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Abstract
Background: RNAmute is an interactive Java application which, given an RNA sequence,
calculates the secondary structure of all single point mutations and organizes them into categories
according to their similarity to the predicted structure of the wild type. The secondary structure
predictions are performed using the Vienna RNA package. A more efficient implementation of
RNAmute is needed, however, to extend from the case of single point mutations to the general
case of multiple point mutations, which may often be desired for computational predictions
alongside mutagenesis experiments. But analyzing multiple point mutations, a process that requires
traversing all possible mutations, becomes highly expensive since the running time is O(nm) for a
sequence of length n with m-point mutations. Using Vienna's RNAsubopt, we present a method
that selects only those mutations, based on stability considerations, which are likely to be
conformational rearranging. The approach is best examined using the dot plot representation for
RNA secondary structure.

Results: Using RNAsubopt, the suboptimal solutions for a given wild-type sequence are calculated
once. Then, specific mutations are selected that are most likely to cause a conformational
rearrangement. For an RNA sequence of about 100 nts and 3-point mutations (n = 100, m = 3), for
example, the proposed method reduces the running time from several hours or even days to
several minutes, thus enabling the practical application of RNAmute to the analysis of multiple-point
mutations.

Conclusion: A highly efficient addition to RNAmute that is as user friendly as the original
application but that facilitates the practical analysis of multiple-point mutations is presented. Such
an extension can now be exploited prior to site-directed mutagenesis experiments by virologists,
for example, who investigate the change of function in an RNA virus via mutations that disrupt
important motifs in its secondary structure. A complete explanation of the application, called
MultiRNAmute, is available at [1].
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Background
Introduction
The secondary structure of an RNA molecule is a represen-
tation of the pattern, given an initial RNA sequence, of
complementary base-pairings that are formed between
the nucleic-acids. The sequence, represented as a string of
four letters, is a single strand consisting of the nucleotides
A, C, G, and U, which are generally assumed to pair to
form a secondary structure with minimum free energy. As
such, the secondary structure of RNA is experimentally
accessible based on minimum free energy calculations,
thus making its computational prediction a challenging
but practical problem: it can be directly tested in the lab-
oratory with minimal experimental effort relative to, for
example, RNA tertiary structure. Moreover, there is a well
known correspondence between the secondary structure
of RNA and the molecule's ultimate function.

RNA viruses are known to possess unique secondary struc-
tures. The secondary structure of an RNA virus such as the
Hepatitis C Virus (HCV) is mostly elongated due to the
large number of base pairings that are formed, thereby
lowering its free energy considerably and making the virus
much more thermodynamically stable than a random
RNA sequence. The typical stem-loop structure motif of an
RNA virus, which consists of a long stem (a chain of base
pairs) that ends in an unpaired loop, has been experimen-
tally observed to play a significant role in both virus repli-
cation and translation initiation. For example, in HCV,
disruptive mutations were found to cause a structural
change that directly led to either an alteration in virus rep-
lication [2,3] or to a dramatic reduction in translation ini-
tiation [4].

RNA folding prediction
The folding prediction problem of the secondary structure
of RNAs has been an area of active research since the late
70's. Dynamic programming methods were developed in
[5] and in [6,7] for computing the maximum number of
base pairings in an RNA sequence. Energy-minimization
methods by dynamic programming [8,9] have led to
Zuker's Mfold prediction server [10] and the Vienna RNA
package [11,12]. The predictive accuracy of these packages
was improved by incorporating expanded energy rules
[13], derived from an independent set of experiments,
into the folding prediction algorithm.

RNA mutation prediction
The folding prediction problem described above is the
most fundamental problem in RNA bioinformatics. The
related RNA mutation prediction problem, in turn, is a
sub-problem that uses the methods developed for RNA
folding prediction multiple times to predict various muta-
tion combinations. From a computer program's perspec-
tive, mutation prediction can be viewed as an outer loop

that uses RNA folding prediction in its inner loop. The
mutation prediction problem, however, presents several
computationally challenging issues, mainly in the gener-
alization to multiple-point mutations, which can become
computationally heavy if a 'brute-force' strategy of calcu-
lating all possible mutations is used without devising a
unique approach. We propose to solve this problem by
using suboptimal folding prediction solutions, described
in the next section, which offer a practical method for
achieving high computational efficiency.

The mutation prediction problem was initially investi-
gated in [14,15] and has been revived in [16,17]. The first
publicly available computerized tools for RNA mutation
prediction, which only account for single-point mutation
predictions, are the Java tool called RNAmute [18] and a
web server called RDMAS [19]. Neither of the tools can
handle multiple-point mutations, though the authors in
this work have already extended RNAmute to calculate all
multiple-point mutations in a 'brute-force' manner
(unpublished), revealing that this is a computationally
heavy task.

