 area,	 left	middle	 temporal	 gyrus,	 right	 superior	
temporal	gyrus,	and	bilateral	cerebellar	vermis	IV/V.	For	extraction	
of	Fmri	 activations,	 respective	masks	were	 created	using	 the	AAL	
implemented	 in	 the	 WFU	 Pickatlas	 (Maldjian,	 Laurienti,	 Kraft,	 &	
Burdette,	2003)	and	mean	single-subject	activation	was	extracted	
for the contrasts of watching negative versus neutral pictures (emo-
tional challenge) and regulating negative versus watching negative 
pictures	(regulation)	in	the	three	tasks	using	MarsBaR	(Brett,	Anton,	
Valabregue,	&	Poline,	2002).	GMV	for	these	ROIs	were	derived	from	
the.xml	files	written	by	CAT12.

2.8 | Statistical analysis

To	predict	therapy	response	to	DBT	using	CD,	fMRI,	and	sMRI	data,	
we	 performed	 a	 random	 forest	 classification	 approach,	 following	
the methodological (or statistical) procedure presented in Ball et al. 
(2014).	To	do	so,	the	randomForest package was used in R statistics 
(version	3.5.1,	http://cran.r-proje	ct.org).	Our	main	objective	was	to	
predict	responder	status	using	CD,	functional	activations,	and	GMV	
extracted	 from	 anatomical	 ROIs	 (functional	 and	 anatomical	 ROI's	
were	 selected	 from	 the	meta-analysis	 by	 Schulze	 et	 al.	 (2016),	 as	
described	under	“Image	processing”)	during	the	three	experiments	

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.neuro.uni-jena.de/cat/
http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://cran.r-project.org
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(reap,	pain,	and	distr)	 in	two	differential	contrasts	 (emotional	chal-
lenge	 and	 regulation),	 and	 the	 anatomical	 images	 at	 the	 start	 of	
treatment.

In	 contrast	 to	Ball	 et	 al.	 (2014),	we	 used	10,000	 classification	
trees	in	the	random	forest	procedure	and	performed	a	10-repeated	
10-fold	 cross-validation	 as	 described	 at	 https	://machi	nelea	rning	
maste	ry.com/k-fold-cross-valid	ation/	.	 The	 procedure	 was	 carried	
out	as	follows:	First,	the	order	of	the	subjects	was	shuffled.	In	the	
second	step,	the	data	were	split	 into	k groups (here: k	=	10,	while	
groups one to nine comprised three subjects and group 10 com-
prised	 four	 subjects).	 In	 step	 three,	 the	 following	 algorithm	 was	
performed for each unique group: (1) Take the group as test group; 
(2) the remaining groups build up the training group; (3) fit the ran-
dom forest model (each tree using a bootstrapped subsample of the 
model training group and a randomly selected subset of the seven 
sets	of	independent	variables	(CD,	fMRI,	sMRI,	and	all	combinations	
of these sets)) and evaluate it on the test group; 4. keep the evalua-
tion	scores	and	discard	the	model.	In	the	fourth	step,	the	evaluation	
scores were summarized. The whole procedure was repeated 10 
times	for	each	set	of	the	independent	variables,	resulting	in	a	differ-
ent	split	of	the	sample	during	each	repetition,	and	evaluation	scores	
were summarized over the 10 repetitions (see Figure 1). The calcu-
lated	median	permutation	importance	scores	(Genuer	et	al.,	2010)	
were then used to select variables for inclusion in the final models. 
Variables	survived	the	selection	process,	if	the	median	permutation	
importance was greater than the absolute value of the most nega-
tive value and t test showed significant difference to zero (Ball et 
al.,	2014).	After	 the	variables	 for	 the	final	models	were	 identified,	
the	described	10-repeated	10-fold	cross-validation	procedure	was	
applied	onto	the	final	models.	Afterward,	the	corresponding	mean	
values	 were	 used	 to	 evaluate	 classification	 accuracy,	 sensitivity,	
specificity,	 positive,	 and	 negative	 likelihood	 ratios	 (each	 subject	
was	classified	as	responder	or	nonresponder	70	times	(=seven	mod-
els × 10 repetitions)).

The	response	rate	for	DBT	was	51.61%	(95%	CI:	32.98%–70.25%),	
and	therefore,	a	simple	all-respond	model,	that	is,	classifying	all	pa-
tients	as	responders	would	achieve	51.61%	accuracy.	Consequently,	
only	 models	 performing	 better	 than	 70.25%	 perform	 statistically	
better	than	the	all-respond	model	and	therefore	provide	a	significant	
gain in prediction of DBT treatment outcome.

