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transcription factor family in broomcorn
millet (Panicum miliaceum L.) and
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Guoqing Liu1,3*

Abstract

Background: Broomcorn millet is a drought-tolerant cereal that is widely cultivated in the semiarid regions of Asia,
Europe, and other continents; however, the mechanisms underlying its drought-tolerance are poorly understood.
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family that is involved in
the regulation of tissue development and abiotic stress. To date, NAC transcription factors have not been
systematically researched in broomcorn millet.

Results: In the present study, a total of 180 NAC (PmNAC) genes were identified from the broomcorn millet
genome and named uniformly according to their chromosomal distribution. Phylogenetic analysis demonstrated
that the PmNACs clustered into 12 subgroups, including the broomcorn millet-specific subgroup Pm_NAC. Gene
structure and protein motif analyses indicated that closely clustered PmNAC genes were relatively conserved within
each subgroup, while genome mapping analysis revealed that the PmNAC genes were unevenly distributed on
broomcorn millet chromosomes. Transcriptome analysis revealed that the PmNAC genes differed greatly in
expression in various tissues and under different drought stress durations. The expression of 10 selected genes
under drought stress was analyzed using quantitative real-time PCR.

Conclusion: In this study, 180 NAC genes were identified in broomcorn millet, and their phylogenetic relationships,
gene structures, protein motifs, chromosomal distribution, duplication, expression patterns in different tissues, and
responses to drought stress were studied. These results will be useful for the further study of the functional
characteristics of PmNAC genes, particularly with regards to drought resistance.
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Background
Transcription factors (TFs) play an important role in
controlling a variety of vital growth and development
processes, such as signal transduction, cellular morpho-
genesis, and response to environmental stressors, during
the growth and development of plants [1, 2]. The NAC
family is one of the largest groups of plant-specific TFs
[3]. The term NAC derives from three proteins: no

apical meristem (NAM), Arabidopsis transcription acti-
vation factor (ATAF)1/2, and cup-shaped cotyledon
(CUC2). Typical NAC proteins exhibit a highly con-
versed N-terminal DNA-binding domain containing ~
150 amino acids, which is divided into five subdomains
(A–E) [4].
NAC TFs play important regulatory roles in various

aspects of plant growth, development, and adaptation to
the environment, including in shoot apical meristem for-
mation [5], cell division and expansion [6, 7] nutrient re-
mobilization [8], flower formation [9], lateral root
development [10, 11], leaf senescence [12–16], secondary

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: guoqingliu@hotmail.com
1Institute of Millet Crops, Hebei Academy of Agriculture and Forestry
Sciences, Shijiazhuang 050035, Hebei, China
3Key Laboratory of Minor Crops in Hebei, Shijiazhuang 050035, Hebei, China
Full list of author information is available at the end of the article

Shan et al. BMC Genomics           (2020) 21:96 
https://doi.org/10.1186/s12864-020-6479-2

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-6479-2&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:guoqingliu@hotmail.com


cell wall biosynthesis [3, 17–20], fiber development [19,
21, 22], fruit ripening [23, 24], seed development [25],
response to pathogen infection [26–30], and abiotic
stress tolerance [31–33]. Many studies have confirmed
that many NAC genes play crucial roles in the regulation
of plant tolerance to drought. Overexpression of Car-
NAC4, a chickpea TF, enhanced drought tolerance in
Arabidopsis thaliana [34]. TaNAC29, a NAC TF from
wheat, enhanced salt and drought tolerance in trans-
genic A. thaliana [35]. Overexpression of the Mis-
canthus lutarioriparius NAC gene MlNAC5 conferred
enhanced drought and cold tolerance in A. thaliana
[36]. NAC genes have also been found to increase toler-
ance to drought stress in rice. For instance, drought re-
sistance in rice was enhanced by the overexpression of
SNAC1 [37], ONAC022 [38], and ONAC045 [39].
OsNAC10-overexpressing rice plants showed an in-
creased grain yield under both normal and drought con-
ditions [40]. Therefore, NAC family genes are crucial
regulators of plant tolerance to drought.
Broomcorn millet (Panicum miliaceum L.), also called

