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ABSTRACT: Electrochemically active covalent organic frame-
works (COFs) are promising electrode materials for Li-ion
batteries. However, improving the specific capacities of COF-
based electrodes requires materials with increased conductivity and
a higher concentration of redox-active groups. Here, we designed a
series of pyrene-4,5,9,10-tetraone COF (PT-COF) and carbon
nanotube (CNT) composites (denoted as PT-COFX, where X =
10, 30, and 50 wt % of CNT) to address these challenges. Among
the composites, PT-COF50 achieved a capacity of up to 280 mAh
g−1 as normalized to the active COF material at a current density of
200 mA g−1, which is the highest capacity reported for a COF-
based composite cathode electrode to date. Furthermore, PT-
COF50 exhibited excellent rate performance, delivering a capacity
of 229 mAh g−1 at 5000 mA g−1 (18.5C). Using operando Raman
microscopy the reversible transformation of the redox-active carbonyl groups of PT-COF was determined, which rationalizes an
overall 4 e−/4 Li+ redox process per pyrene-4,5,9,10-tetraone unit, accounting for its superior performance as a Li-ion battery
electrode.

■ INTRODUCTION

Rechargeable Li-ion batteries are the mainstay of portable
electronics and the rapidly growing electric vehicles sector,1

and improving their performance is hugely desirable. The
theoretical capacities of electrode active materials restrict their
performance in Li-ion batteries,2 and for organic electrodes to
compete with conventional inorganic electrodes, new organic
materials with higher specific capacities are needed. Addition-
ally, electrode materials with good performance at higher rates
and, therefore, with faster charging times are also needed.
Unlike inorganic electrodes, organic materials have the
advantage of being composed of lightweight elements and
could be excellent candidates for lightweight applications, such
as battery-powered aircraft.3 They also have tunable molecular
structures and can, in some cases, be accessed from renewable
sources.4−6 Another advantage is that simple redox reactions in
organic electrode materials can occur on quick timescales,
which could, in principle, lead to the discovery of batteries with
better rate performances.7,8 Consequently, organic materials
are promising candidate electrodes for the next generation of
renewable Li-ion batteries with high capacity and rate
performance. There are also intrinsic shortcomings that need
to be overcome, however, such as poor intrinsic conductivity
and undesirable solubility in electrolytes.9

Covalent organic frameworks (COFs) are crystalline
materials that have modular structures and permanent
porosity.10 One advantage of this modularity for battery
applications is that redox-active units can be rationally
incorporated to prepare COFs with improved electrochemical
energy storage capacities.11−16 The well-defined and tunable
permanent porosity in COFs can also enhance ion transport to
active sites in their structures. COFs can also have better
electrolyte stability than discrete organic molecules, which tend
to be more soluble, leading to poor cycling stability.17−19

However, COFs often suffer from poor intrinsic conductivities
and low utilization of their redox-active sites because a
proportion of the active sites are deeply buried and inaccessible
in the long (usually one-dimensional) channels.17−21 Hence, to
improve the performance of COF-based electrodes, COF
materials with higher theoretical capacities, enhanced con-
ductivities, and optimized structures that permit facile access to
the redox-active sites are needed.
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It was reported previously that only one carbonyl group per
imide group in polyimides is redox-active in Li-ion batteries
(Figure S1a in the Supporting Information, SI) because
reducing the second carbonyl group requires potentials below
1.5 V vs Li+/Li, which leads in parallel to the decomposition of
the structure.22−25 By contrast, all the carbonyl groups in
phenanthraquinone and pyrene-4,5,9,10-tetraone derivatives
can be utilized as redox-active sites in Li-ion positive electrodes
without decomposing the structure (Figure S1b,c).19 For
example, we recently reported a phenanthraquinone-containing
COF that we used to form carbon nanotube (CNT) composite
cathodes for Li-ion batteries, demonstrating 95% utilization of
the carbonyl redox-active sites.26 However, although all the
carbonyl groups were electrochemically redox-active and the
COF/CNT composite allowed for ultrafast charging times, the
overall capacity was limited by the 157 mAh g−1 theoretical
specific capacity of the COF.26 Here, we designed composites
containing a pyrene-4,5,9,10-tetraone COF (PT-COF, Figure
1a) that has a much higher concentration of redox-active
carbonyl groups and a theoretical capacity that is ca. 73%
higher (Figure S2); the same COF was also investigated
recently as a supercapacitor.27 Composites of the PT-COF and
CNT achieved specific capacities of up to 280 mAh g−1 as
normalized to the active PT-COF material at 200 mA g−1.
After subtracting capacity contributions from the CNT and
carbon black components, this equates to up to 98% usage of
the electrochemical redox-active sites of PT-COF. This

