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Abstract

Objective

This study evaluates molecular, nutritional and biochemical alterations in human interverte-

bral discs between middle and old age.

Methods

Twenty-eight human lumbar intervertebral discs from donors were evaluated and separated

into two groups: Middle-aged (35–50 years old, relatively non-degenerate discs of Pfirrmann

grades 1–3, n = 15) and Old-aged (�80 years old, all degenerate Pfirrmann grade 4 or 5, n =

13). Parameters which might be expected to to be related to nutrient supply and so the

health of disc cells (eg the porosity of the vertebral endplate, cell viability and cell density)

and to disc extracellular composition (ie quantification of glycosaminoglycan disaccharides

and hyaluronic acid molecular weight) and collagen organization, were analyzed. Three

regions of the intervertebral disc (anterior annulus fibrosus, nucleus pulposus, and posterior

annulus fibrosus) were examined.

Results

The old-aged group showed a decrease in content of sulphated and non-sulphated glycos-

aminoglycans relative to middle-aged and there were also alterations in the proportion of

GAG disaccharides and a decrease of collagen fiber size. Hyaluronic acid molecular weight

was around 200 kDa in all regions and ages studied. The anterior annulus differed from the

posterior annulus particularly in relation to cell density and GAG content. Additionally, there

were changes in the bony endplate, with fewer openings observed in the caudal than cranial

endplates of all discs in both groups.
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Conclusions

Results show the cranial vertebral endplate is the main vascular source for the intervertebral

discs. Hylauronic acid molecular weight is the same through the intervertebral disc after age

of 50 years.

Introduction

The intervertebral discs are the biggest avascular structure in the human body. They lie

between the vertebral bodies and make up around one third of the height of spinal column.

The discs consist of two regions with the central, more gelatinous nucleus pulposus (NP), sur-

rounded by a fibrous ring, the annulus fibrosus (AF). The discs are separated from the adjacent

vertebrae by a thin layer of hyaline cartilaginous tissue, the cartilage endplates (Fig 1).

The composition of the different regions of the disc differ, with the NP consisting mainly of

a high concentration of proteoglycans and water, embedded in a loose collagen network, while

the AF has a high concentration of fibrillar collagens, organised into concentric lamellae. The

disc also has a small population of resident cells which make and maintain proteoglycans, col-

lagens and other matrix components[1,2]. The organisation and composition of the extracellu-

lar matrix of the intervertebral disc enables it to fulfil its main roles of providing flexibility to

the spinal column and carrying the high loads arising during daily activities.

Degeneration of the disc, resulting in degradation of matrix macromolecules and loss of struc-

tural integrity, has been considered a major cause of low back pain[3]. Proteoglycan loss is one of

the early features of disc degeneration[2] and are key to the loadbearing properties of the disc as

they regulate disc hydration[4]; several aspects of the proteoglycan biochemistry such as their con-

stituent chondroitin sulphate chains, that determine disc osmolarity[5] and hyaluronan content,

which affects proteoglycan aggregation[4] are important to the disc function. Lumbar back pain

has an overall prevalence of 60–80% varying in different age groups and the older population is

the group with more frequent episodes of low back pain[6]. However, much remains unknown

about its aetiology. Twin studies have found that genotype has a much stronger influence than

abnormal mechanical loading or smoking on the development of degeneration[7]. A factor which

may determine progression of degeneration, is a fall in disc nutrient supply[8–10] that may pro-

mote the loss of cell viability and hence failure to synthesize the disc’s macromolecules. The viabil-

ity of disc cells depends on the supply of nutrients, which are mainly provided by blood vessels at

the disc-endplate interface, where they penetrate the subchondral space through marrow spaces

seen as openings in the bony endplate[11]. Nutrients diffuse from these blood vessels via openings

in the subchondral plate, through the cartilaginous endplate and the extracellular matrix of this

and the disc to the cells. This peculiarity of the disc vasculature results in low concentration of

cells, in comparison to other tissues, especially in the NP[2]. With ageing and degeneration, the

transport pathway at the endplate is compromised so that nutrient supply and hence cell viability

and extra cellular matrix turnover are adversely affected.

Ageing is the highest risk factor for disc degeneration[12] that seems to start in the second

decade with clefts in the NP[13]. Collagen and proteoglycans also decrease during aging[14] how-

ever, while structural and biochemical changes with degeneration and ageing have been studied

in the nucleus pulposus (NP)[4], less is known about changes in the annulus fibrosus (AF).