proso millet, common millet, and hog millet, is a short-
season, drought-tolerant, and barren-tolerant cereal that is
widely cultivated in the semiarid regions of Asia, Europe,
and other continents. The grains of broomcorn millet not
only have high nutritional value, containing abundant pro-
teins, starch, and a variety of vitamins and minerals, but
also have medicinal value and are used in millet wine and
other products. The NAC gene family has been widely
studied in many species, such as A. thaliana [41], rice
[41], wheat [42, 43], tartary buckwheat [44], maize [45,
46], foxtail millet [47], soybean [48], potato [49], Chinese
cabbage [50], pepper [51], cassava [52], melon [53], physic
nut [54], apple [55], and pigeon pea [56]. However, no sys-
tematic study of the NAC family in broomcorn millet is
available. The genome of broomcorn millet was recently
published, providing an important resource for further
molecular research in this species [57]. In addition, large
RNA sequencing (RNA-seq) expression data from differ-
ent tissues are also available [58]. Based on these data,
NAC gene family members in broomcorn millet were
identified in the present study. A phylogenetic tree was
constructed, gene exon/intron and conversed motif struc-
tural analyses were performed, chromosomal location and
synteny analysis were carried out, and the tissue-specific
expression patterns of NAC genes in broomcorn millet
were surveyed. In addition, the differential expression of
NAC genes was analyzed in broomcorn millet under
drought conditions using transcriptomics and quanti-
tative real-time PCR (qRT-PCR). This research is the
first to detail the NAC gene family in broomcorn mil-
let, which may help elucidate the molecular mecha-
nisms underlying drought stress responses in this
important food crop.

Results
Identification and phylogenetic analysis of the PmNAC
genes in broomcorn millet
A total of 180 PmNAC genes were identified and were
named PmNAC001 to PmNAC180 according to their
chromosome location. These were confirmed and used
for further analyses (Additional file 1: Table S1). All the
PmNAC proteins contained a conserved NAC domain
(PF01849) or NAM domain (PF02365).
Phylogenetic analysis of the NAC proteins from

broomcorn millet and Arabidopsis was conducted to ex-
plore the evolutionary relationships among broomcorn
millet NAC proteins. The results demonstrated that the
PmNAC proteins could be divided into 12 subgroups ac-
cording to clade and the classification from Arabidopsis,
including a broomcorn millet-specific subgroup named
Pm_NAC (Fig. 1, 2a). In our analysis, no NAC members
from the subgroups ANAC001, SEUN5, ANAC3, and
ANAC011 were identified. Subgroup ANAC063 con-
tained the most PmNAC proteins, namely 52, while sub-
group TIP contained only two PmNAC proteins.

Protein properties and sequence analyses
The protein properties were analysed, and the results are
summarized in Additional file 1: Table S2. The length
and molecular mass of the PmNAC proteins varied
greatly, with lengths ranging from 67 to 1435 amino
acids (aa) and molecular weights (MWs) ranging from
7.53 to 162.48 kDa. The theoretical isoelectric point (pI)
varied greatly from 4.13 to 11.38. Most PmNAC proteins
(149 out of 180) were considered unstable due to the in-
stability index being higher than 40. The PmNAC pro-
teins contained a predicted aliphatic index ranging from
45.59 to 101.24. All PmNAC proteins were predicted to
be hydrophilic due to the relatively low average hydrop-
athy (GRAVY) value (< 0), with the exception of
PmNAC005 and PmNAC165.
Gene structural diversity is an important component

of gene family evolution and further supports phylogen-
etic groupings [59]. Gene structure analysis indicated
that the number of introns of PmNAC genes varied from
0 to 14 (Fig. 2b), with 44 PmNAC genes lacking introns.
Most PmNAC genes (134 out of 180) contained one to
six introns. PmNAC41 had the highest number of in-
trons (14), followed by PmNAC148 with 13 introns.
Generally, closely clustered PmNAC genes in the phylo-
genetic tree exhibited similar exon-intron structures.
Most PmNAC genes had no introns in subgroup
ANAC063, and there was an average of four introns in
subgroup ONAC003.
To further investigate the structural features of