capacity is the highest reported for a COF-based composite
Li-ion positive electrode.26

■ RESULTS AND DISCUSSION

PT-COF was synthesized via a one-step Schiff-base con-
densation reaction of 2,7-diaminopyrene-4,5,9,10-tetraone
(DAPT) and triformylphloroglucinol (TFG) in mesitylene
and 1,4-dioxane (1:4 v/v) at 120 °C. The imine condensation
reaction is followed by keto-enol tautomerization, which
enhances the chemical stability of the COF.28,29 Full synthetic
details and characterization data are provided in Supporting
Information Section 3 and Figures S3−8. 13C CP-MAS solid-
state NMR spectroscopy (Figure S9a) and FT-IR spectroscopy
(Figure S9b,c) were used to confirm the formation of the keto-
enol COF product. The PT-COF and CNT composites, PT-
COF10, PT-COF30, and PT-COF50, were synthesized using
the same method, but by adding 10, 30, and 50 wt % of CNT
to reaction mixtures, respectively. As shown in Figure 1b, the
powder X-ray diffraction (PXRD) pattern of PT-COF reveals
that the COF is crystalline and that the pattern matches the
simulated PXRD of the aligned AA stacked model. A Pawley
refinement confirmed that the PXRD data were consistent with
PT-COF having the same hexagonal P6/m symmetry and
comparable dimensions to the eclipsed AA stacked model
(Figure 1b). The addition of CNT into the COF reaction
appeared to decrease the crystallinity of PT-COF in the PT-
COFX composites somewhat, but the PXRD data indicated
that PT-COF still retained the same AA stacked structure

Figure 1. (a) Chemical structure of PT-COF. (b) PXRD pattern fitting of PT-COF with Pawley refinement (a = b = 30.07 Å, c = 3.55 Å, V =
2784.1 Å3, Rp = 2.21%, Rwp = 3.17%); inset shows AA stacked structural model for PT-COF along the crystallographic c axis (top). Atom colors: C,
gray; N, blue; O, red; and H, white. (c,d) TEM images of PT-COF and (e,f) TEM images of PT-COF50. The circled regions highlight the
comparable pore structures found in the TEM images of PT-COF and PT-COF50. Scale bars are included in the insets.
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(Figure S10). PXRD and FT-IR also confirmed that the PT-
COF exhibited good chemical stability in water, hydrochloric
acid (1 and 12 M), N,N-dimethylformamide, and N-methyl-2-
pyrrolidone after the PT-COF was immersed in each of these
liquids for 48 h (Figure S11).
The surface area and porosity of PT-COF and the PT-

