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Abstract
Leveraging existing presence records and geospatial datasets, species distribution 
modeling has been widely applied to informing species conservation and restora-
tion efforts. Maxent is one of the most popular modeling algorithms, yet recent re-
search has demonstrated Maxent models are vulnerable to prediction errors related 
to spatial sampling bias and model complexity. Despite elevated rates of biodiver-
sity imperilment in stream ecosystems, the application of Maxent models to stream 
networks has lagged, as has the availability of tools to address potential sources of 
error and calculate model evaluation metrics when modeling in nonraster environ-
ments (such as stream networks). Herein, we use Maxent and customized R code 
to estimate the potential distribution of paddlefish (Polyodon spathula) at a stream-
segment level within the Arkansas River basin, USA, while accounting for potential 
spatial sampling bias and model complexity. Filtering the presence data appeared to 
adequately remove an eastward, large-river sampling bias that was evident within 
the unfiltered presence dataset. In particular, our novel riverscape filter provided a 
repeatable means of obtaining a relatively even coverage of presence data among 
watersheds and streams of varying sizes. The greatest differences in estimated distri-
butions were observed among models constructed with default versus AICC-selected 
parameterization. Although all models had similarly high performance and evalua-
tion metrics, the AICC-selected models were more inclusive of westward-situated 
and smaller, headwater streams. Overall, our results solidified the importance of ac-
counting for model complexity and spatial sampling bias in SDMs constructed within 
stream networks and provided a roadmap for future paddlefish restoration efforts in 
the study area.
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1  | INTRODUC TION

Species distribution models (SDMs) are a powerful tool for inform-
ing biodiversity conservation. Using available species presence 
records and geospatial environmental data, researchers have con-
structed SDMs to estimate historic distributions, disentangle fac-
tors driving range loss, and explore how climate change might alter 
distributions (Elith et al., 2011; Guisan & Thuiller, 2005). Models 
built with biologically relevant predictor variables can identify the 
most influential variables in determining the distribution of species 
and estimate how habitat suitability for a species changes across a 
range of values (or categories) for a given variable (Elith et al., 2011). 
Resulting response curves and spatial distribution estimates can 
provide important baseline understanding of species ecology and 
overall conservation status. At present, Maxent is one of the most 
widely used distribution modeling algorithms among ecologists (Elith 
et al., 2011; Merow, Smith, & Silander, 2013; Phillips, Anderson, & 
Schapire, 2006). Maxent is a presence-background algorithm that 
seeks to minimize the relative entropy between predictor variable 
values associated with known presence records and values associ-
ated with background samples from elsewhere within the study area 
by applying a number of predefined transformations to the predictor 
variables (Elith et al., 2011; Merow et al., 2013).

Maxent is generally considered one of the best performing 
presence-only modeling algorithms (Elith et al., 2006; Pearson, 
Raxworthy, Nakamura, & Poret-Peterson, 2007), yet concerns 
have emerged regarding potential sources of prediction error. For 
instance, Maxent users typically assume that sampling efforts and 
detection probabilities are equal across their study area; however, 
spatial sampling bias is commonplace when combining disparate 
presence data sources and can result in biased distribution esti-
mates (Boria, Olson, Goodman, & Anderson, 2014; Kramer-Schadt 
et al., 2013; Yackulic et al., 2013). Proposed methods to minimize 
the effects of spatial sampling bias include spatial filtering of pres-
ence records or manipulation of the background data to contain a 
similar spatial bias as the presence records (Dormann et al., 2007; 
Kramer-Schadt et al., 2013; Merow et al., 2013). Other model-based 
methods that have also been proposed to correct for spatial sam-
pling bias methods exist, such as including known observer biases as 
covariates or incorporating information regarding sampling efforts 
or site accessibility (El-Gabbas & Dormann, 2018; Warton, Renner, 
& Ramp, 2013). Another concern surrounds Maxent's default pa-
rameterization, which is prone to increased model complexity and 
overfitting that can lead to elevated omission error and poor trans-
ferability (Merow et al., 2013; Warren & Seifert, 2011). To account 
for model complexity, Maxent's regularization parameter can be se-
quentially increased, which reduces the number of model features 
and smooths fitted functions (Merow et al., 2013; Warren & Seifert, 
2011). Warren and Seifert (2011) proposed that Akaike information 
criterion with small-sample bias adjustment (AICC; Akaike, 1973; 
Hurvich & Tsai, 1989) could be used to estimate the model of opti-
mal complexity among a candidate set with varying levels of regu-
larization. In recent years, a number of analytical packages in the R 

programming language (R Core Team, 2018) have been developed to 
streamline Maxent modeling workflows that account for spatial sam-
pling bias (e.g., spThin; Aiello-Lammens, Boria, Radosavljevic, Vilela, 
& Anderson, 2015) and model complexity (e.g., ENMeval; Muscarella 
et al., 2014), but these packages rarely consider the unique modeling 
environment that freshwater streams require.