Changes over ageing have been relatively ignored, even though over 40% of people above

70 years of age have highly degenerate discs[12] and disc degeneration predisposes sufferers to

development of clinical syndromes which particularly affect the elderly[15] such as spinal ste-

nosis and hyperkyphosis. There are reported asymmetries between the cranial and caudal
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endplates in regard to trabecular architecture[16], thickness and bone mineral density[17]

which vary according to aging[17,18], but how the endplates alter in the elderly and relate to

viability of disc cells has not been systematically investigated.

How these properties alter in the older population is a gap in our knowledge base, despite it

being likely to be important for understanding the aetiopathogenesis of disc degeneration with

its consequent impact on clinical disorders such as spinal stenosis, the development of which

are so prominent between middle age and old age. Thus, the objective of this study was to eval-

uate molecular, nutritional and biochemical alterations in human intervertebral discs between

middle and old age focusing particularly on changes in proteoglycan and bony endplate.

Materials and methods

Institutional Review Board of Universidade Federal de Sao Paulo (0151/09) has approved the

study before starting. Samples were obtained from cadavers during routine necropsy to verify

the cause of death at the City’s Death Checking Service after making personal contact with a

family member and had the informed consent signed.

All reagents were obtained from ‘Sigma Chemical Company, St Louis, USA’ unless other-

wise stated.

Collection of spinal columns from donors

A cadaveric study was carried out with 28 lumbar intervertebral discs that were harvested

from ten donor human cadavers within 24 h of death and without any known spinal diseases

Fig 1. (A) schematic drawing representative of functional spine unit and regions of the disc showing the caudal and cranial cartilaginous endplates, the nucleus

pulposus and the anterior and posterior annulus fibrosus. The figure also shows the blood supply to the disc (B) Superior view of a spine unit after the removal of the

posterior arch. (C) Sagittal view of the mid part of the spine unit, note the nylon stitch in the antero-superior region to maintain the fragment in functional position in

all steps of the study. (D) MRI and (E) CT sagittal view with ligaments and paraspinal muscles intact for better contrast.

https://doi.org/10.1371/journal.pone.0203932.g001
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(fracture, infection, tumour, spinal deformities, previous spinal surgery or metabolic diseases)

(Table 1). Spines were separated into two groups with middle-aged group, from individuals

less than 50-years of age (mean 43.6±6.02, range 34–49) and old-aged group, 80-years of age or

more (mean 85±4.7, range 80–91).

Spine samples were removed through an anterior approach and wrapped in a plastic sealed

bag and inserted in a second bag with a saline-soaked gauze to prevent dehydration, prior to

being transported inside an ice-cooled box to the imaging facility where a CT scan and MRI

were accomplished. Ligaments and paraspinal muscles were left intact for better contrast dur-

ing images and to minimize dehydration. The intervertebral discs samples were kept at -4˚C

for 4–12 hours depending on the time of the day that they were collected from donors, until

dissection. The specimens were then separated in functional spine units consisting of two ver-

tebrae surrounding one disc (Fig 1).

Preparation of intervertebral discs

A 5 mm mid-center coronal section was cut from the spinal units listed (Table 1) using a

band-saw. This included the anterior annulus fibrosus (AFa), NP, and posterior annulus fibro-

sus (AFp) of the disc, enclosed between a portion of the superior and inferior vertebral bodies

(Fig 1C). Two further 5 mm thick sections adjacent to this mid central section were cut in a

similar way for histological and biochemical purposes, respectively. For biochemical analysis,

the discs were separated into three regions: AFa, NP and AFp. A nylon stitch was placed in the

antero-superior region of each fragment to clearly mark the location in all steps of the study.

Imaging

MR images of the spinal columns were obtained using a spine surface coil on a Siemens

AG2006 1.5 Tesla Magnetic Resonance Imager (Syngo version MRA301, model Sonata Mae-

stro-Class, software NUMARIS/4). Sagittal and axial views were obtained using T1-weighted

Table 1. Details of donor samples in the two groups studied.

Patient Gender Race Age Nº of Discs Cause of Death Smoking Alcohol BMI

Middle-aged

1 M W 49 4 Bronchopneumonia Yes No 17.3

2 M W 45 3 Bronchopneumonia No No 18.6

3 M W 48 3 Myocardial Infarction No No 27.0

4 F W 34 2 Peritonitis Yes Yes 23.7

5 F W 42 3 Aortic aneurysm Yes Yes 26.9

Mean 43.6 22.7

SD 6.02 4.56

Old-aged

6 M W 82 3 Bronchopneumonia No No 20.2

7 F W 89 3 Myocardial Infarction No No 17.5

8 F W 91 3 Myocardial Infarction No No 21.1

9 M W 83 2 Myocardial Infarction No No 31.5

10 M W 80 2 Bronchopneumonia Yes Yes 22.8

Mean 91 22.6

SD 4.74 5.32

(M) male; (F) female; (W) white. Age (years); (BMI) body mass index (kg/m2); (SD) standard-deviation

https://doi.org/10.1371/journal.pone.0203932.t001
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and T2-weighted sequences with 4 mm slice thickness and 0.6 and 0.4 mm gaps for sagittal

and axial sequences, respectively. Field-of-view for the sagittal sequence was 270 and 200 for

the axial slices.