COFX composites were measured by N2 adsorption−
desorption analysis at 77.3 K. PT-COF, PT-COF10, PT-
COF30, and PT-COF50 have Type II isotherms (Figure S12)
with Brunauer−Emmett−Teller (BET) surface areas of 432,
450, 473, and 318 m2 g−1, respectively. The pore size
distributions of PT-COF and the PT-COFX composites,
derived by fitting nonlocal density functional theory (NL-
DFT) models to the N2 isotherms, were ∼1.8 nm (Figure
S12), which is close to the pore size in the AA stacked model
(∼2.3 nm).
The morphologies of PT-COF and the PT-COFX

composites were characterized by transmission electron
microscopy (TEM). TEM further confirmed the crystalline
structure of the PT-COF. The TEM images showed that PT-
COF has an ordered structure with hexagonal-shaped pores
(areas outlined in yellow in Figure 1c,d). The TEM images of
PT-COF50 (Figure 1e,f), PT-COF10 (Figure S13a,b), and
PT-COF30 (Figure S13c,d) show that the PT-COF retains its
crystalline structure in the PT-COFX composites.
Electrochemical Properties. The PT-COF and the PT-

COFX composites were studied as positive electrodes in Li-ion
coin cells using Li metal as the counter electrode. The
electrolyte of 1 M lithium bis(trifluoromethanesulfonyl)imide
(LiTFSI) in dioxolane (DOL) and dimethoxyethane (DME)
(1:1 v/v) was used instead of the electrolyte of 1 M lithium
hexafluorophosphate (LiPF6) in ethylene carbonate (EC) and
dimethyl carbonate (DMC) (1:1 v/v). This was because there

might be undesired side reactions of the active sites with the
carbonate-based electrolyte (Figure S14).30,31

Cyclic voltammetry (CV) of PT-COF and the PT-COFX
composites was performed in the coin cells at 0.5 mV s−1 in a
potential window of 1.5−3.5 V (Figure 2a). All the curves have
similar shapes in the CV profiles. Four separated reduction
peaks were present at ca. 2.9, 2.7, 2.3, and 2.1 V, which
correspond to the redox reaction of the four carbonyl groups in
the DAPT unit (discussed in the following section).
Furthermore, with an increasing amount of CNT in the
composite, the peak current densities and integral charge
(based on the mass of PT-COF active material) increased. PT-
COF50 has the highest integral charge area, implying greater
utilization of redox-active sites in PT-COF50 than in PT-COF.
This may be because the charge transport within the composite
electrode was improved by adding CNTs.
Galvanostatic charge−discharge tests were performed in a

1.5 to 3.5 V voltage window for all the Li-ion coin cells (Figure
2b). The sloping plateaus in the galvanostatic charge/discharge
curves are consistent with the CV profiles of the electrodes,
corresponding to the reversible oxidization/reduction of the
carbonyl groups. The average discharge potential calculated
from the PT-COF and the PT-COFX composites is around
2.55 V, which is higher than most other carbonyl function-
alized organic electrodes.16,31−35 PT-COF delivered a specific
capacity of 193 mAh g−1 at 200 mA g−1, corresponding to 71%
of its theoretical capacity of 271 mAh g−1 (see Supporting
Information Section 2 for full details). By contrast, the specific
capacities of the PT-COFX composites increased up to a
maximum of 280 mAh g−1 in PT-COF50 (Table 1). After
subtracting capacity contributions from the CNT and carbon
black components, this capacity equates to a 98% utilization of
redox-active sites in the PT-COF50 electrode. Therein, the
capacity contributions of CNTs in the composites were only 1,

Figure 2. (a) CV profiles at a scan rate of 0.5 mV s−1; (b) charge−discharge profiles at 200 mA g−1; (c) cycling performances over 150 cycles at
200 mA g−1; (d) long cycling performance of PT-COF50 at 2000 mA g−1; (e) rate performance of PT-COF, PT-COF10, PT-COF30, and PT-
COF50. Open symbols represent the charge capacity, and solid symbols represent the discharge capacity.
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6, and 13 mAh g−1 for PT-COF10, PT-COF30, and PT-
COF50, respectively (Table S3). Moreover, after a steady
increase over the first ca. 30 cycles, the PT-COF and the PT-
COFX composite electrodes retained a near-constant capacity
after 150 cycles (Figure 2c). The initial increase in deliverable
capacity in the first ca. 30 cycles may be attributed in part to
the complete wetting of internal COF pores, thus improving
access to redox-active sites. The PT-COF50 composite
additionally exhibited excellent long-term cycling stability,
retaining 82% of its initial capacity after 3000 cycles at 2000
mA g−1 (Figure 2d). Notably, PT-COF and PT-COFX
composites had far superior cycling performance than the
DAPT monomer-based electrode (Figure S15). As shown in
Table S4, the capacity of PT-COF50 outperforms that of other
related COF-based composite cathodes.12−14,16,17,26,32,33,36,37

