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Abstract

The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the
primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be
identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic
method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced
halorhodopsin (eNpHR), a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells
(RGCs) by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct.
Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow
laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively
inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by
visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that
photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The
method established here can most likely be applied to a variety of brain regions for studying the function of individual
inputs to these regions.
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Introduction

Multiple inputs regulate neuronal and circuit activities in almost

all brain systems. In the early visual system, the superficial layer of

the superior colliculus (sSC) receives visual information directly

from the retina and indirectly from the primary visual cortex (V1)

that receives inputs from the lateral geniculate nucleus (LGN) [for

review, see 1]. Electrical stimulation experiments revealed that

both inputs drive the activity of sSC neurons [2–7]; however, the

physiological function of the individual inputs remains unclear. To

address this issue, it is necessary to selectively inactivate each input.

One way to accomplish this is by lesioning. By lesioning V1, it is

possible to inactivate the cortico-tectal input, thus isolating the

retino-tectal input. However, such a manipulation may result in

plastic changes in the remaining system. For example, V1 lesion

studies showed that the retino-tectal connection becomes impor-

tant for orienting behavior after the lesion, suggesting increased

synaptic efficacy ([8], Kato, R. and Isa, T., unpublished

observation). On the other hand, it is theoretically impossible to

isolate the cortico-tectal input by making a retinal lesion or by

pharmacologically blocking the retinal activity because such

manipulations disrupt both the retino-tectal and retino-LGN-V1-

sSC pathways. Therefore, to selectively suppress the retino-tectal

pathway we considered whether a recently developed optogenetic

approach could possibly resolve such problems [9,10].

Halorhodopsin (NpHR) is a yellow light-sensitive, microbial

chloride pump derived from Natronomonas pharaonis [11]. When

expressed in neurons, somatodendritic photo-activation hyperpo-

larizes the membrane potential and suppresses spiking activities

within several milliseconds, leading to reversible changes in

animal’s behavior [12–16]. The fact that photo-activation of

axonally expressed channelrhodopsin-2 (ChR2), a blue-light

sensitive cation channel, can induce spikes in axons and elicit

synaptic responses [17–20] prompted us to hypothesize that if

axonal NpHR is functional, then it would be possible to inhibit

synaptic transmission in a pathway-selective manner with a

resolution of milliseconds by expressing NpHR in a target

pathway without plastic changes. However, it is still unknown

whether photo-activation of NpHR expressed in axons blocks

synaptic transmission, and thus, it is important to address this

issue. Here we report that photo-activation of the membrane

surface-targeting enhanced NpHR (eNpHR) [21,22], expressed in
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axons of retinal ganglion cells (RGCs) using an adeno-associated

virus serotype-2 (AAV2) vector, selectively inhibits retino-tectal

synaptic transmission, resulting in reduction of spiking activities in

sSC neurons elicited by visual stimulation in mice. The method

established here would be applicable to other brain regions in

many species including those in which development of transgenic

animals is technically difficult at present.

Materials and Methods

This study was approved by the Animal Research Committee of

Okazaki National Research Institutes (09A206) and Kyoto

University (MedKyo:10044). All efforts were made to minimize

the suffering and number of animals used in this study.

AAV vector preparations
The viral expression construct pAAV-cytomegalovirus promot-

er (CMV)-eNpHR-enhanced yellow fluorescent protein (EYFP)-

woodchuck post-transcriptional regulatory element (WPRE) was

made by subcloning the eNpHR-EYFP-WPRE fragment (kindly

provided by Dr. K. Deisseroth at Stanford University) into an

AAV2 expression cassette, pAAV-MCS (Stratagene). The recom-

binant vector was co-transfected with a helper plasmid encoding

the AAV2 rep/cap genes and an adenoviral helper plasmid into

HEK293 cells (#240073, Stratagene) by calcium phosphate co-

precipitation. The crude viral lysate was purified by CsCl

centrifugation. The final viral concentration was 1.0–1.161013

genome copies/ml.

Intravitreous injection of AAV2 vector
C57BL/6 mice, aged 12–13 days and 8–9 weeks, were used for

the present in vitro and in vivo studies, respectively. The mice were

anesthetized with a mixture of ketamine (60 mg/kg, ip) and

xylazine (10 mg/kg, ip). Under a stereomicroscope, mice received

unilateral pressure injections of 1.0–1.5 ml of AAV vector solution

into the vitreous body through the sclera region posterior to the

limbus using a glass micropipette with a tip diameter of 20–30 mm.