CT scans of the spinal columns were accomplished using a Brilliance 64-slice-CT-scanner

(Philips, Cleveland, USA) and images were obtained at 1 mm thickness and 1 mm gap. Three

observers in consensus (two orthopedic surgeons and one musculoskeletal radiologist) ana-

lysed at the same time all images to exclude any pathology, and classified discs according to the

Pfirrmann classification[19] (Table 2) where Grade 1 discs are young and healthy, and Grade 5

discs are severely degenerate.

Cell viability

Cell viability in the 5 mm disc sections was measured using a tetrazolium assay[20] (S1 and S2

Figs). The disc from the central section of each functional spinal unit was dissected from the

bone using a scalpel. The disc sections were incubated for 18 h in 3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyl-tetrazolium bromide (MTT) (0.5 mg/ml at 37˚C) in low-glucose Dulbecco’s

Modified Eagle’s Medium (catalog 31600–034, Gibco, Gran Island, NY, USA), 100 U/ml peni-

cillin, and 100 μg/ml streptomycin (catalog 1414122, Gibco, Grand Island, NY, USA). Follow-

ing incubation, the disc was dissected into AFa, NP and AFp. The three discs regions were

snap-frozen and 20 μm thick sections were cut using a cryo-microtome (HM550 Microm1/

Carl Zeiss) onto slides and mounted with Vectashield1 medium with DAPI (Vector Laborato-

ries Inc., Peterborough, UK) that stains DNA and hence can be used to obtain total number of

cells, both live and dead. Representative images were acquired using a confocal microscope

with multiphoton titanium-sapphire laser (LSM7801/Carl Zeiss) with excitation at 720 mm

and emission collected at 420–470 mm and light transmission image (S1 Fig). Two observers

each counted at least 200 cells per section and calculated the percent of cells which stained pos-

itively for the formazan product of the tetrazolium MTT (indicating viable cells).

Table 2. Intervertebral disc degenerative status classified by the Pfirrmann scale.

Middle-aged Old-aged

Donor Disc Level Pfirrmann Donor Disc Level Pfirrmann

1 L1-L2 IV� 6 L1-L2 IV

L2-L3 II L2-L3 III�

L3-L4 II L3-L4 IV

L4-L5 III L4-L5 V

L5-S1 II L5-S1 IV�

2 L3-L4 II 7 L3-L4 IV

L4-L5 II L4-L5 IV

L5-S1 I L5-S1 V

3 L3-L4 I 8 L3-L4 IV

L4-L5 II L4-L5 V

L5-S1 II L5-S1 IV

4 L3-L4 III 9 L3-L4 IV

L4-L5 IV� L4-L5 IV

L5-S1 II L5-S1 III�

5 L3-L4 II 10 L3-L4 II�

L4-L5 III L4-L5 IV

L5-S1 III L5-S1 IV

(�) levels which were not included in the analysis

https://doi.org/10.1371/journal.pone.0203932.t002

Human discs and bony endplate analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0203932 September 18, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0203932.t002
https://doi.org/10.1371/journal.pone.0203932


Endplate porosity and microarchitecture

Samples of 5 mm thick of the central region of the vertebra, encompassing the entire extension

from anterior to posterior were enzymatically treated with 10 mg/ml papain (USB Corpora-

tion, Cleveland, Ohio, USA) at 65˚C for seven days to remove adhering extracellular matrix,

following a modification of the Benneker protocol[9]. The endplates were then cleaned with a

soft pulsatile water jet, degreased in 1% Triton X-100 and dried at 37˚C for 24 h. Images of 10

mm2 area were acquired using a Stereo Microscope Discovery1 V.8 (Carl Zeiss) with extended

focus and a 1.4 megapixels Axiocam with objective Plan-Apochromat S 1.0x. Images were col-

lected in the center of the NP area, at a midpoint between the NP and both the AFa and AFp

and also at a distance of 5 mm from the edge. The images were converted to gray-scale mode.

A binary image at a fixed intensity level was created and analysed using the ImageJ1 software

(US National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij) (Fig 2A

and 2B). Openings smaller than 5 μm2 and bigger than 100 μm2 were excluded from analysis

to avoid openings that could be due to reflections or to irregularities in endplate surface such

as Schmorl nodes, fracture lesions or erosion[18].