The electrochemical performance of pure CNT and carbon
black was also measured to determine their capacity
contributions toward the overall performance of the electrodes.
The electrodes of the CNT and carbon black exhibit capacities
of 13 and 2 mAh g−1 under 200 mA g−1, when the electrode is
made from CNT:PVDF (9:1 by mass) and carbon black:PVDF
(9:1 by mass), respectively (Figure S16).
The overall capacities of PT-COF, PT-COF10, PT-COF30,

and PT-COF50 cells are 128, 158, 145, and 109 mAh g−1,
respectively, when calculated based on the combined mass of
the active material and the conductive additives (Figure S17).
PT-COF50 shows the lowest capacity when considering the
mass of the whole electrode. This demonstrates that adding
too much conductive additives is a poor strategy for practical
cells. Here, we focus on the material-specific electrochemical
properties of PT-COF, and, consequently, all the gravimetric
capacities and currents are normalized to the mass of the active
material (PT-COF).
The rate performance of PT-COF and the PT-COFX

composites was then studied under different current densities
over the range of 200 to 5000 mA g−1 (Figure 2e and Table 1).
The capacity of all composites recovered to the initial values
once the current was reduced back to 200 mA g−1. The
capacity of PT-COF50 is the least dependent on the current
density, achieving a capacity retention of 82%, corresponding
to the capacity of 229 mAh g−1, at 5000 mA g−1 (equating to
18.5C, where the 1C = 271 mA g−1 derived from the
theoretical capacity of the PT-COF). Therein, this capacity
equates to a utilization of the carbonyl redox-active sites of
78%, even at the high current density of 5000 mA g−1. These
results indicate good rate performance. Simulation of the
electrochemical impedance spectra of the PT-COF and the
PT-COFX composite-based cells (Figure S18) was used to

extract the impedance characteristics (Table S5) of the
different composites before electrochemical cycling. Critically,
the calculated charge transfer resistance of the PT-COF50 cell
(27.2 Ω) was found to be significantly reduced compared with
PT-COF (189 Ω) and the PT-COF10 and PT-COF30
composites (164 and 100 Ω, respectively). This results in
the dramatically enhanced rate performance of PT-COF50
compared to PT-COF and the PT-COF10 and PT-COF30
composites. The rate capability of PT-COF50 outperforms
that of some recently reported COF cathodes. For example, a
two-dimensional (2D) boroxine-linked chemically active
pyrene-4,5,9,10-terarone COF (PPTODB), which contains
the same electrochemical redox motif with PT-COF, had a
capacity retention of less than 50% at 1500 mA g−1.37 PIBN-G
delivered a capacity of 271 mAh g−1 at 0.1C and showed 73%
of this capacity at 10C.33