After the injection, the pipette was left in place for an additional

30 s and then slowly withdrawn.

Slice preparation and whole-cell recordings in vitro
Three weeks after the injection, the mice were deeply

anaesthetized with isoflurane and decapitated. The brains were

quickly removed and submerged in ice-cold modified Ringer’s

solution containing (in mM): 234 sucrose, 2.5 KCl, 1.25

NaH2PO4, 10 MgSO4, 0.5 CaCl2, 26 NaHCO3, and 11 glucose,

and bubbled with 95% O2–5% CO2 (pH 7.4). Parasagittal slices

(300 mm thick) of the SC were cut with a Microslicer (VT1200S,

Leica) and incubated at room temperature for .1 h before

recording in standard Ringer’s solution containing (in mM) 125

NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 26 NaHCO3, 1.25 NaH2PO4,

and 25 glucose, and bubbled with 95% O2–5% CO2 (pH 7.4).

The AAV2-infected retinas were removed, stored in a fixative

containing 4% paraformaldehyde in 0.1 M phosphate buffer (PB)

(pH 7.2), and processed for histological examination as described

below.

Slices were mounted in a recording chamber on an upright

microscope (BX-51WI, Olympus) and continuously superfused

with the standard Ringer’s solution at a flow rate of 2–2.5 ml/min.

Whole-cell patch-clamp or cell-attached recordings were obtained

from sSC neurons by visual control of patch pipettes, which were

prepared from borosilicate glass capillaries and were filled with an

internal solution containing (in mM); 150 Cs-gluconate, 5 CsCl, 2

MgCl2, 4 Na2ATP, 0.3 Na3GTP, 10 EGTA, 10 HEPES, 2-4 QX-

314, and 0.1 spermine (pH was adjusted to 7.3 with CsOH). To

stain the recorded neurons, biocytin (2–4 mg/ml; Sigma) was

dissolved in the solution. The resistance of the electrodes was 4–

8 MV in the Ringer’s solutions. The actual membrane potentials

were corrected by the liquid junction potential of 210 mV. In

voltage clamp recordings we held membrane potentials at

270 mV, aiming to isolate EPSCs. All recordings were performed

at 33–34uC. Electrical stimulation was applied as a cathodal

square-wave pulse of 200 ms duration with an intensity of up to

100 mA using a glass electrode filled with normal Ringer’s solution.

Because we often could not firmly trace EYFP-positive RGC fibers

that were traveling from the rostral pole of the SC to the recorded

cells, we delivered the electrical stimulation to the optic nerve layer

of the SC just rostroventral (,250 mm) to the recorded cells where

many eNpHR-positive fibers that would make synaptic contacts

with the recorded cells were observed, instead of stimulating the

rostral pole of the SC.

To apply yellow laser light to the eNpHR-expressing axons in

the sSC, an optical fiber (diameter, 1 mm) was coupled to a

561 nm laser diode (CL561-050-O, CrystaLaser). The fiber output

measured under this condition was 36 mW. The fiber was held by

a micromanipulator (Narishige) and the tip of the fiber was located

,500 mm away from the slice surface. By this positioning, not only

the eNpHR-positive axons but also recorded cells were illuminated

by the laser.

Data were acquired with a Multiclamp 700B amplifier and

pClamp10 software (Molecular Devices).

Visualization of recorded neurons
After recording, the slices were fixed with 4% paraformalde-

hyde in 0.1 M PB (pH 7.4) for more than a day at 4uC. After

fixation, biocytin-filled neurons were visualized by the ABC

method (Vectastain, Vector Laboratories). Details are described

elsewhere [23,24].

Visual stimulation and single-unit recordings in vivo
Four to five weeks after the vector injection, mice were

anesthetized with urethane (1.2–1.5 g/kg in saline, i.p.) and their

heads were placed in a stereotaxic apparatus (Narishige).