The application of distribution modeling in freshwater stream 
systems to inform conservation action remains in its early stages rel-
ative to terrestrial systems (Liang, Fei, Ripy, Blandford, & Grossardt, 
2013). The majority of studies using Maxent to model the distribu-
tions of stream species use raster data summarized at a coarse, wa-
tershed scale (for examples, see Cao et al., 2013; Liang et al., 2013) 
despite the increasing availability of finer-resolution, stream seg-
ment-based data in North America, like NHDplusV2 (Mckay et al., 
2012) and StreamCat (Hill, Weber, Leibowitz, Olsen, & Thornbrugh, 
2016). Relatively few studies have used these segment-based geo-
spatial datasets as the foundation for Maxent models for aquatic 
species (for example, see Dyer, Brewer, Worthington, & Bergey, 
2013; Elith et al., 2011; Taylor, Papeş, & Long, 2018; Worthington, 
Brewer, Grabowski, & Mueller, 2014). We posit that one likely expla-
nation for the lack of Maxent studies within stream networks is that 
segment-based analyses require a tabular format (“samples-with-
data” [SWD]) for data input rather than the conventional, visualiza-
tion-friendly approach of uploading multiple raster layers containing 
environmental covariate data. Unfortunately, many of the R pack-
ages containing functions to address model complexity and eval-
uate model performance are also built for raster-based workflows 
(e.g., ENMeval; Muscarella et al., 2014), thus limiting the application 
of these concepts to models built within stream segments or other 
nonraster modeling environments.

Freshwater fishes and other aquatic organisms inhabiting streams 
face markedly high imperilment in North America and across the globe 
(Jelks et al., 2008; Olden et al., 2010), and distribution modeling could 
be beneficial to informing their conservation. For example, the pad-
dlefish (Polyodon spathula) is a large-bodied fish native to large rivers 
of the Mississippi River basin of North America (Jennings & Zigler, 
2009) and is the subject of conservation efforts in many parts of  its 
range. Habitat modification, fragmentation (i.e., dams), and overfish-
ing (Bettoli, Kerns, & Scholten, 2009) have led to paddlefish range 
loss; however, paddlefish continue to support regulated commercial 
and recreational fisheries in portions of their former range. Because 
paddlefish migrate upstream for spawning, the closure dams could be 
preventing upstream spawning migrations to suitable habitats, includ-
ing spawning grounds. In recent years, some paddlefish stocks have 
rebounded as a result of commercial fishing closures and restoration of 
extirpated populations (Bettoli et al., 2009).

Understanding the natural riverscape factors that influenced 
paddlefish distribution prior to the large-scale habitat alteration 
could help prioritize future restoration efforts. For example, at a 
broader-scale, paddlefish are commonly considered a “large-river” 
fish, but the importance of stream size in influencing paddlefish 
habitat suitability, and how suitability varies across metrics related 
to stream size like mean annual discharge, both remain unknown. 
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Paddlefish also require a certain set of finer-scale environmen-
tal cues to complete their life cycle (Jennings & Zigler, 2009). In 
the spring, when water temperatures begin warming past 10°C, 
paddlefish begin to stage for spawning and ascend upstream 
from 20 km to over 100 km to spawn once a flood pulse begins 
(Firehammer & Scarnecchia, 2007; Lein & DeVries, 1998; Paukert 
& Fisher, 2001). Furthermore, paddlefish require a hard-bottom 
substrate, such as gravel, for their eggs to adhere and develop 
(Jennings & Zigler, 2009; Purkett, 1961). Maxent models con-
structed at a broader, stream-segment scale can identify the river-
scape factors that influence paddlefish distribution and how each 
of those factors relate to paddlefish habitat suitability. Similarly, 
identifying suitable habitats at the segment scale can help direct 
site investigations of finer-scale habitat conditions and assess the 
potential for successful reintroductions.

In this modeling exercise, we estimate the potential distribution 
of paddlefish (i.e., the abiotically suitable area) at the stream-segment 
level within the Arkansas River basin, USA. In this area, habitat frag-
mentation by dams has led to suspected range loss of paddlefish, but 
there is active vested interest in restoring populations to potentially 
suitable environments. We account for potential spatial sampling bias 
within the available presence data by employing two spatial thinning 
methods, including a novel riverscape filter that accounts for water-
shed location and variation in stream size within watersheds. We also 
examine the effects of model complexity by comparing “full” Maxent 
models (default regularization) to AICC-selected models with increased 
regularization, complete with common model evaluation metrics. We 
provide an R script of the workflow for these modeling steps with a 
nonraster dataset, which may be useful to other researchers inter-
ested in the effects of model complexity on Maxent predictions within 

stream systems. Results of this study can be used to better understand 
the environmental factors influencing paddlefish habitat suitability and 
identify stream reaches for potential restoration.

2  | METHODS

2.1 | Study area

The Arkansas River basin (Figure 1) encompasses 409,273 km2 across 
seven states (Colorado, New Mexico, Texas, Kansas, Oklahoma, 
Missouri, and Arkansas) with diverse geography and a west-to-east 
precipitation and temperature gradient. The cooler headwaters begin 
at the continental divide, at 4,300 m elevation with snowfall-driven 
precipitation averaging 1,020 mm annually, driving the hydrology for 
the western region (Cain, 1987). As the headwaters converge, the 
elevation decreases to 1,020  m, the topography gradually changes 
from mountains to plains and precipitation drops to 250 mm annual 
average (Cain, 1987). Moving eastward across the basin, igneous and 
metamorphic mountains transition to plains and the geology changes 
to bedrock and sedimentary rock and the river becomes a plains river 
(Cain, 1987). Hydrology in the plains is driven more by rainfall from 
summer thunderstorms than snowfall. In the eastern portion of the 
basin, water is diverted and dammed for irrigation and navigation; for 
instance; the mainstem of the Arkansas River alone has 13 locks and 
dams. Streamflow along the mainstem is regulated until it reaches the 
confluence with the Mississippi River (Burns, 1985).