Mechanistic Investigations. To probe the mechanism
underlying charge storage in the PT-COF electrodes, ex situ
Fourier-transform infrared (FT-IR) spectroscopy was first used
to characterize bulk material changes before and after cycling.
In the FT-IR spectra presented in Figure S19, the peak at 1675
cm−1 characteristic of the CO groups in the DAPT structure
disappeared when fully discharged to 1.5 V vs Li+/Li.
Encouragingly, the CO bond feature reforms when the
electrode is recharged, and the spectrum of the charge
electrode appears almost identical to that of the pristine
electrode. This observation, consistent with our earlier work on
the analogous 2-carbonyl 9,10-phenanthrequinone-based
COF,26 supports that the reversible charge storage involves
the redox electrochemistry of the carbonyl (CO) of the
DAPT structure. For the 4-carbonyl containing PT-COFX
composite materials, the earlier CVs (Figure 2a) indicate two
prominent reaction peaks separated by ca. 0.5 V, wherein both
of these primary peaks are further constituted by two peaks
close in energy (most distinctly for the first redox couple
observed on the negative sweep at ca. 2.9 V). This indicates a
four-step process (corresponding with the redox reactions
involving the four carbonyl groups on the DAPT unit).
Conversely, CVs of the DAPT monomer (Figure S20) reveal
only two distinct, and much sharper, peaks within the
voltammograms. Furthermore, the thermodynamic redox
potentials for the free monomer are also lower than those
measured for the COF. These observations suggest that the
structural properties of the rigid COF structure may alter the
reaction pathways, and associated energy levels, during
(de)lithiation. Kinetic analyses of the carbonyl redox reactions
in the PT-COF and PT-COF50 electrodes, utilizing CV peak
currents (0.1−1 mV s−1, see Figure S21 in the Supporting
Information for full description), indicate that the redox
chemistry for both materials appears as highly surface-
controlled, not limited by electrolyte diffusion within the
studied range. Therein, the b values for PT-COF50 were
slightly larger (closer to one), suggesting a structure more
optimized for faster, surface-controlled redox reactions.
To further characterize the reaction process, operando

Raman microscopy was used to track structural changes in
the PT-COF material during discharge and charge.38,39 The
study, summarized in Figure 3, used a free-standing porous
PT-COF electrode cycled galvanostatically versus a Li foil
counter electrode in parallel with spectral acquisition, well-
representing the true conditions of electrochemical cells
discussed earlier. Selected spectra presented stacked as a
function of the depth of the discharge (Figure 3a-i), following

Table 1. Electrochemical Performance of PT-COF, PT-
COF10, PT-COF30, and PT-COF50

electrode
Qa

/mAh g−1
active site
utilizationb (%)

rate performance

QmaxJ
c/mAh g−1

retentiond

(%)

PT-COF 193 71 76 39
PT-COF10 225 83 115 51
PT-COF30 267 96 145 54
PT-COF50 280 98 229 82

aThe highest delivered reversible discharge capacity (Q) at 200 mA
g−1. bSubtracted the capacity contribution of CNTs. cCapacity at a
current density of 5000 mA g−1 (QmaxJ).

dCapacity retention at 5000
mA g−1 related to 200 mA g−1.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c02196
J. Am. Chem. Soc. 2022, 144, 9434−9442

9437

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c02196/suppl_file/ja2c02196_si_001.pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c02196?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


baseline subtraction and normalization, reveal the evolution of
new and shifting bands during discharge that are reversed upon
charging of the electrode (Figure 3a-ii). The primary changes
in the measured spectra relate to changes in the CO
stretching mode (1686 cm−1) and the band growth/shift at
1576−1560 cm−1, relating to the formation of a CC mode of
varying delocalization and aromatic character. A slight
downward shift is also observed in the peak at 1390 cm−1,
attributed to the increasing aromaticity of the CC bonds

within the pyrene structure as the discharge proceeds. Selected
spectra were fitted to extract information on peak splitting and
shifting as a function of the discharge process (Figure 3c, see
Figure S22 for all fitted spectra). Therein, the assigned CO
stretching mode reduces in intensity on discharge, in
agreement with a report on in situ FT-IR spectroscopy of a
related non-COF polymer material.40 However, we also
observed that this CO mode splits with the formation of a
lower wavenumber band (1658 cm−1) assigned to the