Dexamethasone (2.0 mg/kg) was injected subcutaneously. Addi-

tional urethane (0.2–0.3 g/kg) was administered as needed. The

incision was infiltrated with lidocaine (xylocaine jelly). The

animal’s body temperature was maintained at 37uC by a rectal

thermoprobe feeding back to a heating pad (BWT-100, Biore-

search Center). Heart rate was monitored continuously through-

out the experiment. The eye was covered with silicone oil. After

performing a craniotomy to expose the cortex overlying the SC,

the exposed area was covered with agarose (2% in saline). A glass

electrode (10–15 MV, filled with 0.5 M KCl) was vertically

lowered into the brain using a micromanipulator, until visual

responses to nearly whole visual field stimuli were detected. After

entering the sSC, the glass electrode was slowly advanced and

single unit activities were recorded. Electrical signals were

bandpass-filtered (0.3–6 kHz) and amplified with a Multiclamp

700B amplifier (1,000X, Molecular Devices) before being captured

on a computer using an analog-to-digital card (National

Instruments).

Visual stimuli were generated by Matlab (Mathworks) programs

using the Psychophysics Toolbox extensions [25,26]. The stimuli

were displayed on a 17-inch LCD monitor placed 25 cm from the

mouse’s eye contralateral to the recorded hemisphere. The eye

ipsilateral to the recorded hemisphere was covered. To determine

the receptive field of sSC neurons, 6u light circles (55–60 cd/m2)

were flashed at different locations on a gray background (6–8 cd/

Optical Inhibition of Retino-Tectal Transmission
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m2), and then spike rate during the 1 s response to both flash onset

and offset were calculated for each location. A custom-made

program using MatLab (Mathworks) generated a peristimulus time

histogram (PSTH) from all the responses to visual stimulation. The

center of the receptive field was defined as the location where the

maximum number of spikes per second was observed in the

PSTH. After determining the center of the receptive field, light

circles (6–12u in diameter) were presented for 300 ms. An inter-

stimulus interval (duration, 5 s) was introduced to minimize cell

adaptation. The number of spikes was counted to calculate the

response to each stimulus. Spikes occurring in the first 30–330 ms

after turning on the stimulus were binned as part of the ON

response of the cell, and subsequent spikes (330–1230 ms) were

binned into the OFF response.

To apply yellow laser light to the sSC, an optical fiber (diameter,

500 mm) was coupled to a 561 nm laser diode (CL561-050-O,

CrystaLaser). The fiber output measured under this condition was

20 mW. The fiber held by a micromanipulator, which was

different from the manipulator that held the recording electrode,

was lowered obliquely into the cortex (,0.5 mm in depth)

overlying the sSC ,0.5 mm rostral and ,0.15 mm lateral to

the recording site. The angle of the fiber was adjusted so that the

laser illumination covered the recording site.

The mice were killed at the end of recordings with an overdose

of sodium pentobarbital (80 mg/kg, i.p.), perfused transcardially

with 0.05 M phosphate buffered saline (PBS, pH 7.4) followed by

fixative containing 4% paraformaldehyde in 0.1 M PB (pH 7.4).

The brains and eyes were removed, postfixed for 1–2 days, and

processed for histological examination as described below.

Data analysis
Data obtained in vitro and in vivo were analyzed with Clampfit

(Molecular Devices) and Matlab (Mathworks), respectively. All

values are expressed as mean 6 SEM. Statistically significant

differences were examined with a two-tailed Student’s paired t-test

and were considered significant if P,0.05.

Histology
To confirm the expression of eNpHR-EYFP-positive axons in

the sSC, the brains removed after in vivo recordings were

cryoprotected in 30% sucrose in 0.1 M PB (pH 7.4), and 50–

100-mm-thick coronal or sagittal sections were cut on a freezing

microtome. The expression of eNpHR-EYFP in RGCs was

examined in whole-mount retinas and retinal vertical sections (16-

mm thickness). Fluorescence was observed and photographed with

digital microscopes (Axioplan2, Zeiss and BIOREVO, BZ-9000,

Keyence) or with a confocal microscope system (Fluoview 300,

Olympus).

To calculate the percentage of eNpHR-expressing RGCs, the

retinal vertical sections were immunohistochemically stained by a

neuronal cell maker NeuN. The sections were blocked in PBS with

10% normal goat serum (NGS) and 0.1% Triton X-100 at room

temperature and reacted with mouse monoclonal anti-NeuN

antibody (1:400; Millipore) in PBS with 2% NGS and 0.1% Triton

X-100 at 4uC overnight. The sections were then washed four times

in PBS with 0.1% Triton X-100 and incubated with Alexa Fluor

594-conjugated anti-mouse IgG (1:200; Invitrogen) in PBS with

2% NGS and 0.1% Triton X-100 at room temperature for 3 h.