The NHDplusV2 dataset (Mckay et al., 2012) is a vector-based rep-
resentation of river networks and their associated watershed bound-
aries, with individual stream segments delineated at each junction with 

F I G U R E  1   The Arkansas River basin shown with the subsets of paddlefish presence data used in modeling. Blue lines represent National 
Hydrography Dataset (NHD) flowlines wherein line widths increase with stream order. Gray circles represent presence locations from the 
unfiltered dataset, white diamonds represent the distance filter, and black dots represent the riverscape filter
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another stream. Within the NHDplusV2 dataset (Mckay et al., 2012), 
we defined our study extent as the Arkansas River basin within the 
HUC 2-digit basin 11, excluding the adjacent Red and White river 
drainages. The spatial grain was defined as individual stream segments 
that were uniquely identified via the COMID attribute.

2.2 | Input data

2.2.1 | Presence records

Eighty-nine presence records were compiled from several sources in-
cluding GBIF (www.gbif.org), MARIS (www.maris​data.org), and several 
publications (Bostian, 2015; Leone, Stoeckel, & Quinn, 2012; Long, 
Schooley, & Paukert, 2017; Neely, Steffen, Lynott, & Koch, 2015a, 
2015b; Paukert & Fisher, 2000, 2001; Riggs & Moore, 1949; Robison 
& Buchanan, 1988; Schooley & Johnston, 2015). We cleaned these re-
cords by removing duplicate records that contained the exact same 
coordinates or locality descriptions, and we removed records that 
featured vague locality descriptions that precluded accurate geospa-
tial referencing to a stream system. Records that lacked coordinates 
but featured descriptive locality information were georeferenced with 
GEOLocate v. 3.22 (Rios & Bart, 2010) to the nearest stream. Presence 
records were imported into ArcMap v.10.4 (ESRI) wherein coordinates 
were linked to the nearest stream segment using a spatial join. We 
then compared the linked NHDplusV2 attributes (e.g., stream name) 
to the presence record data (e.g., locality description) to ensure the 

joining procedure was accurate. The resulting full dataset contained 
51 unique records spanning from 1927 to 2018 that represented 49 
unique stream segments (Figure 1).

2.2.2 | Environmental covariates

Distribution model covariates within the Arkansas River basin were se-
lected based on biological relevance to paddlefish and obtained from 
NHDplusV2 (Mckay et al., 2012) and StreamCat (Hill et al., 2016) da-
tabases, both of which have linked a number of environmental covari-
ates (such as geology, hydrology, and elevation) to each NHD plusV2 
segment or its contributing watershed(s). We considered a number of 
abiotic covariates that characterized natural stream gradients, network 
connectivity, and geology (Table 1). Natural gradients in stream size, 
discharge, temperature, elevation, and slope are fundamental in deter-
mining the distribution of aquatic fauna within riverscapes (Vannote, 
Minshall, Cummins, Sedell, & Cushing, 1980). Connectivity also influ-
ences the distribution of fishes within stream networks, and differ-
ences in confluence size can be particularly important for migratory 
species like paddlefish (Fullerton et al., 2010). Underlying geology in-
fluences the physicochemical properties of streams (Hynes, 1975); for 
example, watersheds containing a calcareous geology have a buffering 
capacity that generally supports increased biomass of aquatic organ-
isms (Pyne, Rader, & Christensen, 2007). Geology can also influence 
the distribution of suitable spawning substrates, like exposed bedrock 
or gravel, within stream networks. Covariates were incorporated at 

TA B L E  1   Environmental covariates used to model the potential distribution of paddlefish in the Arkansas River basin, USA, and whether 
or not the covariate was used in the final models after removing high intercorrelations

Abbreviation Covariate name Mean Min. Max. Unit Scale Source Included?