broomcorn millet NACs, the conserved motif distribu-
tions were analysed. A total of 20 conserved motifs (re-
ferred to as motifs 1–20) were identified by MEME, with
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more motifs located within the N-terminal region
than within the C-terminal region (Fig. 2c). The fea-
tures of these protein motifs are listed in Additional
file 1: Table S3. In this analysis, most of the closely
related members in the phylogenetic tree showed
common motifs in terms of alignment and position,
which suggested that the NAC members that clus-
tered along the same branch may possess similar bio-
logical functions.

Chromosomal location and synteny analysis of PmNAC
genes
All the PmNAC genes were unevenly distributed on
broomcorn millet chromosomes, except PmNAC178–
180 (Fig. 3). Chromosome 5 (Chr5) contained the high-
est number of PmNAC genes (n = 17), followed by Chr8
(n = 15) and then Chr3, which had 14 members. In
addition, 13, 12, and 11 PmNAC genes were detected on
Chr4, Chr6, and Chr12, respectively. Ten PmNAC genes
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Fig. 1 Phylogenetic analysis of NAC proteins of broomcorn millet and Arabidopsis. The phylogenetic tree was constructed using the neighbour-
joining method in MEGA-X
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were found on each of Chr1, Chr10, and Chr17. Nine
genes were located on Chr11 and seven NAC genes were
located on Chr15. Eight PmNAC genes were distributed
on each of Chr2, Chr7, Chr13, and Chr14, and six
PmNAC genes were found on both Chr16 and Chr18.
There were only five PmNAC genes on Chr9.

To identify the duplication events in PmNAC genes, a
collinearity analysis was performed using MCScanX soft-
ware. There were 84 pairs of segmentally duplicated
PmNAC genes (Fig. 4) and five groups of tandem dupli-
cated PmNAC genes (Figs. 3, 4; PmNAC029/030/031,
PmNAC053/054/055, PmNAC087/088, PmNAC136/137,

(See figure on previous page.)
Fig. 2 Phylogenetic relationships, gene structure, and architecture of conserved protein motifs in NAC genes from broomcorn millet. a A
phylogenetic tree was constructed by MEGA-X using the NJ method. b Structures of the 180 putative broomcorn millet NAC genes. Light green
boxes indicate exons and black lines indicate introns. c Motif distribution of NAC proteins. Different motifs are indicated by different colours for
motifs 1–20. The sequence information for each motif is provided in Additional file 1: Table S3
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PmNAC168/169). Duplicated genes were the most com-
mon on Chr3, followed by Chr5 and Chr10 (Fig. 4).

Expression pattern analysis of PmNAC genes in different
tissues
To better understand the function of PmNAC genes in
broomcorn millet, the transcription levels of PmNAC
genes in different tissues, i.e., seedlings at one week of
age, shoots at three weeks of age, leaf blades, leaf
sheaths, stems, inflorescences, and roots at the eight
weeks of age, and mature seeds at 12 weeks of age, were

investigated using publicly available transcriptome data-
sets [58]. The Fragments Per Kilobase per Million
mapped reads (FPKM) values of the PmNAC genes are
listed in Additional file 1: Table S4, and a hierarchical
clustering analysis and heatmap were generated to dis-
play the expression patterns of the PmNAC genes
(Fig. 5).
The expression of three PmNAC genes (PmNAC055,