After washing four times in PBS, the sections were coverslipped

with SlowFade Antifade Kit (Invitrogen). Fluorescence was

observed and photographed with digital microscopes (Axioplan2,

Zeiss). For quantification of the percentage of eNpHR-expressing

RGCs, we chose five sections from each of three retinas, in which

eNpHR-expressing RGCs were relatively densely observed, and

counted the number of NeuN-positive cells as RGC number and

also counted the number of EYFP-positive cells as eNpHR-

expressing cell number in the whole area of each section.

Results

Expression of eNpHR in the retina and sSC
To introduce eNpHR into RGCs, we used the AAV2 vector

with a CMV (Fig. 1A), based both on our preliminary data

showing that AAV2 is the most effective expression vector among

AAV1, 2 and 5, which we tested (data not shown), and on previous

reports demonstrating that AAV2 as the preferable carrier vector

for RGCs in rodents [27–29, but see 30]. We first histologically

confirmed the expression of eNpHR in RGCs via the fluorescence

of EYFP. As shown in Figure 1B, three to four weeks after the

intravitreous injection, bright green fluorescence was observed in

the whole-mounted retina with intermittently dense and scarce

fluorescence. At high magnification, many EYFP-positive RGCs

and axons were observed at the focus level of RGC layers (Fig. 1C).

In retinal vertical sections bright fluorescence was also confirmed

in ganglion cells and in the inner plexiform layer (IPL), suggesting

both ON and OFF ganglion cells express eNpHR (Fig. 1D). We

frequently observed EYFP signals in amacrine cells (Fig. 1D,

arrows) and occasionally in horizontal cells (Fig. 1D, arrowhead)

and bipolar cells (data not shown) as reported previously in AAV-

ChR2 and AAV-HaloR (another abbreviation of NpHR) injection

studies [28,29].

To quantify the percentage of eNpHR-expressing RGCs, we

immunohistochemically stained retinal vertical sections with a

neuronal cell maker NeuN (Fig. S1) and selected the sections in

which relatively dense EYFP fluorescence was observed. We then

counted the number of NeuN-positive and EYFP-eNpHR-positive

cells in the RGC layer of five sections obtained from each of three

retinas (a total of 15 sections). We found a very high expression

(.80%) of eNpHR in many retinal regions, a moderate expression

(60 , 80%) in some areas, and a slightly lower expression (, 60%)

in a few regions (Table 1).

Consistent with the findings in the retina, we also confirmed the

presence of eNpHR-EYFP-expressing RGC axon terminals in the

sSC. As revealed by the EYFP fluorescence, dense axonal

expression of eNpHR was observed throughout the sSC layers,

although intermittently dense and scarce expression regions were

detected, suggesting that the expression level was not homogenous

over the retina (Fig. 1E).

Laser illumination blocks retino-tectal synaptic
transmission

Next, we examined whether photo-activation of axonally

expressed eNpHR blocks retino-tectal synaptic transmission at

the axon terminals in the sSC. Parasagittal slices including the sSC

were obtained from mice that received an intravitreous injection of

AAV2 vector three weeks before the experiments. We performed

whole-cell recordings from sSC neurons that were surrounded by

dense eNpHR-positive axons (Fig. 2A,C). Electrical stimulation

was applied to the optic nerve layer, where the RGC axons are

located, and eNpHR was activated by illuminating fluorescence-

positive axons with an optical fiber coupled to an yellow laser

diode (see Materials and Methods). Figure 2D1 illustrates one

example of the effect of laser illumination on whole-cell recorded

currents. Electrical stimulation evoked EPSCs in the absence of

laser illumination (Fig. 2D1, left). Yellow laser illumination applied

to the slice (probably illuminating both the recorded neuron and

surrounding axons) from 100 ms before to 50 ms after the

electrical stimulation (Fig. 2B), clearly reduced the amplitude of

Optical Inhibition of Retino-Tectal Transmission
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the evoked EPSCs (Fig. 2D1, middle). The suppression disappeared

immediately after turning off the laser (Fig. 2D1, right). In another

example, laser illumination partially suppressed the EPSCs

(Fig. 2D2). The degree of suppression varied from cell to cell

(Fig. 2E), presumably depending on various factors discussed later.

In any case, these results indicate that photo-activation of eNpHR

expressed in axons reversibly inhibits synaptic transmission. To

investigate properties of the laser illumination-induced suppression

in more detail, we further analyzed cells that exhibited .40%

inhibition in the next series of experiments.