SLOPE Slope 0 0 1 – Segment NHDplusV2 Yes

MAXELEVSMO Maximum elevation 5,540 63,271 396,264 cm Segment NHDplusV2 Yes

SandCat Mean % sand content 
of soils

26 5 83 % Catchment StreamCat Yes

RckDepCat Mean depth of bedrock 
of soils

127 42 152 cm Catchment StreamCat Yes

Q0001C_Yr Mean annual discharge 4 0 1,279 m3/s Segment NHDplusV2 Yes

DSMainLinkSize Downstream mainstem 
link stream order

4 1 9 – Segment NHDplusV2 Yes

CaOCat Mean % lithological cal-
cium oxide in surface

10 0 48 % Catchment StreamCat Yes

StreamOrder Stream order 2 1 9 – Segment NHDplusV2  

TotDASqKM Total Drainage Area 3,393 0 397,422 km2 Segment NHDplusV2  

Precip8110Ws 30-year normal mean 
precipitation

857 248 1,734 mm Watershed StreamCat  

Tmin8110Ws 30-year normal mean 
minimum temperature

7 −10 12 °C Watershed StreamCat  

Tmean8110Ws 30-year normal mean 
temperature

14 −3 18 °C Watershed StreamCat  

Tmax8110Ws 30-year normal maxi-
mum temperature

20 3 23 °C Watershed StreamCat  

http://www.gbif.org
http://www.marisdata.org
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one of three relevant spatial scales within the hierarchical structure of 
stream networks: stream segment, local catchment, or full watershed 
(Domisch, Jähnig, Simaika, Kuemmerlen, & Stoll, 2015). Each covariate 
was associated with the unique COMID identifier for individual stream 
segments in the study area. To avoid issues arising from multicollin-
earity among covariates, we calculated Pearson's correlation coeffi-
cients (r) and manually selected a subset of relevant covariates wherein 
|r| ≤ .70 for model construction based on ecological relevance and hy-
pothesized mechanisms (Dormann et al., 2013).

2.3 | Distribution modeling

2.3.1 | Basic settings

We used a presence-background approach in Maxent (Phillips & 
Dudík, 2008) to estimate the historic distribution of paddlefish within 
the Arkansas River basin and to examine the relationships between 
paddlefish presence and environmental covariates. As a machine-
learning tool, Maxent minimizes the relative entropy between values 
of environmental covariates associated with known presence loca-
tions and values of environmental covariates associated with back-
ground samples within the study area (Elith et al., 2011; Phillips et 
al., 2006). Maxent models were constructed with the R programming 
language (v.3.5.1; R Core Team, 2018) using the dismo package (v. 1.1-
4; Hijmans, Phillips, Leathwick, & Elith, 2017) and the “maxent” com-
mand to call the maxent.jar executable file (v. 3.4.1; Phillips, Anderson, 
Dudík, Schapire, & Blair, 2017; Phillips & Dudík, 2008). Because our 
models are constructed without raster input, we used the SWD for-
mat to create our input files. We adopted the cloglog transformation 
of Maxent's raw output as a readily interpretable index of habitat suit-
ability ranging from zero to one (Phillips et al., 2017). Arguments were 
specified to alter Maxent settings (Phillips et al., 2006); for example, 
we enabled the “removed duplicates” function as an additional data 
quality filter (i.e., preventing any segment from being represented 
more than once in modeling), we allowed partial environmental co-
variate coverage of presence locations, and we set the number of 
background locations so that all stream segments (n  =  126,422) 
were included instead of a random sample. Additionally, we created 
a placeholder so that the beta multiplier (β) argument could be eas-
ily manipulated across model runs (see Section 2.3.3 for more detail). 
For each model, we used the percent contribution (path-dependent) 
and the permutation importance (final model importance) as output 
by Maxent to assess the relative importance of each covariate to 
model gain. We saved the final Maxent prediction for each stream 
segment using the “project” command within rmaxent (v.0.8.3.9000; 
Baumgartner, Wilson, & Esperon-Rodriguez 2017).

2.3.2 | Spatial sampling bias

Upon plotting the complete (i.e., unfiltered) Paddlefish pres-
ence dataset, the majority of presence records appeared to be 

congregated along the farthest downstream reaches of the study 
area (Figure 1). In this case, the uneven distribution of records likely 
represented spatial sampling bias related to sampling access (Boria 
et al., 2014). To reduce the potential effects of spatial sampling bias 
on model results, we applied a distance filter and a novel riverscape 
filter to our full presence dataset. Filtering can dampen the influ-
ences of spatial sampling bias, although potential drawbacks are that 
the size of the filter is commonly subjective and the presence re-
cords that are removed likely reflect suitable environments (Feng, 
Anacleto, & Papeş, 2017; Fourcade, Engler, Rödder, & Secondi, 
2014). A distance filter was performed in the spThin package in R 
(Aiello-Lammens et al., 2015), which retained the maximum number 
of records ≥20 km apart in straight-line, aerial distance. This resulted 
in 32 records, each representing a unique stream segment. For the 
riverscape filter, which is philosophically similar to an environmen-
tal filter (Varela, Anderson, García-Valdés, & Fernández-González, 
2014), we sought to more evenly represent the spatial distribution 
of records (among Hydrologic Unit Code 8-digit [HUC8] watersheds) 
and the distribution of records across stream sizes (stream order) by 
retaining one record from each unique HUC8-by-stream order com-
bination. For example, the unfiltered dataset (51 presence records) 
had seven records in HUC 11110207, but all within a ninth-order 
stream so we haphazardly chose one of these records to retain in 
the trimmed dataset. In contrast, HUC 11060006 contained three 
records and we retained all three because they each represented dif-
ferent stream orders (third, sixth, and eighth). The remaining dataset 
resulted in 29 records, each representing a unique stream segment. 
We constructed independent models with each of the three pres-
ence datasets (unfiltered, distance filter, and riverscape filter).

