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Racial/ethnic disparities in academic performance may result from a confluence of
adverse exposures that arise from structural racism and accrue to specific subpopula-
tions. This study investigates childhood lead exposure, racial residential segregation,
and early educational outcomes. Geocoded North Carolina birth data is linked to blood
lead surveillance data and fourth-grade standardized test scores (n = 25,699). We con-
structed a census tract-level measure of racial isolation (RI) of the non-Hispanic Black
(NHB) population. We fit generalized additive models of reading and mathematics test
scores regressed on individual-level blood lead level (BLL) and neighborhood RI of
NHB (RINHB). Models included an interaction term between BLL and RINHB. BLL
and RINHB were associated with lower reading scores; among NHB children, an inter-
action was observed between BLL and RINHB. Reading scores for NHB children with
BLLs of 1 to 3 μg/dL were similar across the range of RINHB values. For NHB chil-
dren with BLLs of 4 μg/dL, reading scores were similar to those of NHB children with
BLLs of 1 to 3 μg/dL at lower RINHB values (less racial isolation/segregation). At
higher RINHB levels (greater racial isolation/segregation), children with BLLs of 4 μg/dL
had lower reading scores than children with BLLs of 1 to 3 μg/dL. This pattern
becomes more marked at higher BLLs. Higher BLL was associated with lower mathe-
matics test scores among NHB and non-Hispanic White (NHW) children, but there
was no evidence of an interaction. In conclusion, NHB children with high BLLs
residing in high RINHB neighborhoods had worse reading scores.
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In the United States, there are longstanding racial/ethnic disparities in academic perfor-
mance and educational attainment, evidenced by lower high school and college gradua-
tion rates among some racial/ethnic groups, particularly Hispanic and non-Hispanic Black
(NHB) individuals (1). These disparities, sometimes referred to as the “achievement gap,”
may emerge in early childhood and persist over time (1). Academic performance in early
childhood predicts later-life educational outcomes, including high school graduation (1),
which relates to measures of health, socioeconomic status, and well-being in adulthood
(2). Disparities in academic achievement in elementary school children may be prevent-
able and warrant attention as potentially important foci for early intervention.
It is widely agreed that positive and negative outcomes are determined by multiple

forces, acting across the life course, yet surprisingly little is known about the interac-
tions of those forces. A plethora of evidence demonstrates that lead exposure in young
children, even at low levels, is associated with learning deficits and lower scores on
intelligence and standardized tests (3–7). Adverse effects of childhood lead exposure
persist into adulthood, affecting intelligence and socioeconomic status (SES) (8). Envi-
ronmental exposures such as lead may be elevated in communities experiencing a mul-
titude of disadvantages (9) such as poverty, deprivation, or segregation (10).
Neighborhood characteristics, and poverty specifically, have been shown to relate to

cognitive development in children (11), including verbal ability (12). However, there is
a dearth of work examining relationships between cognitive and developmental out-
comes and neighborhood characteristics beyond measures of SES. In particular, racial
residential segregation (RRS)—the geographic separation of Black individuals and com-
munities from other racial/ethnic groups (13)—has, through the concentration of pov-
erty and poor physical and social environments, resulted in distinctive environments
that may underlie racial disparities in health outcomes (14). RRS is linked with adverse
health outcomes, including infant and adult mortality (15–19), adverse pregnancy out-
comes (e.g., preterm birth, low birth weight) (20–22), and chronic diseases such as
hypertension and type 2 diabetes (23–26). These associations often persist even after
controlling for SES, suggesting that SES may not fully capture all pathways and
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processes through which segregation affects neighborhood envi-
ronments, resources, and residents. Yet few, if any, studies have
explored associations between neighborhood RRS and cognitive
outcomes in children.
Despite the potential for adverse neighborhood conditions to

amplify health, cognitive, and developmental effects of lead (or
other environmental exposures), effects of lead exposure are sel-
dom evaluated alongside neighborhood contextual factors (e.g.,
deprivation, RRS). Thus, relationships and interactions among
lead exposure and neighborhood context, and the impact on
cognitive and developmental outcomes, may be important but
are not thoroughly understood. Murine models of stress and
lead exposure indicate that depauperate environments exacer-
bate the neurological impact of lead exposure (27). Similarly,
human epidemiologic models suggest that stress exacerbates the
impact of air pollution on asthma severity (28). The mecha-
nism(s) for these combined effects are not fully understood,
with potential explanations being priming of the stress response
pathway, priming the inflammatory pathway, or both.
Here, we examine the combined effect of social (RRS) and

environmental (lead) exposures on key developmental outcomes.
To do so, we construct a longitudinally linked spatiotemporal
dataset that tracks children from time of birth to time of fourth-
grade end-of-grade testing by linking multiple, statewide admin-
istrative datasets. We then estimate associations between key
exposures and end-of-grade standardized test scores in reading
and mathematics for fourth-grade public school students in
North Carolina, including interaction terms between individual-
level lead exposure and a neighborhood-level RRS measure (racial
isolation of NHB individuals [RINHB]) to evaluate whether one
exposure potentially augments susceptibility to another.