We next examined the most effective duration and timing of

laser illumination, relative to electrical stimulation, for suppressing

Figure 1. Expression of eNpHR-EYFP in retina and sSC. A, The AAV-CMV-eNpHR-EYFP-WPRE expression cassette: ITR: inverted terminal repeat;
CMV: cytomegalovirus promoter; eNpHR: enhanced halorhodopsin; EYFP: enhanced yellow florescent protein; WPRE: woodchuck post-transcriptional
regulatory element; hGH pA: human growth hormone polyadenylation sequence. B,C, eNpHR-EYFP fluorescence images taken from retinal whole-
mount at low (B) and high (C) magnification. The rectangular area in B is enlarged in C. D, eNpHR-EYFP fluorescence image taken from retinal vertical
section. EYFP-positive ganglion cells and axons were observed in the GCL. Arrows point to infected amacrine cells and an arrowhead points to an
infected horizontal cell. E, eNpHR-EYFP fluorescence image taken from the superficial layer of the superior colliculus (sSC) in coronal section. Dense
EYFP-positive RGC-derived axons were observed throughout the medio-lateral axis. GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner
plexiform layer; ONL: outer nuclear layer.
doi:10.1371/journal.pone.0018452.g001

Table 1. Percentage of eNpHR-expressing retinal ganglion cells.

Retina A Retina B Retina C

Section # NeuN eNpHR % NeuN eNpHR % NeuN eNpHR %

1 318 220 69.2 344 298 86.6 314 221 70.4

2 354 289 81.6 320 308 96.3 352 193 54.8

3 349 282 80.8 354 298 84.2 297 223 75.1

4 308 268 87.0 333 303 91.0 319 216 67.7

5 314 229 72.9 301 265 88.0 302 224 74.2

Total 1643 1288 78.4 1652 1472 89.1 1584 1077 68.0

doi:10.1371/journal.pone.0018452.t001

Optical Inhibition of Retino-Tectal Transmission
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synaptic transmission. To determine the most effective duration of

the laser illumination we altered its duration before electrical

stimulation and maintained a constant post-stimulus illumination

(50 ms). Laser illumination that started 5 ms before electrical

stimulation did not affect the evoked EPSCs (Fig. 3A, second trace

from the left). However, in some neurons (3 of 6 cells), laser

Figure 2. Photo-activation of axonally expressed eNpHR suppresses retino-tectal synaptic transmission. A, Schematic of experimental
configuration. Electrical stimulation was applied to the optic nerve layer, which included both retino-tectal and cortico-tectal axons. Whole-cell
recordings were obtained from sSC neurons. Yellow laser illuminated the eNpHR-positive axons and the recorded cells. B, Timing and duration of
laser illumination. C, A representative photograph of a recorded sSC cell (red) surrounded by EYFP-positive axons (green). D, Examples of laser
illumination-induced suppression of EPSCs. EPSCs evoked by electrical stimulation in the absence (cont, black), presence (laser ON, red), and again in
the absence (laser OFF, black) of laser illumination, in cells showing nearly complete (D1) and partial (D2) suppression. In each condition 5 traces were
superimposed. E, Summary of suppression of EPSCs in 14 sSC neurons.
doi:10.1371/journal.pone.0018452.g002

Figure 3. Blockade of synaptic transmission depends on duration and timing of laser illumination. A, Example traces of the photo-
inhibition of EPSCs with different durations of laser illumination before electrical stimulation. Control (black) stimulation without laser illumination
and following various durations of laser illumination beginning from 5–100 ms before electrical stimulation and lasting until 50 ms after stimulation
(red). B, Population data for six cells showing the effectiveness of laser illumination durations before electrical stimulation for blocking EPSCs. C,
Example traces of photo-inhibition of EPSCs with different timings of laser illumination relative to electrical stimulation. Control (black) stimulation in
the absence of laser illumination and traces following 100-ms laser illuminations delivered beginning 90 ms, 100 ms, 110 ms, 120 ms, 150 ms, and
200 ms before electrical stimulation (red). D. Summary data for four cells showing the effectiveness of different timings of electrical stimulation,
relative to the offset of laser illumination, for blocking synaptic transmission.
doi:10.1371/journal.pone.0018452.g003

Optical Inhibition of Retino-Tectal Transmission
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illumination that started just 10 ms before electrical stimulation

was effective enough to suppress synaptic transmission (Fig. 3A,

third trace from the left). Laser illumination that started more than

20 ms prior to the electrical stimulation was also effective in almost

all of the neurons (Fig. 3A, right three traces). Figure 3B depicts the

population data indicating that laser illumination applied .20 ms

before the electrical stimulation may be necessary to block the

synaptic transmission effectively.