Biochemical analysis

For biochemical analysis, one of the 5 mm thick adjacent sections from each disc examined

was separated into three regions (AFa, NP and AFp) according to the macroscopic difference

in lamellar structure characteristic of these regions. Samples were dried to constant weight at

100˚C.

All tissue samples were digested overnight in 5 ml 1% papain (USB Corporation, Cleveland,

Ohio, USA) in sodium-free buffer[21] at 65˚C. The same set of samples was used to measure

the amount of sulphated glycosaminoglycans (S-GAG), characterize chondroitin sulphate

(CS) disaccharides, quantitate hyaluronic acid (HA) and analyse its molecular weight (MW).

An aliquot of 1 ml of the supernatant was used for analysis of GAGs by its precipitation with

five volumes of methanol (-20˚C, overnight)[22,23]. Five micrograms of the precipitate and a

5μl aqueous mixture of 1 mg/ml of standard S-GAGs (chondroitin-4-sulphate from whale car-

tilage, chondroitin-6-sulphate from shark cartilage, dermatan sulphate (DS) from bovine intes-

tinal mucosa (Seikagaku Kogyo, Tokyo, Japan), and heparan sulphate from bovine lung

(extracted and purified by the Molecular Biology Division, Federal University of Sao Paulo,

Brazil)) were analysed by electrophoresis following the protocol of Dietrich and Dietrich[22].

The electrophoretic band intensities were quantified by densitometry at 525 nm with a 5%

error margin compared to a known content of the standard S-GAG. The identities of S-GAG

were characterized by treatment of the GAG precipitate with chondroitin ABC lyase from Pro-
teus vulgaris (Seikagaku America) and chondroitinase AC enzyme (S3 Fig).

For disaccharide analysis, 200 μl of a pool of five discs was treated by CS ABC lyase was

desalted using PD MidiTrap G-10 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) gravity

mini-columns. The disaccharide identification was done on a 150x4.6 mm Phenosphere SAX

column (Phenomenex, Torrance, CA, USA), using a NaCl gradient of 0.1M during 30 min

with 1 ml/min flux and UV detection at 232 nm, at room temperature[24]. The chromato-

grams were compared to the elution profile of CS/DS disaccharide standards. Results were

expressed as percentages.

HA was quantified in a separate 1 ml sample of the papain digest using a highly specific

fluorimetric enzyme-linked immunosorbent assay (ELISA)[25]. Furthermore, hyaluronic acid

molecular weight (HA-MW) measurement was obtained in a separate 100 μl sample, via high-

pressure liquid chromatography on a 300x8 mm Shodex OHpak SB-805HQ (Phenomenex)

coupled to a 300x8 mm Shodex Ohpak SB-804HQ (Phenomenex), at room temperature. The
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Fig 2. Endplate openings in the different regions of the disc per group. In (A) an example of a scanning image from endplate

openings and in (B) an example of a binary image of a nucleus pulposus region in the ImageJ software. (C) Middle-aged (younger

than 50-years of age) and (D) Old-aged (older than 80-years of age). Observe that in caudal endplates there are more openings in all

regions. Endplate openings per 10 mm2 in cranial and caudal endplates above and below the discs of Middle-aged (E) and Old-aged

(F). Images acquired from a 10 mm2 area in the Stereo Microscope Discovery V.8. AFa–anterior annulus fibrosus; NP–nucleus

pulposus; AFp–posterior annulus fibrosus. (�) p< 0.05; (��) p< 0.01; (���) p< 0.001. ANOVA-test, followed by Bonferroni post-

test.

https://doi.org/10.1371/journal.pone.0203932.g002

Human discs and bony endplate analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0203932 September 18, 2018 7 / 17

https://doi.org/10.1371/journal.pone.0203932.g002
https://doi.org/10.1371/journal.pone.0203932


mobile phase was 0.2M NaCl. The flow rate was kept at 0.5 ml/min over 60 min with UV

detection at 205 nm. Fractions of 0.2 ml were collected for HA quantitation as previously

described[25]. The column was previously calibrated with monodisperse HA standards (Hyo-

lase, USA) of known MWs: 2500 kDa, 601 kDa, 250 kDa, 150 kDa and 100 kDa (S4 Fig).