Results

Descriptive Statistics. The median birthweight percentile for
gestational age was 36.7 for NHB children compared with 53.0
for non-Hispanic White (NHW) children (Table 1). The median
blood lead level (BLL) among NHB children (4.0 μg/dL) was
higher than that for NHW children (3.0 μg/dL). A higher per-
centage of NHB children (76.4%) resided in urban areas com-
pared to NHW children (70.7%). NHB mothers were less likely
than NHW mothers to report smoking during pregnancy (11.5%
vs. 21.8%) and were younger at the time of their child’s birth
(median age, 23.0 vs. 26.0 y). NHB mothers were more likely to
not have graduated from high school compared to NHW moth-
ers (26.2% vs. 18.2%) and were more likely to be unmarried
(72.3% vs. 25.1%). Among NHB children, 82.9% experienced
economic disadvantage (i.e., participated in the free and
reduced-price lunch program) compared to 44.1% of NHW
children. At time of birth and standardized testing, NHB chil-
dren resided in census tracts with lower median household
incomes compared to NHW children. On average, at birth and
standardized testing, NHB children resided in census tracts with
higher levels of RINHB compared to NHW children. The RINHB

distributions for NHB versus NHW children have limited over-
lap: for example, the 75th percentile (i.e., top of the interquartile
range) of RINHB at time of standardized testing for NHW chil-
dren (0.23) was equal to the 25th percentile of RINHB for NHB
children (Table 1). The correlation between RINHB at birth and
RINHB at time of standardized testing was 0.70 and 0.53 among
NHB children and NHW children, respectively.

Reading Scores. Due to high correlation between RINHB at birth
and RINHB at standardized testing, we fit separate models to

adjust for each of these variables; that is, one model that adjusts
for neighborhood RINHB at birth and another that adjusts for
neighborhood RINHB at standardized testing. Results from race-
stratified generalized additive models for reading test scores that
adjust for RINHB at time of standardized testing are presented in
the main text; corresponding results for models that adjust for
RINHB at time of birth are presented in SI Appendix. Results
from adjusted models with an interaction term (BLL × RINHB)
are presented if the interaction was significant (P < 0.05); other-
wise, results from the adjusted model without an interaction term
are presented. We report adjusted and interaction model results
for reading scores for NHW and NHB children, respectively.

For smoothed (nonlinear) variables, we report on the complexity
of the smoother (effective degrees of freedom) and the statistical
significance of the smooth term (P value, F-statistic) in Table 2.
The P values correspond to the hypothesis that the nonlinear
function is zero everywhere, so rejection of the null hypothesis
indicates an association between the nonlinear effects and stan-
dardized test scores for at least some values of that variable. The
relationship between each of the smooth terms and scaled reading
test scores is provided in Fig. 1. These plots depict the possibly
nonlinear relationship between the respective test score and the
nonlinear variables and include pointwise 95% CIs.

Briefly, BLL was associated with reading test scores among
NHW children, but not NHB children (note that the main effect
for BLL was significant in the adjusted model for NHB children,
but not in the interaction model for NHB children presented
here). RINHB was associated with reading test scores among NHB
children but not NHW children. An interaction between BLL
and RINHB was observed for NHB children only. Maternal age
was associated with reading test scores for children of both races.

The plots of BLL (Fig. 1 A and B) were linear for both races
and indicate that higher concentrations of blood lead were asso-
ciated with lower test scores, although this relationship only
achieved statistical significance for NHW children.

The plots of neighborhood RINHB at time of standardized test-
ing (Fig. 1, C and D) were relatively linear for both NHB and
NHW and indicate that higher levels of neighborhood RINHB

may be associated with decrements in reading test scores, although
this relationship was statistically significant only for NHB children.

The association between maternal age and reading test scores
was nonlinear for both races (Fig. 1, E and F). Increasing mater-
nal age appears detrimental to reading test scores until around
23 to 25 y, after which increasing maternal age was associated
with improvements in reading test scores. This relationship
appears more marked for NHW children.

Fig. 2 shows predicted scaled reading scores (y-axis) for NHB
children across the range of RINHB values (x-axis) for BLLs rang-
ing from 1 to ≥7 μg/dL Predicted test scores for NHB children
with a BLL of 1 μg/dL are provided for comparison with
predicted test scores of NHB children with higher BLLs. The
highest BLL category, 7 μg/dL, includes individuals with BLLs
of ≥7 μg/dL. Continuous covariates (e.g., birthweight percentile
for gestational age, maternal age) are held at the mean, and cate-
gorical covariates (e.g., maternal educational attainment, mater-
nal marital status, maternal smoking during pregnancy, child
sex, computer use, and economic disadvantage) are set to their
reference level. Fig. 2 shows that higher RINHB is only associated
with lower reading test scores among NHB children with BLLs
of at least 4 μg/dL The decrement in reading scores associated
with higher levels of RINHB becomes even more marked at
higher levels of lead exposure.