To address the effective timing of laser illumination, we

maintained a constant duration (100 ms), but varied the time,

relative to the electrical stimulation, for delivering the illumination.

As shown in Figure 3C, laser illumination applied from 90 ms

before to 10 ms after the electrical stimulation effectively blocked

EPSCs (Fig 3C, second trace from the left). Illumination applied

immediately prior to the electrical stimulation was also effective

(Fig 3C, third trace from the left). Interestingly, 100-ms illumination

delivered 10 ms prior to the electrical stimulation still markedly

suppressed EPSCs (Fig 3C, fourth trace from the left). However, laser

illumination that ended more than 20 ms before the electrical

stimulation no longer affected EPSCs (Fig. 3C, right three traces).

Taken together, these data indicate that 100-ms illumination

ending at maximum 10 ms before the electrical stimulation

ensures the suppression of synaptic transmission under our in vitro

experimental conditions.

In addition to the effects of laser illumination on the evoked

currents in sSC neurons, we also investigated its effects on the

spiking activity of sSC neurons in vitro by performing cell-attached

recordings. We applied electrical stimulation to the optic nerve

layer and chose a stimulus intensity that elicited spikes with a

probability of 100% (Fig. 4A, left). Laser illumination effectively

suppressed the spiking activity, reducing the spike probability to

15.965.7% (P,0.001, n = 5) (Fig. 4A, middle, and B). The reduced

activity recovered immediately after turning off the laser (Fig. 4A,

right). These results indicate that eNpHR-mediated suppression of

retino-tectal synaptic transmission is powerful enough to inhibit

the spiking activity of sSC neurons.

Laser illumination reduces visual stimulation-induced
activity in sSC neurons in vivo

We finally examined whether the suppression of retino-tectal

synaptic transmission with photo-activation of eNpHR is applica-

ble to the in vivo sSC. For this purpose, we made extracellular,

single-unit recordings from sSC neurons in anesthetized mice that

had received injections of the vector more than four weeks before

the experiments (n = 3). After determining the receptive field of the

recorded cells by flashing visual stimuli on a display placed in front

of the mice, we applied appropriately sized visual stimuli (6–12u,
300 ms) in the center of the receptive field. Figure 5A shows

examples of PSTHs in a cell, in which clear ON and OFF

responses were elicited by visual stimulation (Fig. 5A1). To

illuminate a large area of the sSC, an optical fiber (500 mm in

diameter) was inserted into the cortex that overlaid the sSC. Laser

illumination then applied from 300 ms before to 1500 ms after the

onset of visual stimulation markedly reduced both the ON and

OFF responses (Fig. 5A2). Figure 5B shows the population data

recorded from 10 sSC neurons. Laser illumination significantly

reduced the number of spikes evoked in ON timing (30–330 ms

after the onset of visual stimulus; 3.960.7 in controls, 2.860.7 in

laser illuminated, P,0.05) and OFF timing (330–1230 ms after

the onset of visual stimulus; 8.361.5 in controls, 5.560.7 in laser

illuminated, P,0.05). Thus, these results demonstrate that photo-

activation of eNpHR expressed in RGC axons synapsing onto sSC

neurons suppresses visual stimulus-induced spiking activity of sSC

neurons in vivo.

Discussion

We have developed a novel method to selectively suppress

retino-tectal synaptic transmission, both in vitro and in vivo, by

photo-activating eNpHR expressed in RGC axons by means of a

viral vector. This is the first evidence indicating that photo-

activation of axonal NpHR inhibit synaptic transmission, which

would have been enabled by employing the membrane-targeting

eNpHR generated by Gradinaru et al. [21].

Methodological considerations
Our method is superior to other commonly used perturbation

techniques, such as lesioning and pharmacologically blocking

particular inputs in several points. First, in lesion experiments,

plastic changes in synaptic or circuit level are inevitable. Indeed,

V1 lesion studies have suggested an enhanced functional

importance of the sSC in orienting behavior ([8], Kato, R. and

Isa, T., unpublished observation), reflecting compensatory mech-

anisms. Thus, interpreting the effects of a given lesion is difficult

because the possibilities that the effect reflects the absence of the

lesioned input or the consequence of compensatory mechanisms

cannot be clearly distinguished from one another. Second,

pharmacological blockade is limited in spatio-temporal aspects.