Histological analysis

The final 5 mm thick coronal section was submitted to a routine histopathologic procedure:

fixed in buffered 4% formaldehyde, decalcified for 90 days in 25% formic acid, pH 2.0; dehy-

drated and paraffin embedded and 5 μm-thick sections were prepared. Sections were

immersed in a 0.2% phosphomolybdic acid solution, washed in distilled water, and incubated

in 0.1% Sirius Red diluted in saturated picric acid solution for 1 h at room temperature accord-

ing to a previous protocol allowing the visualization of collagen network by birefringence

intensity[23]. Picrosirius red is a histochemical technique to analyze the distribution and

quantitative estimation of collagen fibers.[26]

The sections were examined by polarization microscopy with an AxioScope A1 microscope

(Carl Zeiss). Images were captured with a 5x objective lens against a black background and

evaluated with ImageJ1 after split imaging in channels (red–green–blue). Images were ana-

lyzed using the “measure” option (HIH public domain software; http://rsbweb.nih.gov/ij/). to

evaluate the relationship between reddish/greenish fibers[23].

Statistical analysis

Variables were tested for normality using the Kolmogorov-Smirnov test. Results were

expressed as mean±standard error. Differences were evaluated using parametric analyses. The

chi-square test or Fisher’s exact test were used to analyse frequency distributions. All statistical

tests were considered statistically significant at the level of 5%. Data analysis was performed

using SPSS software (SPSS, Version 17.0, SPSS, Chicago, USA).

Results

Disc donors were divided into two groups by age: middle-aged (35–50 years) and old-aged

(over 80 years). All donors were Caucasians and details of the respective disc levels analysed,

cause of death, BMI, alcohol and smoking habits and their Pfirrmann[19] classification are

given in Tables 1 and 2. Body mass index did not vary between groups (Middle-aged = 22.7

Kg/m2; Old-aged = 22.6 Kg/m2). Of the 28 discs, according to Pfirrmann, two were of disc

degeneration grade 1, nine of grade 2, four of grade 3; ten of grade 4 and three of grade 5. Mid-

dle-aged contained 15 discs of grades I-III and old-aged contained 13 discs which were all

grade IV or V discs.

Endplate openings

Fig 2C and 2D show images of caudal and cranial bony endplates for both groups after enzy-

matic removal of the surrounding tissue. Quantification of endplate openings found that the

caudal endplate had significantly more openings than the samples from the cranial endplate

for the all three regions and for both groups (Fig 2E and 2F). However, apart from for AFp

(p<0.05), there was no significant difference between the two age groups in the same region.

Cellularity and cell viability

Images of viable and total cells in both groups are available in supporting information files (S2

Fig). Cell counts of these images, found that the total number of cells/mm2 was greater in the
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NP and AFp regions of middle-aged than old-aged discs (Table 3). In both disc groups, the

highest number of cells/area was seen in the AFp region. A significant proportion of the cells

were dead, with only 40–65% viable. Percentage of viability was greater in old-aged than in

middle-aged discs in the NP and AFp though not reaching levels of significance between

groups (Middle-aged: AFa 45.06±14; NP 47.09±16; AFp 41.09±14/Old-aged 2: AFa 47.37±9;

NP 59.53±4,4; AFp 65.85±7; p>0.05). However, the number of viable cells/area was greater in

the NP of the middle-aged discs and this is important because the number of viable cells is the

critical factor in relation to disc health.

Biochemical analysis

Sulphated glycosaminoglycans and hyaluronan. The concentration of S-GAG and of

HA was greater in the NP than AF for both groups (Fig 3). S-GAG was significantly lower in

old-aged group for AFa and NP regions (Fig 3A). HA concentration of old-aged samples was

only significantly lower than that of middle-aged samples in the NP region (p<0.01) (Fig 3B).

This led us to investigate whether further changes could be detected in the molecular weight

distribution of HA. The results showed the same molecular weight profile for all regions and

groups with a mean MW of 200 kDa (S5 Fig).

The degree of sulphation of chondroitin sulphate was investigated by the analysis of its

disaccharides. Changes were rather variable between groups and regions but higher levels of

Table 3. Total number of cells/mm2, % viable cells, and total number of viable cells/mm2 in each region of the disc for Middle- and Old-aged discs.

AFa NP AFp

Total cells/

mm2
%Viable

cells

Total viable cells/

mm2
Total cells/

mm2
%Viable

cells

Total viable cells/

mm2
Total cells/

mm2
%Viable

cells

Total viable cells/

mm2

Middle-

aged

188.4±30 45.06±14 84.78 177±12 47.09±16 83.19 499±164 41.09±14 204.59

Old-aged 188.8±18 47.37±9 89.4912 115±13 59.53±4,4 67.85 362±35 65.85±7 240.24

(AFa) anterior annulus fibrosus, (NP) nucleus pulposus, (AFp) posterior annulus fibrosus

https://doi.org/10.1371/journal.pone.0203932.t003

Fig 3. (A) Sulphated glycosaminoglycans in different regions of the disc for both groups. Observe the lower contents for old-aged group compared to middle-aged in all

regions. In (B) observe the similar distribution of hyaluronic acid. (�) p< 0.05; (��) p< 0.01. ANOVA-test, followed by Bonferroni post-test.

https://doi.org/10.1371/journal.pone.0203932.g003
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6-O-sulphation are observed in the aged group for both AFa and AFp regions. As for the AFp

region, sulphation levels at both 4 and 6-position decreased in old-aged and, as expected, an

increase in the Di-0S (2-acetamido-2deoxy-3-O-(β-D-gluco-4-enepyranosyluronicacid)-D-

galactose) (Table 4).