For linear variables, among NHB and NHW children, higher
birthweight percentile for gestational age and higher maternal
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educational attainment were associated with higher reading test
scores (Table 3). Male sex and economic disadvantage were asso-
ciated with lower reading test scores. Smoking during pregnancy
was associated with statistically significant decrements in reading
test scores among NHW children, but not NHB children; how-
ever, NHB mothers were half as likely as NHW mothers to
report smoking during pregnancy. Having an unmarried mother
at time of birth was associated with lower reading test scores
among NHB children and, to a lesser degree, NHW children.
Residing in an urban census tract at time of end-of-grade testing
was associated with statistically significant decrements in reading
test scores among NHB children, but not NHW children.
Results for models of reading test scores that adjusted for

RINHB at time of birth are presented in SI Appendix, Table S1
and Figs. S1 and S2. Results did not differ substantively from
those reported here.

Mathematics Scores. As with models for reading test scores,
due to correlation between RINHB at time of birth and RINHB

at time of standardized testing, we fit separate models to adjust
for each of these variables. Results from race-stratified general-
ized additive models for math test scores that adjust for RINHB

at time of standardized testing are presented here; correspond-
ing results for models that adjust for RINHB at time of birth are
presented in SI Appendix.

Briefly, in race-stratified generalized additive models for mathe-
matics test scores that adjust for RINHB at time of standardized
testing, higher BLL was negatively associated with math test
scores among NHB and NHW children. Neighborhood RINHB

at time of standardized testing was negatively associated with
math test scores for NHW children only (SI Appendix, Table
S2). Maternal age was variably associated with math test scores
for both NHB and NHW children (i.e., the relationship between

Table 1. Summary statistics of North Carolina fourth-grade students linked to birth certificate data and blood lead
screening records, by race/ethnicity

Variable
All children
(n = 25,699)

NH Black children
(n = 9,909)

NH White children
(n = 15,790) P value

Reading test score, mean (SD) 346.8 (8.65) 343.0 (7.87) 349.2 (8.26) <0.001
Mathematics test score, mean (SD) 352.0 (8.37) 348.2 (7.60) 354.3 (7.97) <0.001
Child characteristics
Birthweight percentile for

gestational age, median (IQR)
45.7 (22.4–71.9) 36.7 (16.8–61.2) 53.0 (28.3–76.6) <0.001

Blood lead test result (μg/dL),
median (IQR)

3.0 (2.0–5.0) 4.0 (3.0–5.0) 3.0 (2.0–4.0) <0.001

Children residing in urban
census tracts (at time of
standardized test), n (%)

18,733 (72.9) 7,569 (76.4) 11,164 (70.7) <0.001

Male sex, n (%) 12,748 (49.6) 4,835 (48.8) 7,913 (50.1) 0.041
Computer use, n (%) <0.001
None 9,100 (35.4) 3,783 (38.2) 5,317 (33.7)
Some 14,885 (57.9) 5,174 (52.2) 9,711 (61.5)
Always 1,714 (6.7) 952 (9.6) 762 (4.8)

Economic disadvantage, n (%)* 15,172 (59.0) 8,213 (82.9) 6,959 (44.1) <0.001
Year of end-of-grade standardized

test, n (%)
0.135

2010 17,072 (66.4) 6,527 (65.9) 10,545 (66.8)
2011 8,627 (33.6) 3,382 (34.1) 5,245 (33.2)

Maternal characteristics
Reported smoking during

pregnancy, n (%)
4,580 (17.8) 1,135 (11.5) 3,445 (21.8) <0.001

Age at time of child’s birth (y),
median (IQR)

25.0 (21.0–30.0) 23.0 (20.0–28.0) 26.0 (22.0–31.0) <0.001

Educational attainment at child’s birth, n (%) <0.001
No high school diploma 5,474 (21.3) 2,600 (26.2) 2,874 (18.2)
High school diploma 15,756 (61.3) 6,435 (64.9) 9,321 (59.0)
College diploma 4,469 (17.4) 874 (8.8) 3,595 (22.8)

Unmarried at time of birth 11,131 (43.3) 7,167 (72.3) 3,964 (25.1) <0.001
Neighborhood characteristics (census tract)
RI, median (IQR)
Time of birth 0.21 (0.11–0.34) 0.34 (0.22–0.49) 0.14 (0.074–0.25) <0.001
Time of end-of-grade test 0.20 (0.093–0.35) 0.35 (0.23–0.49) 0.13 (0.065–0.23) <0.001

Median household income ($) in
the last 12 mo, median (IQR)
Time of birth 36,136 (28,894–43,929) 30,625 (22,500–38,226) 38,750 (32,563–46,633) <0.001
Time of test 43,262 (32,433- 55,375) 36,711 (26,196–48,125) 46,713 (36,840–59,268) <0.001