2.3.3 | Model complexity

For each presence dataset, we constructed models with varying lev-
els of complexity to explore how model overfitting could influence 
estimated distributions. Specifically, we adjusted the β multiplier (also 
known as the regularization multiplier), a parameter that acts across 
all feature classes (as defined by the “autofeature” setting) as a coef-
ficient that is multiplied to the specific regularization values (i.e., the 
β's) associated with each feature class. We allowed the β multiplier to 
vary between 1.0 (default parameterization) and 5.0 by intervals of 
0.5 (sensu Merow et al., 2013; Guevara, Gerstner, Kass, & Anderson, 
2018). In all models, the “autofeature” option was enabled wherein 
Maxent automatically limits which feature classes (of linear, quadratic, 
product, and hinge feature options) were used based on the size and 
threshold of the training dataset. Therefore, as the β multiplier is in-
creased, Maxent's settings begin to constrain overparameterization, 
both in the number of feature classes included in the model and in the 
smoothness of fitted features (Elith et al., 2011; Merow et al., 2013; 
Warren & Seifert, 2011). To compare models of differing complexity, 
we report results from the default parameterization and the model 
of optimal complexity as approximated by AICC selection (Warren & 
Seifert, 2011). Briefly, AICC was calculated by estimating the number 
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of nonzero parameters within each model's.lambda file and based on 
the predicted values across the entire sample of background stream 
segments (sensu Warren & Seifert, 2011).

2.3.4 | Model evaluation

Model evaluation metrics were calculated similar to the ENMeval 
package for R (Muscarella et al., 2014); however, this package re-
lies on raster-formatted input data, necessitating us to write R code 
to calculate model evaluation metrics. For each model considered, 
we conducted a fivefold cross-validation wherein presence records 
were randomly partitioned into testing and training sets, and met-
rics of model performance were then calculated as the average 
across folds. The receiver operating characteristic area under the 
curve (ROC AUC) is a threshold-independent measure of model 
performance (Fielding & Bell, 1997), so we calculated AUCTEST as 
in Muscarella et al. (2014). Higher values of AUCTEST reflect an im-
proved ability to discriminate at testing locations compared with 
background locations (Muscarella et al., 2014; Warren & Seifert, 
2011). In addition, we adopted a threshold-dependent measure 
to further assess the discrimination capacity of models (Jiménez-
Valverde, 2014) by calculating ORMTP, the average omission rate of 
the testing records at the minimum training presence (MTP) thresh-
old (i.e., the lowest Maxent predicted value associated with a train-
ing record). The MTP threshold represents an inclusive estimate of 
species habitat suitability (Anderson & Gonzalez, 2011).

2.4 | Comparing models

We examined a total of six final models to evaluate the potential 
effects of spatial sampling bias (unfiltered, distance filter, and riv-
erscape filter) and model complexity (default and AICC-selected pa-
rameterizations). Paddlefish distribution estimates were plotted in 
ArcMap using the MTP threshold to map the segments predicted 
suitable by each model. Differences in the number of stream seg-
ments considered suitable were calculated across spatial bias and 
model complexity groupings. Model differences were also quanti-
fied by two measures of niche similarity, Schoener's D and Warren's I 
(Schoener, 1968; Warren, Glor, & Turelli, 2008), that were calculated 
in a pairwise fashion based on segment-level model estimates. The 
percent contribution and permutation importance of each environ-
mental covariate was compared across models to assess any changes 
in the relative importance of predictor variables. We plotted single-
variable response curves (Phillips, 2005) to examine species-habitat 
relationships for covariates with >50% contribution averaged across 
all six models. Model evaluation metrics were compared with de-
termine whether discrimination capacity varied markedly across 
models. Finally, we created an ensemble distribution estimate by 
calculating the sum of models (from 0 to 6) that estimated paddlefish 
presence at the MTP across unique stream segments, thus visual-
izing how consistently each segment was estimated as suitable. An 
ensemble approach recognizes that each model may be flawed, but 
all provide useful information (Araújo & New, 2007). In our case, an 
ensemble distribution estimate can help identify stream segments 

F I G U R E  2   Paddlefish potential distribution in the Arkansas River basin, USA, based on the minimum training presence (MTP) threshold, 
as estimated across three presence datasets (to account for spatial sampling bias) and two model complexities. Bottom row features 
comparisons between the default and AICC-selected models for a given presence dataset, wherein green segments were gained in the 
AICc model and red segments were lost. Right-hand column illustrates agreement across the three presence datasets for a given model 
complexity, wherein darker shades indicate the highest agreement. The bottom, right-hand cell is an ensemble map illustrating areas that 
were consistently estimated suitable among the six models
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that are consistently predicted suitable and thus represent the best 
targets for paddlefish restoration.

3  | RESULTS

The six paddlefish distribution models we examined shared some 
overarching commonalities. In general, all models estimated elevated 
paddlefish habitat suitability in larger, more easterly streams in the 
Arkansas River basin (Figure 2). Pairwise calculations of Schoener's D 
varied from 0.593 to 0.896 and Warren's I varied from 0.873 to 0.991, 
signifying high levels of similarity (Figure 3). Mean annual discharge con-
tributed the most to model gain in all six models (overall mean of 96.0% 
percent contribution and 96.3% permutation importance; Table 2), and 
the response curves relating suitability to mean annual discharge gen-
erally depicted a logistic response wherein suitability was initially low 
at lower mean annual discharge, but suitability approached 1.000 as 
mean annual discharge surpassed 56 m3/s (Figure 4). Maximum eleva-
tion and downstream link size contributed much less to model gain 
(means of 1.4% and 1.2%, percent contribution and means of 2.8% 
and 0.3% permutation importance, respectively), wherein suitability 
was negatively related to maximum elevation and positively related to 
downstream link size. Model evaluation metrics indicated that all mod-
els performed well, as AUCTEST ranged from 0.986 to 0.993 (wherein a 
value of 1.000 would indicate perfect discriminative ability) and ORMTP 
ranged from 0.020 to 0.044 (slightly elevated from the expected omis-
sion rate of 0.000; Table 3).