Collagen birefringence. It is known that immature and mature collagen fibrils are differen-

tiated by their colours under polarized light[27]. Against a black background, thick fibres are

mainly type I mature collagen, consequently present intense birefringence of yellow to red colour,

while thin fibrils formed mainly by type I immature collagen (including procollagen, intermediar-

ies, and even altered collagen) and display a weak birefringence of greenish colour[27–29]. Colla-

gen birefringence changes also can be attributed to orientation of the fibres[30]. In addition,

greenish birefringence is also associated with accumulation of type III collagen[31].

Birefringence intensity evaluation of collagen fibrils under polarized light shows the pre-

dominance of orange to reddish-orange fibres in the middle-aged discs, representing thick

fibres (1.6–2.4 μm; particularly in the AF), whereas, in old-aged, the majority were greenish or

yellowish-green, characteristic of thin fibres (0.8 μm or less)[23,32] (Fig 4). The birefringence

ratio of greenish/reddish collagen fibrils in the two groups demonstrate a significant differ-

ence, being thinner in older, more degenerate discs in all regions of the disc (p<0.001) (Fig 4).

Discussion

We analysed separately the NP, AFa and AFp, and caudal and cranial endplates in middle-

aged and old-aged intervertebral discs. We found significant differences between middle and

old age in degeneration grade and in concentrations of sulphated proteoglycans and hyaluro-

nan (Fig 3) which were both, in general, higher in middle age (Group 1) than in the old age

(Group 2) discs which were severely degenerate. The cell density was greater in middle-aged

discs than in old-aged discs; a large proportion of cells were non-viable (40–60%) in all discs,

with viability greater in old-aged discs however the number of viable cells/area was greater in

the NP of the middle-aged discs suggesting that the number of viable cells is the critical factor

in relation to disc health. There were differences between posterior and anterior annulus tis-

sue, with the posterior annulus having a notably higher concentration of cells that the anterior

annulus, whereas the concentrations of S-GAGs was higher in this region (Fig 3). For both

groups and all regions, the caudal bony endplates had significantly more marrow contacts with

the disc than the cranial endplates (Fig 2), but there was little change in porosity between mid-

dle and old age. These results thus confirm that when analysing the disc and surrounding tis-

sues, both age/degeneration and disc region need to be taken into account.

Changes in the vertebral marrow contacts (Fig 2) appear important for disc health as they

influence transport of nutrients into the disc[11]. We however saw no significant effect of age

Table 4. Percentage of disaccharides products formed by the action of chondroitinase AC on glycosaminoglycan of human lumbar intervertebral disc.

AFa NP AFp

M-A O-A M-A O-A M-A O-A

Di-6S 36.14 41.24 37.28 45.37 39.28 38.43

Di-4S 31.94 27.74 26.58 30.77 28.78 26.48

Di-0S 29.96 31.02 36.14 23.86 31.94 35.09

(AFa) anterior annulus fibrosus; (NP) nucleus pulposus; (AFp) posterior annulus fibrosus. (M-A) Middle-aged; (O-A) Old-aged; (Di-0S) 2-acetamido-2deoxy-3-O-(β-

D-gluco-4-enepyranosyluronicacid)-D-galactose; (Di-4S) 2-acetamido-2deoxy-3-O-(β-D-gluco-4-enepyranosyluronicacid)-4-O-sulfo-D-galactose; (Di-6S)

2-acetamido-2deoxy-3-O-(β-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose.

https://doi.org/10.1371/journal.pone.0203932.t004

Human discs and bony endplate analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0203932 September 18, 2018 10 / 17

https://doi.org/10.1371/journal.pone.0203932.t004
https://doi.org/10.1371/journal.pone.0203932


(and degree of degeneration) on the number of marrow contacts/endplate area. Thus our

results are not in agreement with those of Benneker[9] who found a strong effect of degenera-

tion on marrow contacts, although he measured density of openings rather than number. MRI

studies have examined diffusion of contrast agent into the disc and show that this varies with

degree of disc degeneration[33], differs between caudal and cranial endplates, and is regulated

by porosity of the endplate[34]. The higher number of marrow contacts in the caudal than in

the cranial endplate could explain the results of the transport studies of Arpinar et al[34] who

found a consistently higher finding in the cranial than in the caudal endplate of degenerated

discs. However, there has been no report which has compared the number of marrow contacts

in the cranial endplate with that of the caudal endplate of the same discs. Here, we demon-

strated that the caudal endplate has more marrow contacts with the disc in both middle-age

and old-age donors than the cranial endplate. Caudal endplates have lower bone mineral den-

sity and are thinner than the cranial endplate[17] and the presence of more holes in this area

could contribute to the small thickness of this endplate and its susceptibility to fractures[16].