Summary statistics are shown for North Carolina births in 2000 linked to end-of-grade standardized testing records from two school years: 2010/2011 and 2011/2012. Cell counts and
percentages are presented except in the case of continuous variables, where the mean (SD) or median (interquartile range [IQR]) are given as indicated next to the variable name, for
normally distributed and nonnormally distributed variables, respectively. Maternal variables are based on reported maternal characteristics at time of the child’s birth. The χ2 test was
used to test for differences by race group for categorical variables. T tests were used for continuous standardized test scores which were approximately normally distributed. For other
continuous variables, the Wilcoxon rank sum test was used to test for differences by race group. Urbanicity was determined based on Rural-Urban Commuting Area (RUCA) codes (42).
*A child was considered to have economic disadvantage if they participated in the free/reduced-price school lunch program in fourth-grade, at time of end-of-grade testing.
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maternal age and math test scores was nonlinear). There was no
evidence of an interactive effect between BLL and neighborhood
RINHB at time of end-of-grade test for either NHB or NHW
children.
The relationship between each of the smooth terms and

scaled mathematics test scores is shown in SI Appendix, Fig. S3.
The plots of BLL (SI Appendix, Fig. S3 A and B) were linear
for both races and indicate that higher BLLs are associated with
lower test scores.
Among NHB children, the association between RINHB at

time of testing and math test scores was not significant. The
corresponding plot (SI Appendix, Fig. S3) shows that the associ-
ation was negative until high levels of RINHB (e.g., ≥0.70), but
the CIs were wide at high levels of RINHB (SI Appendix, Fig.
S3C). Among NHW children, neighborhood RINHB at time of
standardized testing was linearly associated with lower math
test scores (SI Appendix, Fig. S3D), and again, the CIs were
wide at high levels of RINHB.

Among NHB children, increasing maternal age was associ-
ated with lower math test scores until around age 25, after
which math test scores plateau or improve with maternal age,
although the CIs were wide (SI Appendix, Fig. S3E). The rela-
tionship between maternal age and math test scores among
NHW children was similar to that observed for reading test
scores (SI Appendix, Fig S3F).
Among NHB and NHW children, higher birthweight per-

centile for gestational age and higher maternal education were
associated with higher math test scores (SI Appendix, Table S2).
Economic disadvantage and having an unmarried mother were
associated with lower math test scores. Smoking during preg-
nancy was associated with statistically significant decrements in
math test scores among NHW children, but not NHB chil-
dren. Male sex was associated with lower and higher math test
scores among NHB and NHW children, respectively. Residing
in an urban census tract at time of end-of-grade testing was
associated with decrements in math test scores among NHB
children, but not NHW children.
Results for models of math test scores that adjusted for

RINHB at time of birth are presented in SI Appendix, Table S3
and Fig. S4. Results were generally similar to those presented
here; that is, higher BLL was negatively associated with math
test scores and maternal age was variably associated with math
test scores for both NHB and NHW children. However,
among NHB children, higher neighborhood RINHB at time of
birth was associated with lower math test scores, while no asso-
ciation was observed between RINHB at time of birth and math
test scores among NHW children. There was no evidence of an
interactive effect between BLL and neighborhood RINHB at
time of birth for either NHB or NHW children.

Discussion

We constructed a longitudinally linked spatiotemporal dataset
that tracks children from time of birth to time of fourth-grade
end-of-grade standardized testing by linking multiple statewide
administrative datasets in North Carolina. Using generalized
additive models, we estimated nonlinear associations, and poten-
tial interactions, between neighborhood and environmental
exposures and fourth-grade standardized test scores in reading
and mathematics. A priori, we decided to include an interaction
term between environmental (e.g., lead) and neighborhood (e.g.,
RINHB) exposures to test the hypothesis that exposure to RINHB

has potential to augment the adverse effects of lead exposure.
In this population-based sample, we observed that NHB

children are more likely to experience economic disadvantage,
have higher BLLs, reside in racially isolated neighborhoods, and
have mothers who did not graduate from high school and are
unmarried at time of birth; NHW children are more likely to
have mothers who reported smoking during pregnancy. Thus,
NHB children are more likely than NHW children to experi-
ence multiple adverse exposures. This underscores the impor-
tance of detecting and appropriately modeling interactions
between multiple exposures, because these exposures have the
potential to synergistically combine to adversely affect out-
comes. Even without synergistic effects, the accumulation of
adverse exposures that characterize this study population—and
likely other groups of children—can be particularly detrimental
to child cognitive and developmental health.

Critically, we did observe evidence of an interaction between
BLL and RINHB on reading test scores among NHB children.
NHB children with low BLLs (e.g., ≤3 μg/dL) who reside in
high RINHB neighborhoods have similar reading test scores
compared to their counterparts with low BLLs in low RINHB

neighborhoods. In contrast, NHB children with high BLLs
(e.g., ≥4 μg/dL) in high RINHB neighborhoods have signifi-
cantly lower reading test scores compared to their counterparts
with high BLLs in low RINHB neighborhoods.