To	 aid	 in	 the	 interpretation	 of	 the	 selected	 ROIs,	 correlations	
were	 performed	 between	 the	 ROIs	 (fMRI	 and	 sMRI)	 and	 the	 CD	
measurements in the final models.

3  | RESULTS

Table 1 summarizes CD measures and statistics of responder—non-
responder	comparisons.	Effects	of	fMRI	tasks,	behavioral	data,	and	
relationships between brain activation and symptom severity have 
already	been	reported	(Niedtfeld	et	al.,	2017;	Schmitt	et	al.,	2016;	
Winter	et	al.,	2017).	Here,	we	report	the	initial	(all	variables)	and	the	
final model (subset of variables contributing most to classification 

accuracy)	for	each	set	of	predictor	variables.	All	permutation	impor-
tance scores chosen for the final models significantly differed from 
zero (p	<	.001).

3.1 | CD model

The original CD model comprised the following predictors: age in 
years,	education	in	years,	medication	at	start	of	therapy	(yes/no),	digit	
span,	 BDI	 total	 score,	 BSL	 total	 score,	 FDS	 total	 score,	DERS	 total	
score,	STAI-state	total	score,	STAI-trait	total	score,	and	ZAN-BPD	total	
score. Four predictors entered the final model (ordered by predictive 
value):	ZAN-BPD	total	score,	BSL	total	score,	education	in	years,	and	
BDI	total	score.	Accuracy	of	the	final	model	was	68.00%	(Table	2)	and	
therefore	not	significantly	better	than	a	simple	all-respond	model.

3.2 | Combined CD and sMRI model

The	original	combined	CD	and	sMRI	model	comprised	all	predictors	
used	in	the	original	CD	and	the	original	sMRI	model	(see	below).	Five	
predictors entered the final model (ordered by predictive value): 
ZAN-BPD	total	score,	BSL	total	score,	left	amygdala	(GMV),	and	BDI	
total	score.	Accuracy	of	 the	final	model	was	73.33%	(Table	2)	and	
therefore	significantly	better	than	a	simple	all-respond	model.

3.3 | Combined CD, fMRI, and sMRI model

The	original	combined	CD,	fMRI	and	sMRI	model	comprised	all	pre-
dictors	used	in	the	original	CD,	fMRI	(see	below),	and	the	initial	sMRI	
model	(see	below).	Six	predictors	entered	the	final	model	(ordered	by	
predictive	value):	ZAN-BPD	total	score,	left	amygdala	(reap,	regula-
tion),	left	amygdala	(reap,	emotional	challenge),	right	parahippocam-
pus	 (reap,	 regulation),	 BSL	 total	 score,	 and	 left	 amygdala	 (GMV).	
Accuracy	of	the	final	model	was	73.50%	(Table	2)	and	therefore	sig-
nificantly	better	than	a	simple	all-respond	model.

3.4 | Combined CD and fMRI model

The	original	combined	CD	and	fMRI	model	comprised	all	predictors	
used	in	the	original	CD	and	the	original	fMRI	model	(see	below).	Five	
predictors entered the final model (ordered by predictive value): 
ZAN-BPD	total	score,	left	amygdala	(reap,	regulation),	left	amygdala	
(reap,	emotional	challenge),	right	parahippocampus	(reap,	regulation),	
and	BSL	total	score.	Accuracy	of	the	final	model	was	74.75%	(Table	2)	
and	therefore	significantly	better	than	a	simple	all-respond	model.

3.5 | FMRI model

The	 original	 fMRI	model	 comprised	mean	 activation	 for	 the	 emo-
tional	 challenge	 and	 regulation	 contrasts	 in	 the	 three	 tasks	 (reap,	
pain,	and	distr)	before	treatment	in	the	multimodally	affected	ROIs	
selected	according	to	Schulze	et	al.	(2016).	Three	predictors	entered	
the	 final	model	 (ordered	 by	 predictive	 value):	 left	 amygdala	 (reap,	
regulation),	 left	 amygdala	 (reap,	 emotional	 challenge),	 and	 right	

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/
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parahippocampus	(reap,	regulation).	Accuracy	of	the	final	model	was	
75.92%	(Table	2)	and	therefore	significantly	better	than	a	simple	all-
respond model.