Despite these commonalities, differences in the distribution mod-
els were evident when comparing models built with the three different 
presence datasets to address spatial sampling bias. The distance and 
riverscape filtering methods estimated suitability farther west (e.g., 
Colorado and New Mexico) than did the unfiltered dataset, suggesting 

that both filtering methods dampened the effects of the potential spa-
tial sampling bias in the unfiltered dataset (Figure 2). The distance and 
riverscape filtering methods also predicted suitability that dispersed 
into smaller streams than models built with the unfiltered dataset. 
With the default parameterization, 4% of all segments in the study area 
were estimated suitable by models built with each of the three pres-
ence datasets, whereas 6% of segments were estimated suitable by all 
three models with the AICC-selected parameterizations. Regardless of 
model complexity, niche similarity metrics demonstrated that models 
built with the unfiltered presence dataset differed most with models 
built with the riverscape filtered dataset, with the spatially thinned 
dataset as an intermediate. These differences were also evident among 
the response curves, wherein models built with the riverscape filtered 
dataset estimated higher suitability at lower mean annual discharge 
values than did models built with the unfiltered dataset (Figure 4). 
Across both levels of model complexity, AUCTEST was consistently 
highest for the full dataset, followed by the spatially thinned dataset 
and the riverscape filtered dataset (which also corresponded with 
decreasing number of presence records; Table 3). However, a similar 
trend was not evident for ORMTP values, suggesting that all models had 
similar discrimination capabilities.

Differences in model complexity, as compared between using 
the default parameterization (β = 1.0) versus AICC-selected param-
eterization (β = 4.5–5.0, the maximum we explored in our study; 
Table 3), resulted in models that differed in subtle, yet important 
ways. There was never more than a 3% difference in the number of 
segments estimated suitable between the two parameterizations 
(for any of the three presence datasets); however, these differ-
ences resulted in noticeably spatial distributions (Figure 2). For ex-
ample, distributions estimated with the default parameterization 
featured spatially disjunct segments, which could indicate model 
overfitting, whereas distributions estimated with an AICC-selected 

F I G U R E  3   Heatmaps illustrating two pairwise comparisons of niche similarity, Schoener's D and Warren's I, for models of paddlefish 
distribution in the Arkansas River basin, USA.
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parameterization had more contiguity among segments estimated 
as suitable. Models with AICC-selected parameterization also 
estimated suitability farther upstream than did default parame-
terizations, particularly in western regions. As such, the greatest 
differences in niche similarity metrics were found when comparing 
models with AICC-selected parameterization (i.e., more inclusive 
distribution estimates) to models built with the default parame-
terization (i.e., more restricted distribution estimates; Figure 2). 
Models with AICC-selected parameterization contained 13 pa-
rameters (features) at most, compared with 30 at most among the 
default parameterizations, which resulted in more generalized or 
inclusive models. A smoothing effect of elevated β is demonstrated 
when comparing the response curves relating suitability to mean 
annual discharge (Figure 4). With default parameterization, suit-
ability increased to a plateau at approximately 70.8 m3/s (Figure 4 
top) whereas the plateau with AICC-selected parameters (i.e., ele-
vated β) peaked quicker at approximately 42.5–50.9 m3/s (Figure 4 
bottom), resulting in more, smaller stream segments estimated 
as suitable for paddlefish. In terms of model evaluation metrics, 
AUCTEST was consistently higher for default parameterizations, 
yet ORMTP was also higher for default parameterizations in two 
of the three presence datasets, indicating the default models may 
be overfit as compared with the AICC-selected models (Table 3).

The ensemble distribution map (Figure 2) visualized how consis-
tently each stream segment was estimated as suitable at the MTP 
across the six models. Several large river systems, including large 
sections of the Arkansas, Canadian, and Cimarron rivers, featured a 
west-to-east gradient of increased agreement among the six models. 
In general, larger streams were more consistently considered suit-
able for paddlefish compared with upper reaches of smaller streams. 
Contiguous sections of stream that were consistently estimated as 

suitable across all six models, but currently lack paddlefish, repre-
sent the most promising areas for future targeted restoration based 
on our modeling efforts.