This interaction between BLL and RINHB was observed for
reading scores only among NHB children. However, the
hypothesized mechanisms for this interaction (i.e., that depau-
perate environments and chronic stressors exacerbate the
adverse effects of environmental exposures on health and devel-
opment) should in theory apply to all children. However,
NHB and NHW children are not equally exposed; if NHW
children were exposed to high RINHB neighborhoods, an inter-
action between BLL and RINHB might be observed among
NHW children as well. The vast majority of NHW children
live in low(er) RINHB neighborhoods, so in this analysis, we
may not have the exposure distribution and contrast necessary

Table 2. Results of the generalized additive model regression for end-of-grade test scores in reading: nonlinear
variables

Nonlinear variable

NHB children NHW children

edf P value F-statistic edf P value F-statistic

BLL 1.057 0.179 1.882 1.004 0.008 6.966
RI at time of end-of-grade test 1.002 0.001 10.478 1.021 0.147 2.044
Maternal age 3.575 0.003 3.904 5.285 <0.001 9.132
BLL × RI at time of end-of-grade test 5.472 0.003 3.007 — — —

Effective degrees of freedom (edf), F-statistic, and P value are reported instead of coefficients for nonlinear effects. edf represents the complexity of the smooth: an edf of 1 is
equivalent to a straight line, an edf of 2 is equivalent to a quadratic curve, and so on, such that higher edf values describe more “wiggly” curves. Furthermore, an edf < k � 1 indicates
that k is sufficiently large. The F-statistic is a test statistic used in an analysis of variance to test overall significance, which produces the P value. The table values are approximate, thus
it is important to visualize the model to check the identified relationships (50). Dashes (—) indicate that the model did not include an interaction term.
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to detect an interaction. Moreover, even if NHW children were
equally exposed to, for example, RINHB, NHW children may
be more likely than NHB children to benefit from cognition-,
developmental-, or health-promoting exposures or access to
resources that exert a protective effect. This warrants additional
investigation.
Importantly, there is no “optimal” level of RINHB, and we

purposefully chose a nonlinear modeling approach to allow us
to investigate how varying levels of RINHB might affect out-
comes. The generalized additive modeling approach used here
includes independent variables with nonparametric functions,
subject to the constraint that the nonparametric effects addi-
tively combine. In this way, generalized additive models are an
alternative to assuming global linearity by default. Had a more
standard, linear modeling approach been used, the interaction
between lead and RINHB might have been missed. In fact, in
earlier work using a similarly structured dataset and linear mod-
els, we tested for but did not detect an interaction between lead
exposure and RINHB (9).
This study has several limitations. While we observed associ-

ations between lead, RI, and educational outcomes, we cannot

infer causality. The study sample used here, though population
based, is not perfectly representative of North Carolina’s popu-
lation. For example, we excluded children of mothers with a
residential address at time of birth that could not be found in a
reference dataset. Children removed from the analysis because
their addresses could not be geocoded may differ from those
included in the analysis with respect to characteristics that
relate to exposure and outcomes. In addition, the children in
our dataset are likely biased toward those who are at greatest
risk of lead exposure given blood lead surveillance strategies
and associated testing patterns employed in the absence of a
universal lead screening program in North Carolina. These
issues could affect the generalizability of our results. We used
one lead test result for each child instead of repeated measures,
which are not common in North Carolina’s blood lead surveil-
lance data. However, other studies examining lead exposure
and developmental outcomes have also utilized single measures
of lead exposure (6, 29–31). Models did not adjust for insur-
ance status, but information on mothers’ insurance type is
available in the North Carolina detailed birth records (DBRs)
beginning in 2011, and thus could be used in future work
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Fig. 1. Nonlinear effects and predicted scaled end-of-grade standardized test scores in reading. The association between blood lead level and scaled read-
ing test scores is shown for NHB children (A) and NHW children (B); the association between neighborhood racial isolation at time of standardized testing
and scaled reading test scores is shown for NHB children (C) and NHW children (D); the association between maternal age at time of child’s birth and scaled
reading test scores is shown for NHB children (E) and NHW children (F).
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utilizing later birth cohorts. Finally, our findings may be biased
due to unmeasured confounding, although we attempted to mit-
igate potential bias by controlling for maternal- and child-level
covariates. Several of our findings merit further research, includ-
ing why an association was observed between math test scores
and RINHB at birth but not RINHB at time of standardized test-
ing among NHB children, and why the reverse was observed
among NHW children (i.e., RINHB at time of standardized test-
ing was associated with math test scores among NHW children,
but RINHB at time of birth was not). The absence an interaction
of BLL and RINHB on math test scores should also be investi-
gated in future work.
Despite limitations, this study has important strengths. We

developed a spatiotemporal dataset that connects multiple
administrative datasets. We were able to evaluate associations