The disc of the same region (lumbar) and same specimen used to analyse the endplate

openings was employed to analyse the cellular viability and number. There is little data on cell

number and none on viability of human disc cells, however it should be noted that separating

the slabs of the functional unit using a band bone saw could have damaged some cells and led

to loss viability. Viability percentage was greater in old-aged discs but did not reach levels of

significance while the number of viable cells/area was greater in the NP of the middle-aged

discs. The total cell density was very low in both groups, particularly the older group, and was

lowest in the NP, in agreement with previously studies[8,35]. Unfortunately, as each of the two

Fig 4. (A) Histological analysis of the human lumbar intervertebral disc stained using picrosirius red and visualized by polarized light microscopy. Observe that in all

regions of the disc, in middle-aged, there is a predominance of thick fibres or reddish fibres. In (B), shows the ratio of reddish/greenish collagen fibres identified by split

imaging in channels (red-green) and quantified using Image J software. AFa–anterior annulus fibrosus; NP–nucleus pulposus; AFp–posterior annulus fibrosus. (���)

p< 0.001. ANOVA-test, followed by Bonferroni post-test.

https://doi.org/10.1371/journal.pone.0203932.g004
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different groups contained mainly discs of similar degeneration grades, it was not possible to

relate cell viability to degeneration in this study.

We observed that not only the amount of GAG but also the substitution pattern of chon-

droitin changed with location and ageing (Fig 3, Table 4). Previous reports demonstrate

that Di-6S is the most abundant disaccharide in children[36] but in the adult intervertebral

disc the proportion of Di-4S increases[37]. Our results found that Di-6S/Di-4S increased

with age (Table 4) in agreement with the results of Olczyk[37]. However, here we observed

that in the NP, Di-6S was present in higher concentration only in the old-age group. Chon-

droitin-6-sulphate seems to be related to the maintenance of articular surfaces[38] and

understanding the distribution of Di-4S and Di-6S in various human cartilages may also

help in the knowledge of the pathogenesis of some heritable disorders involving the sulpha-

tion of chondroitin[39]. A significant proportion of GAGs present unsulphated regions and

as sulphation of GAGs provides the osmotic pressure, necessary for maintaining disc hydra-

tion, fall in its degree of sulphation would affect disc biomechanical function. Moreover, as

DMMB (1,9-dimethylmethylene blue) assay commonly used for GAGs measurement is not

selective for GAGs, so the overall changes in GAGs with age is not commonly assessed by

this assay in many of other studies.

The fall in the amount of HA could result from a reduction in its MW. In human articular

cartilage the HA-MW is around 6000 kDa; some authors suggest that high HA-MW has a

chondroprotective effect in osteoarthritic cartilage[40,41] as in the arthritic knee it plunges to

500–3000 kDa[40]. The importance of low concentration of HA during aging and its associa-

tion with a lower amount of HA in cartilage degeneration suggest that this relationship may be

an important factor in the age-related deterioration of knee articular cartilage[42]. We found

that the HA-MW in all regions of the disc and in all ages, was around 200 kDa. However,

other authors suggest that NP and AF cell numbers in culture in vitro were highest upon poly-

ethylene glycol hydrogels formed from lower- HA-MW[43]. Thus, possibly responses of inter-

vertebral disc cells differ from those of articular chondrocytes, and the low MW of HA within

the disc helps the maintenance of cells. As far as we know, there is no report of the HA-MW

into the disc and this report could help in future research about this GAG.

Our findings demonstrate that AFa has fewer viable cells/mm than AFp and older discs also

have fewer cells which strengthens the data that in discs that are submitted to loading adaptive

changes may result in disc degeneration[44,45], cell death begins at the fibrous annulus and

apoptotic cells increase as stress and time increases[46]. Since about 80% of the compressive

load passes through the vertebral bodies and the remaining 20% passes through the posterior

elements[47], this load is expected to be different and higher in the anterior part of the verte-

bral body, which explains the smaller number of viable cells in this region and the great drop

in GAG content in the AFa.