The control of drug spread that determines the blocked region is

quite difficult and temporally precise manipulation is almost

impossible. In addition, because drug effect usually lasts at least

several tens of minutes, the possibility cannot be ruled out that

Figure 4. Photo-activation of axonal eNpHR inhibits spike activity in sSC neurons in vitro. A, Left, In control condition, every optic nerve
stimulation reliably evoked spikes recoded by cell-attached configuration in slice preparation. Middle, Laser illumination applied from 100 ms before
to 10 ms after electrical stimulation (inset) suppressed the spike activity. Right, The reduced spike activity was recovered by turning off the laser. In
each condition 10 traces were superimposed. B, Summary plot of spike probabilities following laser illumination for five cells. *P,0.001.
doi:10.1371/journal.pone.0018452.g004
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plastic changes may occur during that time period. Finally,

because lesion or pharmacological blockade of the retina abolishes

all visual information processing via both the retino-tectal and

retino-LGN-V1-sSC pathways, these manipulations cannot be

applied to the retina to study the physiological functions of each

pathway. In sharp contrast, our optogenetic method overcomes

these problems. As the duration of laser illumination is at most

several seconds, plastic changes are unlikely to occur. Moreover,

because our strategy is to express eNpHR in specific axons by

means of a viral vector, pathway-selective inhibition is possible

without affecting either other inputs or retinal function.

In this study we employed a commonly used promoter, CMV,

to drive the expression of eNpHR in RGCs. Because of its non-

specific profile [28,29], not only RGCs but also other cell types

expressed eNpHR following intravitreous injection of the viral

vectors (Fig. 1D). However, as we aimed to express opsins in axons

and to photo-activate them in terminal regions, we did not need to

consider the expression of eNpHR in other retinal cell types that

do not innervate the sSC.

Synaptic inhibition in vitro
We occasionally found that the laser illumination almost

completely blocked the evoked EPSCs (Fig. 2D1). This clearly

demonstrates that if only eNpHR-positive axons were stimulated,

synaptic transmission mediated by the axons would be almost

completely blocked by the laser illumination. On the other hand,

we often observed partial suppression of the evoked EPSCs. This

may be accounted for by a few possibilities. First, because electrical

stimulation in the optic nerve layer may activate both eNpHR-

expressing retinal axons and V1-derived eNpHR non-expressing

axons, the laser illumination-resistant component of the EPSCs

may have been caused by V1-derived synaptic input. Second,

because not all RGCs expressed eNpHR under our experimental

condition, if we stimulated eNpHR-negative RGC axons, laser

illumination did not block the synaptic transmission from those

axons. With regard to this point, infection efficacy should be

improved in future studies. Third, we cannot exclude the

possibility that electrical stimulation applied to the optic nerve

layer excited axon collaterals of sSC neurons, which did not

express eNpHR.

We found that to suppress the synaptic transmission effectively,

laser illumination should be started about 20 ms before the

electrical stimulation (Fig. 3A,B). Also, if the duration of the

illumination was long enough, turning off the laser 10 ms before

the electrical stimulation still effectively inhibited synaptic

transmission (Fig. 3C,D). We consider that these time lags between

laser illumination and its suppressive effect may reflect the kinetics

of axonally expressed eNpHR. Based on previous studies showing

that it takes several tens of milliseconds to reach a maximum

membrane hyperpolarization after the onset of laser illumination

to NpHR-expressing neurons [12,15], we speculate that it might

take about 20 ms from the onset of laser illumination to reach a

hyperpolarized, threshold membrane potential at which spike

generation or propagation along axons may be suppressed, and

that about 10 ms might be necessary to recover from the threshold

potential under our experimental condition.

It has been reported that, in sSC neurons, part of the cortical

inputs are mediated by NMDA receptors and that retino-tectal

inputs that activate non-NMDA receptors and depolarize the

membrane potential may contribute to this NMDA receptor-

mediated excitation [4,31]. Thus, when the non-NMDA receptor-

mediated inputs are blocked even partially, the resultant impact on

spike activity may be large. In support of this hypothesis, the effect

of laser illumination on spike activity recorded with the cell-

attached configuration seemed to be more remarkable than that

on evoked currents recorded with the voltage-clamp.