3.6 | SMRI model

The	original	 sMRI	model	 comprised	GMV	within	 the	multimodally	
affected	ROIs	selected	according	to	Schulze	et	al.	(2016).	Only	left	
amygdala	 (GMV)	 entered	 the	 final	 model.	 Accuracy	 of	 the	 final	
model	was	75.92%	(Table	2)	and	therefore	significantly	better	than	a	
simple	all-respond	model.

3.7 | Combined fMRI and sMRI model

The	original	combined	fMRI	and	sMRI	model	comprised	all	predic-
tors	used	 in	 the	original	 fMRI	 and	 the	original	 sMRI	model.	Three	
functional (but no structural) predictors entered the final model (or-
dered	by	predictive	value):	left	amygdala	(reap,	emotional	challenge),	
left	 amygdala	 (reap,	 regulation),	 and	 right	 parahippocampus	 gyrus	
(reap,	regulation).	Accuracy	of	the	final	model	was	76.08%	(Table	2)	
and	therefore	significantly	better	than	a	simple	all-respond	model.	
Noteworthy,	the	final	model	comprised	the	same	predictors	as	the	
fMRI	model,	but	in	a	different	order.	Therefore,	the	slight	improve	of	
the mean accuracy might be a statistical variation due to the boot-
strapped subsampling and random feature selection for each tree in 
the random forest procedure.

3.8 | Model comparisons

Table	2	shows	the	features	of	the	seven	final	models,	and	Figure	2	
shows the increase in predictive information of each model which 
performed	significantly	better	than	an	all-respond	model.	 In	terms	
of	the	mean	accuracy,	the	fMRI	model	and	the	sMRI	model	did	not	
differ,	whereas	the	combined	fMRI	and	sMRI	model	showed	a	good	
balance of the advantages of both models and resulted in best accu-
racy	and	lowest	negative	likelihood	ratio.	Left	amygdala	(reap,	emo-
tional	 challenge	 and	 regulation,	GMV)	 and	 right	 parahippocampus	
(reap,	regulation)	showed	sufficient	predictive	power	to	be	included	
in	any	of	the	final	models	including	fMRI	or	sMRI	data.	Localization	
and modalities with sufficient predictive power of these ROIs are 
summarized in Figure 3.

Twenty-four	of	the	31	subjects	were	misclassified	at	least	once	
in	the	70	classifications	of	which	five	subjects	(one	responder)	were	
misclassified	 in	more	 than	51.61%	of	 the	 tests.	Two	of	 these	 sub-
jects were hard to classify (more than five misclassifications during 
the	10	 repetitions	of	a	model)	 if	 the	model	contained	CD	or	 fMRI	
data,	 one	 subject	 if	 the	model	 contained	CD	or	 sMRI	data,	 one	 if	
the	model	contained	CD	data,	and	one	subject	was	hard	to	classify	

F I G U R E  1  Flowchart	of	the	10-repeated	10-fold	cross-
validation	procedure.	Green	round-edged	boxes	show	start	
and	stop	of	the	procedure,	blue	boxes	show	operations,	yellow	
parallelograms	show	output,	and	orange	diamonds	show	branches
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in all models. The hard to classify subjects did not differ from the 
remaining	subjects	in	terms	of	clinical,	demographical,	or	fMRI	data	
(if	corrected	for	multiple	comparisons),	but	showed	smaller	GMV	of	
the left middle temporal gyrus (p	<	.0005,	surviving	Bonferroni	cor-
rection) than the remaining subjects.

Split up by the number of subjects which were misclassified 
at	 least	once	per	model,	15	subjects	were	misclassified	by	the	CD	
model,	 13	 by	 the	 combined	CD	 and	 sMRI	model,	 12	 by	 the	 sMRI	
model,	 the	 combined	CD	and	 sMRI	model,	 and	 the	 combined	CD,	
fMRI,	and	sMRI	model,	and	nine	by	the	fMRI	and	the	combined	fMRI	
and	sMRI	model.

3.9 | Further investigation of the variables used 
in the final models

Figure 4 shows that responders had lower mean activation in the 
ROIs used in any final model during emotional challenge and greater 
mean	activation	during	regulation.	Regarding	GMV,	no	mentionable	
difference	was	found	between	the	groups	(see	Figure	5).

Correlations	(Spearman's	ρ; Bonferroni corrected: p	<	.0018	and	
uncorrected for multiple comparisons: p	<	.05)	between	all	variables	
used	in	the	final	models	(Figure	6)	showed	clustered	positive	correla-
tions between clinical measures and negative correlations between 
left amygdala function during cognitive reappraisal for emotional 
control	and	clinical	measures.	Also,	a	positive	correlation	between	
left amygdala function and right parahippocampus function during 
cognitive reappraisal for regulation was found.