178, and 179) was not detected in any analysed tissue,
possibly due to variations in spatial and temporal expres-
sion patterns. The expression of 15 PmNAC genes
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duplicated NAC gene pairs, and the red lines indicate tandem duplicated genes
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(PmNAC005, 010, 038, 051, 071, 073, 087, 092, 104, 118,
124, 144, 166, 171, and 180) was detected only in one
tissue. Thirteen PmNAC genes (PmNAC001, 004, 009,
026, 028, 037, 039, 045, 063, 101, 108, 132, and 175)
exhibited high expression (FPKM > 20) in all the tested
tissues, suggesting key roles of these genes in tissue
development. In addition, of all the analyzed tissues,
there were 10, 16, 10, 12, 18, 29, 55, and 27 PmNAC
genes exhibiting the highest expression in seedlings
at one week of age, shoots at three weeks of age,
and the leaf blades, leaf sheaths, stems, inflores-
cences, and roots at eight weeks of age, and mature
seed at 12 weeks of age, respectively, demonstrating
that different PmNAC genes may play different roles
in the growth and tissue development of broomcorn
millet. The high expression of many PmNAC genes
(31%) in the roots may be one explanation for the
observed rapid response of broomcorn millet to
drought stress. Understanding the expression pat-
terns of PmNAC genes in different tissues can pro-
vide a foundation for identifying functional genes in
broomcorn millet.

Responses of PmNAC genes to drought treatments
To detect the dynamic changes in the transcription
levels of broomcorn millet NAC genes under drought
stress, transcriptomic analysis was conducted at 0 h
(CK), 1 h (T1), 3 h (T2), and 6 h (T3) under drought
treatment (Additional file 1: Table S5). There were 117
PmNAC genes detected in the experiment. A heatmap
representing the expressions of the detected PmNAC
genes was constructed (Fig. 6a), and trend analysis was
carried out to explore the time-related dynamic changes
under drought stress (Fig. 6b). The expression of 27
PmNAC genes (PmNAC003, 014, 019, 026, 028, 030,
033, 037, 048, 068, 081, 083, 084, 091, 095, 098, 101,
108, 113, 116, 128, 132, 160, 162, 163, 172, and 175)
increased as the time under drought stress progressed in
profile1. The expression of 22 PmNAC genes
(PmNAC001, 008, 025, 039, 041, 054, 059, 063, 067, 075,
082, 085, 088, 089, 102, 110, 120, 142, 150, 154, 156, and
161) showed an ‘N’ shape and peaked at 6 h in profile2,
while the expression of 10 PmNAC genes (PmNAC006,
013, 040, 050, 106, 109, 112, 147, 174, and 177) demon-
strated an opposite trend in profile5. The expressions of
11 (PmNAC004, 007, 009, 023, 045, 060, 093, 107, 141,
152, and 170) and seven (PmNAC018, 043, 044, 061,
072, 135, and 148) PmNAC genes showed similar ‘V’
shape trends in profiles 3 and 6, respectively. The ex-
pressions of 10 (PmNAC011, 027, 032, 042, 057, 062,
064, 097, 105, and 131) and seven (PmNAC012, 052,
058, 158, 165, 167, and 176) PmNAC genes first in-
creased but then decreased in profiles 4 and 7,
respectively.
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Fig. 5 Expression patterns of NAC genes in different tissues.
Seedling_1w, Shoot_3w, Leaf_8w, Sheath_8w, Stem_8w,
Inflorescences_8w, Root_8w, and Seed_mature indicate tissues from
seedlings at one week of age, shoots at three weeks of age, leaf
blades, leaf sheaths, stems, inflorescences, and roots at eight weeks
of age, and seeds at 12 weeks of age, respectively. FPKM values were
used to generate the heatmap with hierarchical clustering analysis.
The scale represents the relative signal intensity of the FPKM values
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To verify the RNA-Seq data, 10 PmNAC genes
(PmNAC001, 007, 023, 041, 091, 093, 154, 155, 172, and
176) from different subgroups were randomly selected
and tested by qRT-PCR. Most of the tested PmNAC
genes were up-regulated under drought stress (Fig. 7).
Four PmNAC genes (PmNAC041, 091, 093, and 172) in-
creased with time under drought stress, showing similar
trends with the RNA-Seq data. The trend of an initial in-
crease and then decrease in PmNAC176 was consistent
with the RNA-Seq data. The expression level of

PmNAC001 was up-regulated under drought stress com-
pared with the control in both the qRT-PCR results and
RNA-Seq data. The expression level of PmNAC154 also
increased under drought stress compared with the con-
trol in both methods, except for T2 in the RNA-Seq
analysis.