between multiple exposures, interactions between those expo-
sures, and standardized test scores, for both NHB and NHW
children, due to the substantial sample size. We also examine
exposures occurring at various stages in the life course, which
may be especially important given evidence suggesting that
adverse effects of childhood lead exposure (8) and neighbor-
hood conditions persist (12, 32), making the cumulative effect
of these combined exposures of particular interest. For example,
a study of verbal ability in African American children in Chi-
cago, Illinois, concluded that the effects of neighborhood on
verbal ability in children were “not instantaneous, but rather
manifested several years later” (12). Our modeling approach
offers the ease of interpretation associated with linear regression
techniques but the flexibility of nonparametric methods (33).
Finally, this work is also responsive to calls for prioritizing
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Fig. 2. Interaction of BLL × RINHB at time of end-of-grade testing and reading test scores (NHB children).
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research that leverages population-level databases with informa-
tion on location, childhood health, and developmental out-
comes to better understand how neighborhoods shape health
and development (11).
Increasingly, evidence suggests that cognitive, developmental,

and health outcomes and disparities in these outcomes in adult-
hood relate to early life experiences and outcomes, including edu-
cational outcomes (34). Minh et al. (11) describe biological
embedding as a process in which “social and environmental expe-
riences in a child’s early years are theorized to shape physiological
changes that have lifelong protective or detrimental effects on
children’s learning, behavior, health and wellbeing” (35). Lead
exposure and residence in racially segregated neighborhoods,
which in turn affect educational outcomes, may shape later-life
health and disease. We take this framework and show that the
cumulation of exposures associated with living in certain neigh-
borhoods combines to shape educational outcomes. We demon-
strate that, among NHB children, there is an interaction between
lead exposure and neighborhood RI on standardized test scores in
reading, which would have been missed under a standard linear
modeling approach; and that NHB children are more likely to
have multiple adverse exposures. Thus, truly attacking the
achievement gap will require interventions beyond what and how
we teach in schools, including attention to the places and circum-
stances that characterize a child’s home environment.

Materials and Methods

Data. The analysis dataset for this study was created by linking three administra-
tive databases for the State of North Carolina: DBRs, blood lead surveillance
data, and end-of-grade standardized testing data.
DBRs. The DBRs were obtained from the Vital Statistics Department of the North
Carolina State Center for Health Statistics. The DBRs include information on date
of birth, location of birth, maternal characteristics (e.g., health, demographics,

obstetrical history, residential address) and infant characteristics (e.g., gestational
age, sex) for all documented live births in North Carolina. Validation studies
have shown that birth certificate data has high accuracy, especially for variables
describing demographic characteristics and birth outcomes (36, 37).
Blood lead surveillance data. Blood lead surveillance records were obtained
from the Childhood Lead Poisoning Prevention Program of the Children’s Envi-
ronmental Health Unit, Department of Health and Human Services. Blood lead
surveillance data include information on the child (e.g., name, age, test date,
BLL, and residential address). The limit of detection for blood lead is 1 μg/dL
and BLLs are recorded as integer values. Children with BLLs below the limit of
detection were given a value of 1 μg/dL. Children should have been screened
for lead exposure if their parents responded “yes” or “don’t know” to questions
on the Centers for Disease Control and Prevention Lead Risk Assessment Ques-
tionnaire (38), or if they were Medicaid participants.
End-of-grade standardized testing data. End-of-grade standardized test score
data were obtained from the NC Education Research Data Center of Duke Univer-
sity. At the end of each academic year, North Carolina children enrolled in public
schools and in grades 3 to 8 are administered standardized assessments of read-
ing and mathematics. These are “curriculum-based multiple-choice achievement
tests … specifically aligned to the North Carolina Standard Course of Study” (39).
End-of-grade tests consist of multiple-choice questions that assess cognition, criti-
cal stance, interpretation, and connections (Reading) and numeration, numerical
operations, geometry, patterns, relationships, functions, statistics, and probability
(Mathematics) (39). These data also include information such as the child’s name
and birth date as well as socioeconomic and demographic data, information on
English proficiency, and school and school district identifier, among others.

Access to, management, and analysis of these data are governed by data use
agreements and an Institutional Review Board–approved research protocol at the
University of Notre Dame.

Linking Datasets. The linking of the DBR, blood lead surveillance data, and
standardized test score datasets is described in detail elsewhere (9). Briefly, link-
ing methods used different combinations of variables and match strength
requirements to identify children across the three datasets, and they were devel-
oped to ensure accuracy while maximizing the number of records linked.