4  | DISCUSSION

In	 this	study,	we	used	random	forest	models	based	on	clinical/de-
mographical	 data,	 functional,	 and	 structural	 neuroimaging	 data	 to	

predict DBT treatment response in patients with BPD. To our knowl-
edge,	 this	 is	 the	first	study	combining	CD,	 fMRI,	and	sMRI	data	 in	
random forest models for treatment outcome predictions. Our 
results	support	 the	conclusion	of	Ball	et	al.	 (2014),	 that	 fMRI	data	
can be used to generate predictions with reasonable test character-
istics.	 Furthermore,	we	 show	proof	of	principle	 that	 the	 combina-
tion of data from multiple modalities yields the potential to improve 
predictions.

The likelihood ratios indicate that relative to the odds of treat-
ment	response,	predicted	responders	based	on	the	combined	fMRI	
and	sMRI	model	(best	model	in	terms	of	accuracy	and	negative	like-
lihood	ratio)	are	3.54	times	more	likely	to	respond	to	DBT	and	pre-
dicted	nonresponders	are	3.45	times	less	likely	to	respond	to	DBT	
treatment.	Based	on	the	sMRI	model	(best	model	in	terms	of	positive	
likelihood	ratio),	predicted	responders	are	3.71	times	more	likely	to	
respond to DBT and predicted nonresponders are 2.94 times less 
likely to respond to DBT treatment.

All	models	except	the	CD	model	generated	predictions	that	were	
significantly	 better	 than	 chance	 with	 accuracies	 of	 up	 to	 76.08%	
(combined	 fMRI	 and	 sMRI	 model).	 The	 combined	 fMRI	 and	 sMRI	
model	 contained	 the	 same	 variables	 as	 the	 fMRI	 model	 (i.e.,	 no	
sMRI	data),	but	 in	a	different	order	and	should	therefore	be	 inter-
preted	as	a	variation	of	the	fMRI	model.	The	models	 including	CD	
data performed less well than the models without CD data (surpris-
ingly	 the	 combined	CD,	 fMRI,	 and	 sMRI	model	 only	 reached	 rank	
five of seven). This shows on the one hand the importance of testing 
combinations	of	available	modalities	of	data,	 since	certain	modali-
ties	might	 limit	 the	full	potential	of	others,	 if	 included	 in	the	same	
model.	On	the	other	hand,	our	results	point	toward	the	importance	
of	MRI-based	data	 in	mental	health	predictomics	and	personalized	
therapy	 (the	 CD-only	 based	 model	 showed	 an	 accuracy	 of	 68%).	
The	finding	that	the	CD-only	based	model	was	not	superior	to	the	
all-respond	model	supports	the	RDoC	approach	that	subgroups	of	

TA B L E  2   Test characteristics of all final models

Model Mean accuracy (%) Mean sensitivity Mean specificity
Mean LR+ (ub, lb 
95% CI)

Mean LR− (ub, 
lb 95% CI)

CD 68.00 0.77 0.61 2.00	(2.34,	1.65) 0.37	(1.37,	
−0.63)

CD	and	sMRI 73.33 0.74 0.74 2.88	(3.21,	2.54) 0.35	(1.49,	
−0.80)

CD	and	fMRI	and	
sMRI

73.50 0.73 0.75 2.91	(3.26,	2.57) 0.36	(1.46,	
−0.75)

CD	and	fMRI 74.75 0.75 0.72 2.74	(3.10,	2.39) 0.35	(1.39,	
−0.70)

fMRI 75.92 0.76 0.76 3.14	(3.48,	2.80) 0.31	(1.45,	
−0.82)

sMRI 75.92 0.72 0.81 3.71	(4.06,	3.37) 0.34	(1.52,	
−0.83)

fMRI	and	sMRI 76.08 0.77 0.78 3.54	(3.85,	3.24) 0.29	(1.59,	
−1.00)