Discussion
NAC TFs play an important role in regulating plant
growth and tolerance against various abiotic and biotic
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Fig. 6 Expression of PmNAC genes in response to drought treatment in broomcorn millet. a Heatmap showing the relative expression of total
PmNAC genes at 0 h (CK), 1 h (T1), 3 h (T2), and 6 h (T3) under drought stress. b Trend analysis of PmNAC gene expression (10 trends)
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stresses. Most of the NAC TFs studied to date are in-
volved in the regulation of developmental progress and
the response to abiotic stress. However, few NAC TFs
involved in the drought stress response have been identi-
fied in broomcorn millet. Therefore, the goal of this
study was to obtain further insight into the expression
patterns and putative functions of PmNAC genes. In the
present study, we investigated the features of PmNAC
genes at the genome level. Their tissue expression pat-
terns and responses to drought stress were analyzed.
Based on gene expression analyses, we identified signifi-
cant drought-responsive genes. The present study has
furthered our understanding of PmNAC genes and has
provided insight into the functions of PmNAC genes.

A total of 180 NAC genes were identified in broom-
corn millet. The number of NAC genes in broomcorn
millet was higher than the 117 in A. thaliana [41], 151
in rice [60], 104 in pepper [51], 82 in melon [53], 96 in
cassava [53], 152 in maize [45], 147 in foxtail millet [47],
152 in soybean [48], and 110 in potato [49], and lower
than that of 288 in bread wheat [42] and 188 in Chinese
cabbage [50]. There were extensive variations in gene
length, predicted protein MW, and protein pI, whereas
the gene structures and protein motifs were relatively
conserved in the clades, which provided a valuable refer-
ence for their analysis and function. This result confirms
that genes originating from the progenitors can evolve
gradually and expand. It is well known that gene

Fig. 7 Relative expression of 10 PmNAC genes in response to drought treatment using qRT-PCR. CK, T1, T2, and T3 represent the treatments of
broomcorn millet exposed to drought for 0 h, 1 h, 3 h, and 6 h, respectively
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duplication events are important in the rapid expansion
and evolution of gene families. A collinearity analysis of
the PmNAC genes in this study showed that there were
84 pairs of segmental duplications and five groups of
tandem duplications. Tandem gene duplication of NAC
genes has been observed in many species, including A.
thaliana, rice, potato, and others.
All 180 PmNAC members were divided into 12 sub-

groups based on their sequence homology and classifica-
tion from Arabidopsis [41]. Phylogenetic analysis divided
tartary buckwheat, cassava and pepper NACs into 15, 16
and 14 subgroups, respectively [44, 45, 51]. These data
indicated that NAC proteins showed diversity in differ-
ent species. The analysis regarding the conserved motifs
of the broomcorn millet proteins further corroborates
the categorization of the PmNAC family. The motifs of
transcription factors are often related to protein inter-
action, transcriptional activity and DNA binding [44].
The conserved motifs in the N-terminus of the NAC
genes have highly conserved DNA-binding abilities (Fig.
2 c), which indicates that these motifs are very important
for the function of NAC genes. Although conserved mo-
tifs were similar among many PmNAC proteins, a num-
ber of differences in chemical-physical characteristics
were also detected for PmNAC members. These differ-
ences may due to the amino acid discrepancies in the
non-conserved regions of PmNAC members, implying
that different PmNAC proteins may act different func-
tions in their own microenvironments.
The tissue-specific expression patterns of PmNAC