Synaptic inhibition in vivo
The suppression of visual stimulus-induced spike activities with

laser illumination was most likely the consequence of inhibiting

retino-tectal synaptic transmission, even though the inhibitory

effect was partial. Although we did not yet examine the functional

role of the retino-tectal and cortico-tectal inputs under physiolog-

ical conditions, inhibition of synaptic transmission in the retino-

tectal pathway is the most important finding of the present study,

as previous studies were unable to accomplish this selective

inhibition in vivo as discussed above. The remaining spike activities

may be ascribable to several possibilities. First, because we did not

eliminate the V1 so as not to induce plastic changes, the remaining

activities might be mediated by cortical input. In support of this

hypothesis, previous studies reported that visual stimulation to

anesthetized mice elicited spiking activity in V1 neurons [32–35].

Second, the neurons exhibiting illumination-resistant spikes might

not receive eNpHR-expressing retinal input. As discussed above,

Figure 5. Laser illumination partially, but significantly blocked sSC-spiking activities induced by visual stimulation in vivo. A, PSTHs
showing spiking activity evoked in a cell by visual stimulation (300 ms duration) during control (cont; A1) and laser illumination onto the sSC surface
before, during, and after the visual stimulation (from 2300 to 1500 ms after the onset of visual stimulation) (laser; A2). Hatched areas represent the
duration of visual stimuli. Inset: Schematic of experimental setup for extracellular recordings and laser illumination in vivo. B, Population data from 10
cells depicting the effects of laser illumination on both ON and OFF responses to visual stimuli. *P,0.05.
doi:10.1371/journal.pone.0018452.g005
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the expression of eNpHR was observed in a population of some,

but not all, RGCs. Therefore, if recorded neurons received inputs

from eNpHR-negative RGC axons, spike activities of such sSC

neurons may not disappear with the laser illumination. Third, it is

possible that laser illumination of the surface of the sSC might not

be strong enough to activate axonal eNpHR within the sSC.

However, this is unlikely because Gradinaru et al. [14]

demonstrated that the intensity of their laser, which was weaker

than that of our laser, was strong enough to activate opsin-

expressing neurons at a depth of over 1 mm in brain tissue.

Although we did not measure the power of the laser at the surface

of the sSC in vivo, the fact that thickness of the sSC in mice is

,300 mm led us to speculate that the laser could activate eNpHR-

positive fibers in the sSC.

Although the degree of laser effects on On and Off responses

was not statistically different (On, 62.9610.9% of control vs Off,

72.966.9% of control, P.0.05), the CV values of the changes in

On response (0.55) and Off response (0.29) were different,

implicating larger variability in On response than in Off response.

At present, we cannot identify the reason for this difference. One

possibility might be ascribable to different expression level of

eNpHR in On- and Off-type ganglion cells. On and Off responses

in sSC neurons observed in the present study might have been

caused by inputs mainly from On- and Off-type RGCs. Thus, if

the expression level of eNpHR between these RGC types was

different, the effect of laser illumination on the On and Off

responses may be discrete. Further studies will be required for

clarifying this point.

Application to other brain regions and to other
experimental animals

The method we established here would be useful for analyzing

not only retino-tectal vs retino-LGN-V1-sSC pathways, but also

other brain regions that receive multiple inputs from different

sources. For example, the striatum receives two major afferent

inputs: from the cortex and the thalamus [36,37]. Although these

two inputs can be separately activated by different stimulation sites

in the slice preparation [38], our method would be advantageous

under physiological conditions in vivo.

To more fully understand integrative brain functions, it may be

necessary to use non-human primates as animal models and to

combine molecular engineering techniques. However, at present,

the range of transgenic techniques applicable to non-human

primates is still limited [39]. Under such conditions, the expression

of eNpHR in specific brain regions using viral vectors should be

quite useful. For example, if we were to compare visually guided

behaviors in non-human primates expressing eNpHR in their

retino-tectal and retino-LGN axons following laser illumination in

the sSC or LGN, it would be possible to study the role of the

geniculo-striate and retino-tectal pathways in these behaviors.

Thus, we believe that pathway-selective inhibition, uncontaminat-

ed by synaptic plasticity, would be a powerful tool to investigate

neuronal circuit mechanisms related to higher brain functions.

Supporting Information

Figure S1 Photomicrographs showing eNpHR expres-
sion in retinal ganglion cells. eNpHR-EYFP (Left), NeuN-

Alxa Fluor 594 (Middle) fluorescence, and merged (Right) images

taken from a vertical section of the retina. Arrowheads indicate

double-labeled RGCs.

(TIF)
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