Abbreviations:	CD,	clinical	and	demographic;	fMRI,	functional	magnetic	resonance	imaging;	LR−,	negative	likelihood	ratio;	LR+,	positive	likelihood	
ratio;	sMRI,	structural	magnetic	resonance	imaging;	ub,	lb	95%	CI,	upper	and	lower	bound	of	the	95%	confidence	interval.
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psychiatric patients that derive from neurobiological data are more 
likely to predict therapy response than purely clinical data (Bzdok 
&	Meyer-Lindenberg,	2018;	Cuthbert	&	 Insel,	 2013).	According	 to	
our	results,	there	is	no	clear	winning	model:	The	sMRI	model	wins	
by	 its	 simplicity	 (only	GMV	of	 the	 left	 amygdala	 as	predictor)	 and	
feasibility	in	clinical	routine	(only	one	T1	MRI	sequence	to	run	and	
no	time-consuming	task-based	data	to	collect	and	analyze),	while	the	
combined	 fMRI	and	sMRI	model	 comprises	 the	potential	 to	utilize	
the advances of both modalities (some subjects were classified cor-
rectly	in	all	tests	by	using	fMRI-based	data	but	not	sMRI-based	data	
and vice versa).

Brain activation during watching negative versus neutral im-
ages (emotional challenge) and regulating versus watching nega-
tive images (regulation) during the reappraisal task provided best 
predictive	power,	compared	with	 the	other	 tasks.	Especially,	 the	
mean activation within left amygdala during the reappraisal task 
yielded	 superior	 predictive	 power,	 compared	 with	 the	 variables	
derived from the other tasks. Therefore and consistent with our 
expectation,	especially	left	amygdala	played	a	crucial	role	in	pre-
dicting treatment response and showed functional differences be-
tween responders and nonresponders. From a prognostic point of 
view,	 hyperreactivity	 of	 the	 left	 amygdala	 during	 the	 emotional	

challenge condition in the reappraisal task points toward a lower 
chance to respond to DBT. This might imply that patients with 
lower emotional reactivity might be more likely to respond to DBT. 
Furthermore,	higher	cognitive	 functions	such	as	 regulating	emo-
tions might be trained during DBT. This is reflected in our finding 
that DBT responders show initially greater activation of the left 
amygdala	during	the	regulation	condition	 in	the	reappraisal	 task,	
reflecting	lower	regulation	success.	In	addition,	neuronal	activity	
of	the	right	parahippocampus,	as	a	crucial	part	of	the	emotion	reg-
ulation	network	(Frank	et	al.,	2014),	was	found	to	be	a	significant	
predictor of treatment outcome and showed similar features of 
activation as the left amygdala.

Notably,	 there	was	no	more	significant	difference	 in	BSL	and	
ZAN-BPD	 total	 scores	 between	 responders	 and	 nonresponders	
post-treatment.	This	might	be	explained	by	the	fact	that	categori-
zation	into	responders	and	nonresponders	via	the	well-established	
reliable	change	index	(Jacobson	&	Truax,	1991)	led	to	higher	BPD	
symptom	 severity	 in	 the	 responder	 group	 (Schmitt	 et	 al.,	 2016).	
The	 pretreatment	 to	 post-treatment	 differences,	 however,	 were	
greater	 in	 the	 responder	 group,	which	 is	 likely	 to	 be	 based	 on	 a	
known	phenomenon	(Gratz,	Dixon-Gordon,	&	Tull,	2014;	Schmitt	
et	al.,	2016).

F I G U R E  2   Comparison of positive and negative likelihood ratios (middle vertical line each) for the three models performing better than 
response	rate.	(a)	CD	and	sMRI,	(b)	CD	and	fMRI	and	sMRI,	(c)	CD	and	fMRI	(d)	fMRI,	(e)	sMRI,	and	(f)	fMRI	and	sMRI.	Blue	lines	indicate	
positive,	red	lines	negative	test	result	(i.e.,	predicted	responders	and	nonresponders,	respectively)
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Taken	 together,	 our	 findings	 (i.e.,	 high	predictive	power	of	 the	
mean activations in brain regions specifically connected with emo-
tion	regulation	during	the	reappraisal	task	(Koenigsberg	et	al.,	2009;	
Schulze	et	 al.,	 2011)	 as	well	 as	GMV	of	 the	 left	 amygdala)	 further	
highlight the relevance of emotion regulation skills in BPD psycho-
pathology and its importance in psychotherapy of BPD. Correlations 
between the variables used in the final models showed positive cor-
relations within clinical measures and between left amygdala and 
right parahippocampus function during regulation of the cognitive 
reappraisal task and negative correlations between clinical measures 
and the activation of left amygdala in the reappraisal task for emo-
tional challenge. This indicates that clinical measures are intermin-
gled with each other and suggests a link between brain activation 
and	BPD	symptoms	(represented	by	the	ZAN	and	BPD	scores)	being	
especially represented in the left amygdala during emotional chal-
lenge,	 but	 not	during	 regulation.	This	 finding	points	 toward	 a	 less	

regulated communication between subcortical areas as a response to 
emotionally	arousing	stimuli	(Hamann,	2001;	Phelps,	2004)	explicitly	
when	patients	are	not	trying	to	regulate	their	emotions.	Moreover	
and	contrary	to	all	other	models,	the	CD-only	based	model	did	not	
perform	significantly	better	than	the	all-respond	model,	highlighting	
the importance of neurobiological measures in treatment response 
prediction.