genes might enable the combinatorial usage of PmNAC
genes in the transcriptional regulation of different tis-
sues, whereas ubiquitously expressed PmNAC genes
might regulate the transcription of a broad set of genes.
For example, PmNAC092, PmNAC051, and PmNAC005
were only detected in the mature seeds and thus may be
useful in regulating processes in mature seeds. This
phenomenon was also observed in other plants, such as
in tartary buckwheat and cassava [44, 52]. Moreover,
several reports have indicated that overexpression of
tissue-specifically expressed NAC genes can promote the
development of particular tissues, as NAC4 from tomato
promoted fruit ripening and carotenoid accumulation
[23], cotton NAC transcription factor 1 was involved in
secondary cell wall biosynthesis and modification of fi-
bers [19]. Seven highly expressed PmNAC genes (FPKM
> 20 in all the tested tissues) originated from subgroup
Pm_NAC, suggesting the important roles of the broom-
corn millet-specific subgroup Pm_NAC in plant growth
and development. Thus, the PmNAC genes with tissue-
specific expression were speculated to have important
regulatory functions in the associated tissues, providing
insight into their utilization in improving the growth
and development of various tissues.

Gene expression pattern analysis can facilitate the de-
termination of gene function. In order to identify the ex-
pression profiles of broomcorn millet NAC genes in
response to drought stress, we performed transcriptomic
analysis of the PmNAC genes in broomcorn millet plants
subjected to 0 h, 1 h, 3 h, and 6 h of drought. Drought
treatment increased the expression of 27 PmNAC genes
originating from nine subgroups, of which the subgroup
NAC2 contained the largest number (seven). The seven
PmNAC genes were closed linked to ANAC082, 103,
013, 016, and 017 in Arabidopsis, which are involved in
the abiotic stress response [61, 62] and mitochondrial
retrograde signaling [63, 64]. Notably, some PmNAC
genes exhibited differential responses to drought at tran-
scriptional levels, although they showed close phylogen-
etic relationships. Ten PmNAC genes were studied
under drought stress using qRT-PCR, and most of the
PmNAC genes showed similar trends with the RNA-Seq
data. In combination, the transcriptional response of
PmNAC genes to drought stress provides a foundation
for further investigations into the mechanisms under-
lying the strong drought tolerance in broomcorn millet.

Conclusions
To conclude, 180 NAC genes were identified in broom-
corn millet in the current study. We investigated the fea-
tures of the PmNAC genes at the genome level, and the
tissue expression patterns and responses to drought
stress were analysed. Genome-wide expression analysis
of NAC genes in response to drought provides an oppor-
tunity to further understand the mechanisms involved in
the strong drought-tolerance of broomcorn millet.

Methods
Identification and phylogenetic analysis of NAC genes in
broomcorn millet
The genome of broomcorn millet (accession number
GWHAAEZ00000000) was downloaded from the Gen-
ome Warehouse in the BIG Data Center (http://bigd.big.
ac.cn/gwh). The NAC family databases of Arabidopsis
and rice were downloaded from The Arabidopsis Infor-
mation Resource (TAIR9) (www.arabidopsis.org) and the
Rice Genome Annotation Project (http://rice.plantbiol-
ogy.msu.edu/). The PmNAC genes were obtained using
two methods. First, the Hidden Markov Model (HMM)
files of the NAC (PF01849) and NAM (PF02365) do-
mains were downloaded from Pfam (http://pfam.xfam.
org/) for the identification of NAC proteins (E-value <
0.001). Second, all ANAC and OsNAC proteins were
used as queries to search against the broomcorn millet
database using default parameters. All the possible
PmNACs were confirmed using the Conserved Domains
Database (CDD) (http://www.ncbi.nlm.nih.gov/cdd/) and
PFAM databases (https://pfam.xfam.org). Only the
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sequences with full-length NAC or NAM domains were
considered as PmNAC proteins and used for further
analyses.
MEGA-X (https://www.megasoftware.net/) was used

for the evolutionary and phylogenetic analyses. A total
of 180 PmNACs and 105 AtNACs were used to generate
an unrooted phylogenetic tree using the neighbour-
joining method with 1000 bootstrap replications and
pairwise detection. According to the classification of
AtNACs, all the identified PmNACs were divided into
different groups. The gene IDs of the A. thaliana NAC
members were listed in Additional file 1: Table S6.