Figure 3. Operando Raman microscopy of a free-standing PT-COF electrode during galvanostatic discharging (a-i, lithiation) and charging (a-ii,
delithiation) between 3.5 and 1.5 V vs Li+/Li at 54 mA g−1 (C/5). (b) Selected spectra from discharge and charge steps showing the primary shifts/
growths in peaks of interest and the observed isosbestic point highlighted by the turquoise circle (ca. 1670 cm−1). (c) Example fitted spectra used
to extract peak characteristics for the changes observed in (d) aromatic CC bond and (e) the lithium enolate C−O−Li mode as a function of
discharge. (f) Proposed 4 e− (4 Li+) reversible electrochemical redox mechanism of PT-COF during the lithiation/delithiation process.
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developing lithium enolate character (C−O−Li, Figure 3f). In
line with the complete loss of the pure CO mode below, ca.
2.8 V, a well-defined and consistent isosbestic point (1670
cm−1, Figure 3b) is observed between these two modes,
indicating the relation between the two species as the discharge
reaction proceeds. The lithium enolate peak intensity grows as
a function of the discharge, progressively shifting to lower
wavenumbers until close to the end of the main discharge
voltage plateau at ca. 2−2.2 V (Figure 3e).
The assigned CC mode (1576−1560 cm−1) intensity

increases during discharge until ca. 2.5 V. In parallel, the fitted
peak location undergoes a transition as a function of the
discharge state, first shifting to higher wavenumbers from 1568
cm−1 at 3.4 V to 1576 cm−1 at 2.8 V (Figure 3d),
corresponding with the complete loss of the CO stretching
mode below 2.8 V during discharge (described above). The
CC peak then shifts to progressively lower wavenumbers as
the discharge proceeds, leveling out to 1560 cm−1 toward the
end of the primary plateau at ca. 2−2.2 V, where the bulk
lithiation process is complete. This transition in peak shifts can
be ascribed to the transition between the two main reaction
steps highlighted in Figure 3f. Initially, moving from the 1,2-
diketone group (2 groups per pyrene-4,5,9,10-tetraone unit) to
the 1 e− reduced form, consisting of delocalized charge sharing
coordination of 1 Li+ cation per group. Subsequently,
confirmed by the loss of pure CO signals at ca. 2.8 V and
the concurrent downward shift of the CC bond character
below this voltage, the second e− reduction (per group)
generates the final di-lithium enolate groups (2 per PT unit).
The downward shift in the CC bond as the discharge
reaction proceeds from 2.8 to ca. 2 V arises from the overall
aromaticity of the pyrene ring network formed in the final
reduced product.
While the Raman investigations reveal mechanistic and

product information for the two main 2 e− redox processes for
PT-COF electrodes, the observed peak splitting in the CVs of
the PT-COFX composite electrodes (discussed earlier, Figure
2a) implies that the redox process observed during cycling
would be better described as a four-step process. Critically, this
is different from the constituent monomer, which, from the
sharp and well-defined CV peaks, clearly undergoes two 2 e−

reductions. We, therefore, postulate that the crystalline
organization and rigidity of the PT-COF, especially within
the plane of an individual layer, causes a splitting of each 2 e−

step. This most notably increases the overpotential of
introducing the second Li+ cation to the PT unit (given 2
distinct CV peaks are herein clearly identifiable). First, we
consider the PT-COF layers simply as a continuous series of
tessellating hexagons containing 1 PT unit per edge (i.e., 6 PT
units per hexagon resulting in 6 inner and 6 outer 1,2-diketone
groups, illustrated in Figure S23). For the first electron
reduction, to maximize charge separation in the hexagonal
structures, three nonadjacent PT units (i.e., edges 1, 3, and 5 of
hexagon A) accept 1 Li+ cation inside the ring and the
remaining 3 (i.e., edges 2, 4, and 6) accept 1 Li+ cation outside
the ring (repeating across the COF plane). For the second e−