5  | LIMITATIONS

The main limitation of the present study is the small sample size. 
Therefore,	 the	 findings	 presented	 here	 should	 be	 interpreted	 as	
proof of principle and should not be read as suggestions for therapy 
selection until validated by studies using a larger sample size and 
models	 based	 on	 a	 wider	 scope	 of	 modalities.	 However,	 random	

F I G U R E  3  Localization	of	the	brain	
areas included in the final models. 
Left	amygdala,	(red,	reap	emotional	
challenge	and	regulation,	GMV);	right	
parahippocampus	(green,	reap	regulation)	
provided sufficient predictive power to 
be	included	in	any	of	the	final	models.	L:	
left	view,	R:	right	view,	Sup:	superior	view,	
Inf:	inferior	view,	Ant:	anterior	view,	Pos:	
posterior view. This figure was created 
using	MRIcroGL	(https	://www.mccau	
sland center.sc.edu/mricr ogl/home)

https://www.mccauslandcenter.sc.edu/mricrogl/home
https://www.mccauslandcenter.sc.edu/mricrogl/home
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forests use bootstrapping and should generate reliable predictions 
even in small samples and usually do not have the problems of over-
fitting	(Ball	et	al.,	2014;	Breiman,	2001;	Strobl	et	al.,	2009).	To	fur-
ther minimize the effects of small sample size and sample selection 

and	increase	stability	of	our	results,	we	used	a	high	number	of	clas-
sification	 trees	and	applied	a	10-repeated	10-fold	cross-validation	
for	variable	selection	and	testing	the	final	models.	Still,	the	sample	is	
too small to conduct model comparisons using traditional methods. 
Consequently,	conclusions	about	model	comparisons	are	limited	and	
replication using a larger sample is highly desirable.

Also,	there	are	further	modalities	and	variables	imaginable	to	en-
hance	 classification	 performance,	 such	 as	 additional	 questionnaires	
and	ROI's,	resting	state	fMRI,	diffusion	tensor	imaging,	PET,	(electro-)	
physiological,	genomic,	and	baseline	cortisol,	or	cortisol	reactivity	data.

Our study specifically tested treatment outcome prediction of 
DBT	 for	 BPD	 via	 random	 forest	 models.	 Nevertheless,	 there	 are	
various	 alternative	psychotherapy	options	 for	BPD,	which	 are	not	
covered by our test for utility of random forest models in treatment 
outcome	prediction	 for	BPD	per	se,	as	presented	here.	Therefore,	
further studies should consider testing alternative treatments or 
combinations	of	 treatments	as	well,	 to	 take	a	 further	 step	 toward	
finding the best individualized treatment.

6  | CONCLUSIONS

Here,	we	showed	proof	of	principle	that	random	forest	models	built	
with	CD	and	multimodal	MRI	data	can	provide	predictions	of	therapy	
response	with	reasonable	test	characteristics,	outperforming	models	
with	CD	data	only.	Our	results	suggest	that	fMRI	and	sMRI	have	a	
significant role in predicting treatment outcomes for DBT in patients 
with	BPD.	Future	studies	should	examine	if	our	findings	remain	valid	
after	testing	them	in	a	larger	sample,	set	an	additional	focus	on	the	
interplay	between	hard-wired	subcortical	structures	and	higher	cog-
nitive	 cortical	 functions,	 and	by	 continuing	 the	use	of	 the	promis-
ing approach of random forest classifications or machine learning in 
general	on	alternative	treatments,	to	develop	predictive	models	with	
verified	clinical	relevance.	Also,	classifications	might	be	further	en-
hanced	by	including	additional	sets	of	variables	as,	for	example	rest-
ing	state	fMRI,	diffusion	tensor	imaging,	PET,	(electro-)	physiological,	
genomic,	and	baseline	cortisol,	or	cortisol	reactivity	data.
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Error	bars	show	standard	error	of	the	mean.	l.Amy.GMV:	gray	
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