Protein properties and sequence analyses
ProtParam (http://web.expasy.org/protparam/) was used
for the prediction of the physical and chemical features
of the PmNAC proteins. To ensure the subcellular
localization of the identified PmNAC proteins, WoLF
PSORT was used to predict the protein sequences
(https://wolfpsort.hgc.jp/). TMHMM Server v2.0 (http://
www.cbs.dtu.dk/services/TMHMM/) was used for the
transmembrane helices in the proteins.
To identify the conserved motifs, the MEME tool (http://

meme-suite.org/tools/meme) was used with default param-
eters, except for the maximum number of motifs, which
was set to 15. The gene structure of the broomcorn millet
NACs was determined using the Gene Structure Display
Server (GSDS) 2.0 (http://gsds.cbi.pku.edu.cn/) program.

Chromosomal mapping and gene duplication analysis
Every NAC gene was matched with the chromosomes of
broomcorn millet based on the genome annotations of
broomcorn millet. MapGene2Chrome (http://mg2c.iask.
in/mg2c_v2.0/) was used to draft the map. MCScanX
(default parameters) was used to examine duplicated
genes [65].

Expression patterns of PmNAC genes in different tissues
The transcriptome data available online were used to ex-
plore the expression patterns of PmNAC genes in vari-
ous tissues and different growth stages of broomcorn
millet [58]. Seedlings at one week of age, shoots at three
weeks of age, leaf blades, leaf sheaths, stems, inflores-
cences, and roots at eight weeks of age, and mature
seeds at 12 weeks of age were sampled to investigate the
expression patterns of PmNAC genes. Subsequently,
FPKM values were calculated to evaluate the gene ex-
pression values and the heatmap (Fig. 5) was generated
using pheatmap.

Broomcorn millet plant preparation and drought
treatments
The broomcorn millet cultivar Yanshu5 was chosen as
the experimental material due to its strong ability to

adapt to drought and its relatively high yield [66]. The
seeds were planted in flowerpots and grown in a light
incubator under the conditions of a 25 °C 14 h photo-
period, and a 22 °C 10 h dark period. They were
subjected to drought stress treatments using 20% poly-
ethylene glycol (PEG) 6000 for 0, 1, 3, and 6 h at the 7-
d-old stage. The broomcorn millet seedlings were then
collected and immediately frozen in liquid nitrogen until
RNA extraction.

Transcriptome and qRT-PCR analysis
The total RNA of the whole seedlings was extracted with
TRIzol (Invitrogen) and resequenced using an Illumina
HiSeq 4000 (Majorbio) in accordance with the standard
Illumina protocol. RNA was used for the reverse tran-
scription of cDNA using HiScript II Q RT SuperMix for
qPCR (+gDNA wiper) (Vazyme, China). Primer 5.0 was
used to design the primers (Additional file 1: Table S7).
The PCR reaction system contained 0.2 μL of forward
primer, 0.2 μL of reverse primer, 1 μL of cDNA, 5 μL of
2 × ChamQ SYBR qPCR Master Mix (Vazyme, China),
and 3.6 μL of nuclease-free H2O. The protocol was as
follows: 95 °C for 30 s, followed by 45 cycles of 95 °C for
10 s, and 60 °C for 30 s. Each reaction was performed
three times, and the 2-ΔΔCT method [67] was used to cal-
culate the relative gene expression levels.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-020-6479-2.

Additional file 1: Table S1. List of the NAC sequences in broomcorn
millet. Table S2. Protein property of PmNAC proteins. Table S3. The
structural features of motif 1–20. Table S4. Expression (FPKM) of PmNAC
genes in different tissues. Table S5. Expression (FPKM) of PmNAC genes
in response to drought treatment in broomcorn millet. Table S6. The
gene ID of NAC members from Arabidopsis thaliana. Table S7.
Sequences of primers used in qRT-PCR.
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