reduction, where we observe a small energy barrier in the CVs,
the second Li+ cation per PT unit is introduced to the opposite
side of the PT unit. Therefore, the Li+ cation must coordinate,
during the reduction, to a 1,2-diketone unit (e.g., edge 2) that
is adjacent to 2 already reduced groups (e.g., edges 1 and 3).
This spatial distribution of charge from the reduced groups
surrounding the actively reacting groups at each step could

contribute to the observed energy barrier. This Li+

coordination to reducing species must also involve some
degree of desolvation, given the COF pore/channel size of 1.8
nm accepts 3 Li+ cations per step (12 cations per internal
hexagonal COF unit channel), and the size of solvation species
[Li(DME)X]

+ is in the region of 0.7−0.3 nm for X = 3 and 1,
respectively.41 Such contributions could only arise from the
rigid superstructure of the PT units in the COF and, thus,
would not be expected from the discreet, redox-active DAPT
monomer.
In addition to the differences between the voltammetry of

COF and monomeric forms of the active material (discussed
earlier), we also observed an interesting phenomenon within
the Raman spectra of the PT-COF with and without the
electrolyte. The CO stretching mode of the (1686 cm−1) in
the dry, pristine PT-COF shifted negatively by ca. 10−12 cm−1

when measured wetted with the electrolyte (see Figure S24).
Conversely, this shift between dry and wetted is not observed
at all for the DAPT monomer, again suggesting that the rigid
organization of the active unit into the COF structure greatly
affects interactions with the electrolyte. This shift in the CO
mode observed in the dry/wetted PT-COF is comparable to
that observed during the discharge process in the operando
electrochemical cell. Critically, however, the shift is not
coupled with the observed changes relating to the CC
modes at 1576−1560 cm−1 that arise from the electrochemical
reduction process. Therein, it is suggested that the shift in the
Raman mode arises from weak coordination with the partially
desolvated Li+ cations as the electrolyte diffuses into the COF
pores. These shifts (also observed in the wetted electrode at
open-circuit potential in the operando cell) are reversed by
positive polarization of the working electrode, as can be seen
by the first spectra collected at 3.4 V (t = 0 h in the discharge,
highlighted in Figure S24).

■ CONCLUSIONS

A COF-based electrode with a high specific capacity was
designed by tuning the molecular structure of the COF and
forming composites with CNTs. The utilization of the redox-
active sites in the PT-COF-based electrode, which was 71% in
the pure COF electrode, increased to 98% in the PT-COF50
composite containing 50 wt % of CNT. This utilization of
active sites enabled PT-COF50 to deliver an ultrahigh capacity
of 280 mAh g−1 at 200 mA g−1 as normalized to the active
material, which is the highest value so far among COF-based
composite electrode materials to date, to the best of our
knowledge. The optimized composite electrode also displayed
excellent rate performance, retaining 82% capacity (translating
to 229 mAh g−1) at high currents of 5000 mA g−1. The
remarkable performance of PT-COF50 was made possible by
the inclusion of four redox-active sites per unit in the PT-COF,
with the addition of CNT shown to improve the accessibility
of active sites significantly.
To rationalize the performance of the PT-COF50

composite, we utilized operando Raman microscopy, which
revealed the primary structural changes and key transition
steps for electrochemical reactions of the carbonyl groups of
the COF electrode in the Li+-containing electrolyte. In
addition, voltammetry of the PT-COF materials indicates a
four-step (4 e−/Li+) process, and a mechanism was proposed
taking into consideration the effects of the rigid superstructure
of the crystalline COF.
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Organic electrode materials have the potential to achieve
high capacity by designing the chemical structure. However,
the present drawback of organic electrodes is that a large
amount of conductive additive is required. Improving the
specific capacity of organic electrode materials would
accelerate organic electrode materials toward practical use,
for example, by designing porous fully conjugated COFs with
higher intrinsic conductivities, which would reduce the need
for conductive additives.
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