There is quite a large change in collagen organization between middle aged and elderly

discs. A very large number of reddish fibres in all regions of middle-aged discs (Fig 4) was

observed; the fibres in this group thus appear well organized and thick. In the older, more

degenerate discs of old-aged group however, fibres tended to be greenish-yellowish, suggesting

thinner and more disorganized fibrils[32]. Degradation of collagen[48] and other matrix com-

ponents, leads to disorganisation of the matrix structure and loss of thicker organised collagen

fibrils. We suggest that the changes we see result from this degradation.

There has been a focus on degenerative disc disease, where changes in the disc are thought

to be the primary source of pain[49]. However, in other disorders such as fractures or spondy-

lolisthesis, where minimally invasive surgery is used as the means of treatment, for these to

succeed, it is absolutely necessary that the disc remains healthy. However, disc degeneration is

also implicated in the development of spinal pathologies which affect the elderly in particular,
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such as spinal stenosis[50] and kyphoscoliosis[51]. With the increase in numbers of the elderly,

and the growing incidence of spinal problems in this population, the results of this study show

that more attention needs to be given to factors leading to degenerative changes in the disc,

not only in middle age but right throughout life.

Supporting information

S1 Fig. Representative image of viable cells in the intervertebral disc. (�) presence of forma-

zan crystals (metabolic active cells) around the blue nucleus stained with DAPI. (#) cell stained

with DAPI without the formazan crystal–metabolic inactive cell. Images were acquired in the

confocal microscope LSM7801. Bar = 10 μm.

(TIF)

S2 Fig. Cell viability in different regions of the intervertebral disc in middle-aged and old-

aged. Images acquired using confocal microscope LSM7801. Nucleus stained with DAPI

(blue). (AFa) annulus fibrosus anterior; (NP) nucleus pulposus; (AFp) annulus fibrosus poste-

rior. Bar = 30 μm.

(TIF)

S3 Fig. Electrophoresis in PDA gels of pools of different intervertebral disc regions after

enzymatic degradation. (A) Middle-aged. (B) Old-aged. (CS) chondroitin sulfate; (DS) der-

matan sulfate; (HS) heparan sulfate; (Or) origin; (P) pattern; (H2O) water; (AC) chondroiti-

nase AC; (ABC) chondroitinase ABC; (1) pool of anterior annulus fibrosus; (2) pool of nucleus

pulposus; (3) pool of posterior annulus fibrosus.

(TIF)

S4 Fig. Chromatogram of monodisperse hyaluronic acid standards. Chromatogram of

monodisperse hyaluronic acid standards of known molecular weights: 2500kDa, 601kDa, 250

kDa, 150kDa and 100kDa analysed in Akta apparatus Purifier1 OHpak SB- 805HQ (Sho-

dex1) in series with column OHpak SB- 804HQ (Shodex1) 300 x 8.0 mm and detection UV

at 205 nm after peak collected every 0.2 ml. Observe that the hyaluronic acid of higher

Highlights

• Cranial vertebral endplate is the main vascular route to the intervertebral disc

• Hyaluronic acid molecular weight is the same through the intervertebral disc after age

50’s

• Our results found that Di-6S/Di-4S increased with age and Di-6S was present in higher

concentration only in the old-aged group

• there is a collagen disorganization in elderly discs predominating thinner fibres

• the number of viable cells/area was greater in the middle-aged discs

• AFa has fewer viable cells/mm and a greater drop in GAG content than AFp in both

groups.
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molecular weight is eluted first than hyaluronic acid of different weights that are dislocated to

the right as its weight reduces.

(TIF)

S5 Fig. Chromatogram of the molecular weight analysis of the hyaluronic acid. Analysis

using the Akta apparatus Purifier1 OHpak SB- 805HQ (Shodex1) in series with column

OHpak SB- 804HQ (Shodex1) 300 x 8.0 mm and detection UV at 205 nm after peak collected

every 0.2 ml. (AFa1) Anterior Annulus Fibrosus Middle Aged; (NP1) Nucleus Pulposus Mid-

dle-Aged; (AFp1) Posterior Annulus Fibrosus Middle-Aged; (AFa2) Anterior Annulus Fibro-

sus Old-aged; (NP2) Nucleus Pulposus old-aged; (AFp2) Posterior Annulus Fibrosus old-aged.

(TIF)
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16. Yang G, Battié MC, Boyd SK, Videman T, Wang Y. Cranio-caudal asymmetries in trabecular architec-

ture reflect vertebral fracture patterns. Bone. Elsevier Inc.; 2017; 95: 102–107. https://doi.org/10.1016/j.

bone.2016.11.018 PMID: 27876503
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