4  | DISCUSSION

This study explored the influences of spatial sampling bias and model 
complexity on SDMs for paddlefish in the Arkansas River basin, 
which, to the authors’ collective knowledge, is one of the first stud-
ies to explore the effects of these widely recognized sources of bias 
in Maxent models constructed within a stream segment network. 
Filtering the presence dataset appeared to address initial concerns 
about an eastward, large-river sampling bias within the full presence 
dataset. In particular, the novel riverscape filter may be useful for 
future modeling efforts in streams because it provides a repeat-
able means to ensure spatial coverage of presence data among wa-
tersheds and streams of varying sizes. The greatest differences in 
estimated distributions, however, were observed between models 
constructed with default versus AICC-selected parameterization. 
Although all models had similarly high performance and evaluation 
metrics, the AICC-selected models were more inclusive of westward-
situated and smaller, headwater streams. Overall, our results solidi-
fied the importance of accounting for model complexity and spatial 
sampling bias in SDMs constructed within stream networks while 
also informing future paddlefish restoration efforts in our study area.

Spatial sampling bias is a widely recognized issue within the 
SDM literature wherein areas oversampled in geographic space 
may result in models overfit to those biases in environmental co-
variate space (Boria et al., 2014). In stream networks, accounting 
for spatial sampling bias may be particularly pertinent because 

 

Full Spatial Riverscape Overall

Default AICc Default AICc Default AICc Average

Percent contribution

Q0001C_Yr 95.9 95.8 96.2 97.1 93.5 97.5 96.0

MAXELEVSMO 0.6 0.8 0.8 2.0 1.5 2.5 1.4

DSMainLinkSize 0.7 2.9 0.0 0.9 2.8 0.1 1.2

RckDepCat 1.5 0.0 1.9 0.0 0.2 0.0 0.6

CaOCat 0.7 0.2 1.0 0.0 0.7 0.0 0.4

SandCat 0.4 0.2 0.2 0.0 0.5 0.0 0.2

SLOPE 0.2 0.0 0.0 0.0 0.8 0.0 0.2

Permutation importance

Q0001C_Yr 96.0 97.9 95.7 96.3 94.9 97.0 96.3

MAXELEVSMO 2.6 1.3 3.4 2.9 4.3 2.4 2.8

DSMainLinkSize 0.3 0.0 0.0 0.6 0.1 0.6 0.3

SandCat 0.5 0.2 0.5 0 0.3 0.0 0.3

RckDepCat 0.3 0.2 0.3 0 0.1 0.0 0.2

CaOCat 0.1 0.4 0.1 0.1 0.0 0.0 0.1

SLOPE 0.3 0.0 0.0 0 0.3 0.0 0.1

TA B L E  2   Percent contribution and 
permutation importance of environmental 
covariates to gain of models of paddlefish 
distribution in the Arkansas River basin, 
USA, as organized from highest-to-lowest 
contributing by the overall average 
contribution across six models
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differences in sampling accessibility and methodologies are often 
related to environmental factors like stream size, depth, elevation, 
and proximity to public access points like bridges or boat ramps 
(Murphy & Willis, 1996). Furthermore, many stream fishes have 

migratory life histories that could result in a biased representation 
of their overall distribution within a stream network. For exam-
ple, paddlefish may only use smaller streams during infrequent 
windows of high discharge during the spawning season each year 
(Jennings & Zigler, 2009; Lein & DeVries, 1998), perhaps making 
them less likely to be documented in those areas compared with 
larger streams where they may occur more regularly. To minimize 
the effects of spatial sampling bias, researchers often perform 
distance-based filtering of presence records or manipulate the 
background data to contain a similar spatial bias as the presence 
records (Dormann et al., 2007; Kramer-Schadt et al., 2013; Merow 
et al., 2013). Distance filtering appears to be the more commonly 
applied technique because it does not require the creation of a 
bias file based on relative sampling effort or density of presence 
records (Kramer-Schadt et al., 2013). Unfortunately, filtering 
methods necessitate the loss of presence data from the training 
set, resulting in models that may be informative (even with as little 
as 15 records; Støa, Halvorsen, Stokland, & Gusarov, 2019), but 
with more weight placed on each of the remaining records. As 
such, care is needed to filter presence data in meaningful ways. 
Distance filtering is common practice in terrestrial settings (Boria 
et al., 2014), but this method often lacks a biological justification 
for the aerial distance used (e.g., home range size) and does not 
consider riverscape network position (e.g., two records situated 
in neighboring headwater streams may be situated within a 20-km 
aerial distance, but may be separated by a large watershed bound-
ary). For these reasons, we suggest that our novel riverscape filter 
could be useful in minimizing spatial sampling bias concerns within 
stream networks, particularly when sampling effort or accessibil-
ity varies with stream size.

At first glance, the estimated distributions produced may seem 
overly broad in comparison with presence locations used to build 
each model, especially for models built with AICC-selected param-
eterizations. Research with virtual species has shown that AICC-
selected models tend to overpredict, with larger commission and 
omission errors compared with models that do not use AICC (Velasco 
& González-Salazar, 2019). But, for our purposes of discovering po-
tentially suitable areas for paddlefish restoration, producing a map 
that might overpredict habitat suitability is not necessarily bad. 
The migratory nature of our study species also likely influenced the 

F I G U R E  4   Single-variable response curves relating estimated 
paddlefish habitat suitability (i.e., Maxent's cloglog output) to mean 
annual discharge (m3/s) in the Arkansas River basin, USA. Unfiltered 
presence locations were associated with a mean of 357 m3/s, a 
median of 87 m3/s, and a range of 2–1,279 m3/s in mean annual 
discharge