Table 3. Results of the generalized additive model regression for end-of-grade test scores in reading: linear
variables

Linear variable

NHB children NHW children

Parametric
coefficient (95% CI)* P value

Parametric
coefficient (95% CI) P value

Child characteristics
Birthweight percentile for gestational age 0.001 (0.0003, 0.0017) 0.004 0.001 (0.0003, 0.0014) 0.002
Male sex �0.213 (�0.251, �0.175) <0.001 �0.103 (�0.132, �0.0738) <0.001
Computer use
None �0.064 (�0.105, �0.0231) 0.002 �0.105 (�0.137, �0.0729) <0.001
Some Reference Reference
Always �0.336 (�0.402, �0.270) <0.001 �0.286 (�0.354, �0.218) <0.001

Economic disadvantage† �0.262 (�0.318, �0.206) <0.001 �0.283 (�0.319, �0.248) <0.001
Year of end-of-grade standardized test
2010 Reference Reference
2011 �0.163 (�0.203, �0.122) <0.001 �0.089 (�0.120, �0.0575) <0.001

Maternal characteristics
Educational attainment
No high school diploma Reference Reference
High school diploma 0.216 (0.165, 0.268) <0.001 0.267 (0.221, 0.312) <0.001
College diploma 0.552 (0.462, 0.642) <0.001 0.693 (0.633, 0.753) <0.001

Smoked during pregnancy �0.001 (�0.0627, 0.0609) 0.977 �0.030 (�0.0685, 0.0087) 0.130
Not married �0.107 (�0.156, �0.0581) <0.001 �0.036 (�0.0761, 0.0032) 0.071

Neighborhood characteristics
Urbanicity of census tract at

time of end-of-grade test
�0.085 (�0.130, �0.0406) <0.001 0.007 (�0.0255, 0.0388) 0.684

*CIs reported were calculated as ±1.96 × SE.
†Economic disadvantage is indicated by participation in the free/reduced-price lunch program at time of end-of-grade testing.
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The initial DBR included 118,462 unique infants born to mothers in North
Carolina between January 1, 2000 and December 31, 2000. Of these, 100,395
(84.7%) were street-geocoded, then linked to a 2000 census tract at time of
birth. Mothers included in our analysis were between the ages of 15 and 44 y
(excluded 331 records). We restricted to individuals who were singleton live
births (excluded 3,164 records) without congenital anomalies (excluded 885
records). Children had a gestational age at delivery between 24 and 42 wk
(excluded 343 records) and were born to self-reported NHW, NHB, and Hispanic
mothers (excluded 3,464 records). Of the 92,208 births meeting the above crite-
ria, 62,110 (67.4%) were successfully matched to a fourth-grade reading and
math test score in 2010 to 2011 (encompassing two academic years: 2010/
2011 and 2011/2012). Of the 62,110 births (67.4%) that were successfully
matched to a fourth-grade reading and math test score in 2010 to 2011, 52,045
(83.8%) were geocoded at time of standardized testing. Of the 52,045 children
with both geocoded birth and geocoded education records, 31,014 (59.6%)
were linked with at least one lead test result. If a child had more than one educa-
tion record (end-of-grade tests were administered more than once to some
students), we retained all results in the analysis dataset but used the chronologi-
cally first test result in the analysis. We chose to use the chronologically first
test result because, with few exceptions, this means that the child is being
assessed at the same time as their peers. Retesting could occur for any number
of reasons and a retested child may score higher after having additional time or
interventions to master the material. If a child had more than one lead test
result, we retained all results in the analysis dataset but used the maximum BLL
in the analysis.

Study Sample. There were 31,014 children linked across DBR (in 2000), lead
screening (2000 to 2011), and standardized testing datasets (2010 to 2011),
and geocoded at time of birth and standardized testing. We restricted to children
who were born to self-reported NHW and NHB mothers (excluded 3,863
records); did not have limited English proficiency, as it can be complicated to
interpret test scores among young children for whom English is their second lan-
guage (excluded 195 records); and had a BLL ≤80 μg/dL (excluded 3 records).
We also removed 1,254 records (4.7%) with missing values for maternal educa-
tion, tobacco use, child’s computer use at home, and years of end-of-grade tests
variables. Our final analysis dataset included 25,699 children.