0.00

0.20

0.40

0.60

0.80

1.00

0 50 100 150 200 250

E
st

im
at

ed
 s

ui
ta

bi
lit

y

Mean annual discharge (m3/s)

Default parameterization

0.00

0.20

0.40

0.60

0.80

1.00

0 50 100 150 200 250

E
st

im
at

ed
 s

ui
ta

bi
lit

y

Mean annual discharge (m3/s)

AICc parameterization

Unfiltered Distance Filter Riverscape Filter

TA B L E  3   Evaluation metrics of models of paddlefish distribution in the Arkansas River basin, USA, as compared across three presence 
datasets (unfiltered, distance filter, and riverscape filter) and across varying levels of model complexity (default vs. AICC-selected 
parameterizations)

Presence dataset Model β AUCTEST ORMTP Params LogL AICC

Unfiltered AICC 4.5 0.991 0.020 13 −395.389 827.178

(n = 49) Default 1.0 0.993 0.044 30 −380.506 924.345

Distance filter AICC 4.5 0.990 0.029 9 −261.926 550.033

(n = 32) Default 1.0 0.992 0.033 24 −264.499 748.426

Riverscape filter AICC 5.0 0.986 0.040 9 −258.312 544.097

(n = 29) Default 1.0 0.990 0.033 29 −266.888 a

aModels with more parameters than data points violate assumptions of AICC (Warren & Seifert, 2011). 
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estimated distributions by including some records that are repre-
sentative of spawning migrations into smaller streams. Paddlefish 
may ascend over 100  km upstream to spawn in the spring when 
river discharges increase (Firehammer & Scarnecchia, 2007; Lein & 
DeVries, 1998; Paukert & Fisher, 2001), with some smaller rivers be-
coming suitable for spawning in specific years as a result of variation 
in rainfall-induced flood pulses (Jennings & Zigler, 2009). Because 
paddlefish migrations likely correspond to environmental conditions 
fluctuating at finer spatial and temporal scales than could be incor-
porated into our modeling efforts, some weakening of species-envi-
ronment relationships is expected (McPherson & Jetz, 2007). Thus, 
the dynamic migratory nature of paddlefish likely resulted in mild 
overprediction of habitat suitability in westward-positioned and 
headwater stream reaches.

This modeling exercise provided some of the first quantitative 
estimates of paddlefish habitat suitability, and the ensemble model 
identified promising sections of stream for future restoration efforts. 
Although paddlefish have long been regarded as a “large-river” fish 
(Jennings & Zigler, 2009), results from our modeling exercise con-
firmed the importance of discharge and visualized the range in mean 
annual discharge that confers highest habitat suitability in our study 
area. Through our study, we addressed two major sources of po-
tential model bias that can inflate omission error, commission error, 
or both: spatial sampling bias (Boria et al., 2014; Kramer-Schadt et 
al., 2013; Yackulic et al., 2013) and model complexity (Merow et al., 
2013; Velasco & González-Salazar, 2019; Warren & Seifert, 2011). 
Although these sources of model error are often recognized, mod-
elers typically lack the independent testing data needed to fine-
tune a predictive model to optimal settings (e.g., Fielding & Bell, 
1997). In cases without independent testing data, such as our own, 
an ensemble model created across varying conditions can iden-
tify stream segments that were consistently estimated as suitable. 
Recent paddlefish restoration efforts in Oklahoma have focused on 
stocking impoundments within larger river systems, but these ef-
forts have been met with disparate results. For example, Oologah 
Lake on the Verdigris River was stocked from 1995 to 2000 and has 
since shown signs of natural recruitment, whereas Lake Texoma on 
the Red River (outside our study area) was stocked from 1997 to 
2007 but has not evidenced natural recruitment (Patterson, 2009, 
J. Schooley, ODWC, personal communication). The exact mecha-
nisms behind this variation in restoration success remain unknown, 
but the hydrology and availability of suitable spawning habitat in 
upstream tributaries is considered key (Patterson, 2009; Paukert & 
Fisher, 1998; Schooley & Neely, 2018). Our ensemble map provided 
a visualization of stream reaches that were estimated as suitable for 
paddlefish. Focusing restoration efforts on stream reaches between 
dams and other barriers that contain interconnected segments that 
were consistently estimated as suitable could increase the likelihood 
of successful restoration.

Conservation of stream fishes has long been hindered by a 
limited understanding of species-habitat relationships and species 
responses to anthropogenic alterations within stream networks 
(Jelks et al., 2008). With existing presence records and a wealth of 

geospatial data already linked to stream segments (e.g., Hill et al., 
2016; Mckay et al., 2012), species distribution models represent 
an accessible and informative first step in advancing conservation 
and restoration of stream fishes (Taylor et al., 2018; Worthington 
et al., 2014). Although the application and advancement of Maxent 
models within stream networks has lagged behind those built in ras-
ter-based (e.g., terrestrial) environments, we hope this case study in-
spires future advancements in species distribution modeling within 
stream networks. In particular, there is a need to develop model 
evaluation tools, like ENMeval, that accept standard data frames as 
data input towards providing repeatable methods to account for po-
tential sources for prediction errors in stream networks and other 
nonraster environments.
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