We compared characteristics of the DBR for all children born in 2000
(n = 100,327) with 1) children in the initial dataset of linked births, lead, and
education records (n = 31,014) and 2) children in the final dataset of linked
births, lead, and education records, i.e., the dataset after all exclusion criteria
were applied (n = 25,699) in SI Appendix, Table S4. Reading and math scores
were similar between the initial and final linked datasets. Birthweight percentile
for gestational age was higher in the DBR (median = 47.7) compared to the
initial and final linked datasets (median = 45.7). There were no Hispanic,
non-Hispanic Asian/Pacific Islander, or non-Hispanic other children in the final
dataset. NHB and NHW children were 23.8% and 62.7% of the DBR, respec-
tively, and 38.6% and 61.4% of the final linked dataset, respectively. Hispanic
children represented 9.9% of the DBR and 12.5% of the initial linked dataset. A
higher proportion of mothers reported smoking during pregnancy in the final
linked dataset (17.8%) compared to the initial linked dataset (16.1%) and the
DBR (13.1%). Maternal age at time of child’s birth in the initial and final linked
datasets was younger than in the DBR (25.0 vs. 27.0 y). Maternal educational
attainment was lower in the final linked dataset compared to the DBR; for exam-
ple, 21.3% of mothers had less than high school education in the final dataset
compared to 20.4% in the DBR, and 17.4% of mothers had a college degree in
the final dataset compared to 26.3% in the DBR. Proportions of mothers who
were unmarried at time of birth were higher in the initial (43.3%) and final (44.
1%) linked datasets compared to the DBR (31.2%).
Neighborhood RI. We calculated RI index values at the census tract level based
on 2000 and 2010 Census data using a previously derived local, spatial measure
of RI (20), which is derived from the global spatial isolation index developed by
Reardon and O’Sullivan (40). We calculated tract-level RI scores by accounting
for the population composition in the index tract along with adjacent tracts. In
calculating spatial indices, edge effects may occur when neighboring tracts
located outside the study area are ignored, thus distorting the index values
assigned to bordering tracts within the study area. We thus included neighbor-
ing tracts located in surrounding counties in our adjacency structure. RINHB

ranges from 0 to 1: individuals living in a neighborhood environment that is
nearly all non-NHB individuals will have a RINHB value that is close to 0. In con-
trast, individuals living in a neighborhood environment that is nearly all NHB
individuals will have a RINHB value that is close to 1.

Each child in the final analysis dataset was assigned a RINHB value at time of
birth and time of standardized testing. RINHB at birth was assigned based on
the child’s tract of residence at time of birth (obtained from the DBR), using
RINHB calculated from 2000 Census data. RINHB at time of standardized testing
was assigned based on the child’s tract of residence at time of testing (obtained
from the standardized testing data), using RINHB calculated from 2010 Census
data.
Urbanicity. Urbanicity was determined using primary and secondary rural urban
commuting area (RUCA) codes, which delineate metropolitan, micropolitan,
small town, and rural commuting areas (41). Developed by researchers at the
US Department of Agriculture in collaboration with the Office of Rural Health
Policy and the Rural Health Research Center, RUCA codes use measures of popu-
lation density, urbanization, and size and direction of primary (largest) daily com-
muting flows to determine the degree of urbanicity of US census tracts. RUCA
codes were used to classify tracts as either urban or rural (42).

Statistical Analysis. We used individual-level continuous reading and mathe-
matics end-of-grade standardized fourth-grade test scores as dependent variables,
modeled separately. Generalized additive models were used to estimate associa-
tions between environmental and social exposures on standardized test scores as
well as interactions between environmental and social exposures. Generalized
additive models are an alternative to assuming global linearity by default. This
class of models is subject to the constraint that nonparametric effects additively
combine, thus providing the straightforward interpretation of linear regression
but the flexibility of nonparametric methods. Interaction effects are modeled as
smooth functions of the continuous variable(s) and constrained to be orthogonal
to the main effects, which keeps the interaction distinct from each main effect (43).

The environmental exposure of interest was lead exposure (measured by
BLLs) and the neighborhood exposure of interest was (census tract-level) RINHB at
time of birth and time of standardized testing. BLL and RINHB were treated as
continuous variables.

In preliminary analyses, we observed that NHB and NHW children had differ-
ent covariate distributions (Table 1). Thus, we chose to fit race-stratified models of
standardized test scores, separately for reading and mathematics, that adjusted
for maternal and child-level characteristics. Maternal characteristics obtained from
the DBR included age (years), educational attainment (less than high school [i.e.,
<12th grade], completed high school [i.e., 12th grade], and completed college
[i.e., ≥16 y of education]), marital status, and smoking during pregnancy. We
adjusted for child characteristics as well, including male sex, birthweight percen-
tile for gestational age (an indicator of fetal growth and newborn health) (44–46),
computer use at home (none, some, daily/always), economic disadvantage (partic-
ipation in the free/reduced-price lunch program) at time of end-of-grade testing,
and urbanicity of census tract of residence at time of testing.

To investigate whether neighborhood racial segregation augments (or miti-
gates) adverse effects of lead exposure, we considered a model specification that
included an interaction term between BLL and neighborhood RINHB. Results
from adjusted models with an interaction term (BLL × RINHB) are presented if
the interaction was significant (P < 0.05); otherwise, results from the adjusted
model without an interaction term are presented.

All statistical analyses were performed using R version 3.5.0 (47). Models
were fit with the Mixed GAM Computation Vehicle with Automatic Smoothness
Estimation (mgcv) package (48).

Data Availability. The measure of RI is constructed from publicly available
census data and is included with this manuscript as Dataset S1. Code files to rep-
licate results reported are also included with this manuscript in SI Appendix,
Appendixes A–F. Access to the DBRs, lead vital statistics data, and educational
test score data described in this research is restricted and governed by data use
agreements and protocols reviewed and approved by the Institutional Review
Board at the University of Notre Dame.
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