RNAmute: RNA secondary structure single-point mutation 
analysis tool
RNAmute is an interactive Java tool that, given an RNA
sequence, calculates the secondary structure of all single
point mutations and organizes them into categories
according to their distances from the predicted wild-type
structure. More details are available in [18]. For grouping
and analyzing the point mutations, RNAmute utilizes
mathematical theorems that relate to eigen-decomposi-
tion of the Laplacian matrix [20,21] corresponding to Sha-
piro's coarse-grain tree graphs [14]. The Vienna RNA
package [11] is currently used as the core for RNAmute
and for the RDMAS server [19] that also analyzes point
mutations. Future extensions may include RNAshapes
[22] for the coarse-grain representation and the RNAfor-
ester [23] for tree comparisons.

Motivation for an efficient extension to analyze multiple-
point mutations
The examination of the phenotypic data based on Hepati-
tis C Virus (HCV) experiments [2,3] presents a typical
example of the powerful potential of RNAmute. In the
structural analysis of 5BSL3.2 via mutagenesis experi-
ments, RNAmute could have assisted as a pre-processing
step, performed before the site-directed mutagenesis
experiments, to provide a selection of mutations superior
to that achieved by trial and error. RNAmute could have
identified locations likely to disrupt certain motifs in the
RNA secondary structure that are known to be function-
ally important for virus replication. Another example that
highlights the application potential of RNAmute is the
structure of the stem-loop IIIc of the Hepatitis C Virus 1b
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5' untranslated region (5' UTR) [4]. In this case, RNAmute
can predict a single point mutation that causes a dramatic
reduction in the translation initiation of the virus.

Thus, extensions of RNAmute should enable preliminary
analyses before deciding which mutations to employ
experimentally for the disruption of certain important
motifs in the RNA secondary structure. Our innovative
approach presents an automated technique for consider-
ing some of the sophisticated secondary structure scenar-
ios beyond a local disruption or formation of a single
Watson-Crick base pairing, which proved misleading in
the past, as was the case in [4] that was discussed in [18].
Although this specific case could have been resolved using
the 'primitive' RNAmute described in [18] for predicting a
single point mutation that hinders the translation initia-
tion, more advanced cases will need an efficiently run-
ning, multiple-point mutation, 'extended' RNAmute, as
proposed here.

Using RNAsubopt [24], our method extends the applica-
bility of RNAmute to multiple-point mutations. In gen-
eral, the same type of analysis could be done using the
suboptimal solutions obtained by Mfold [10,25]. How-
ever, for practical reasons concerning our specific applica-
tion of multiple-point mutations we utilized the Vienna
RNA package since Mfold uses pre-defined filters for filter-
ing suboptimal structures. In developing our method, the
motivation was to start with all suboptimal solutions as
provided in Vienna's RNAsubopt [24] and to experiment
with various filters of our own, comparing our applica-
tion's performance to that of the original RNAmute [18]
with Vienna's RNAfold. In the future, we plan to incorpo-
rate Mfold into RNAmute alongside Vienna's RNAfold
and RNAsubopt. Note that both RNAsubopt and RNAfold
are used with the "no lonely pair" option to conform with
the Vienna web server.

The original RNAmute [18] analyzes only one-point
mutations for a given RNA sequence. Although a single
point mutation may sometimes cause a secondary struc-
ture rearrangement of an RNA molecule, often it is essen-
tial to introduce more than a single point mutation to
alter the RNA secondary structure. The second version of
RNAmute (in progress) that followed the original [18]
and was implemented before the work described here is
already capable of dealing with multiple point mutations
by trying all possible m-point mutations. However, if the
length of the sequence is n and the number of point muta-
tions is m, the running time for the number of point
mutations tried will be O(nm), which, computationally, is
highly expensive. To estimate the run time, analysis of a
sequence length of about 100 nts with 3-point mutations
would require at least several hours on a typical PC. To
overcome this problem, we present a faster method in

which we do not need to simulate all possible m-point
mutations in the sequence; instead, after executing RNAs-
ubopt [24] once on the wild-type sequence, we find them
directly from the suboptimal solutions provided by the
Vienna RNA package.

Results
Algorithm
The algorithm consists of several steps performed consec-
utively. First, given a wild-type sequence with several
input parameters, the suboptimal solutions of the mini-
mum free energy folding prediction are calculated. This
step is followed by a suboptimal solutions filtering step.
Next, the beginning and end points of each stem in the
suboptimal solution results are calculated. Finally, m-
point mutations that disrupt the optimal solution are cal-
culated. A summary of all the steps in the procedure is
given in the flowchart available in Figure 1. Each step is
described in detail below.

Calculating suboptimal solutions
After running the program, it calculates the dot-bracket
representation of the optimal secondary structure of the
given sequence, using the RNAfold routine of the Vienna
RNA package, and the dot-bracket representations of all
suboptimal secondary structures that are obtained using
the RNAsubopt routine of the Vienna RNA package with
some parameter -e (for calculating suboptimal structures
within a range of kcals/mol of the mfe) are also calculated.
This parameter is chosen by the user. The lower limit of e
is 0. Regarding the upper limit, as will be elaborated in the
Discussion Section, it is recommended to start for exam-
ple from e = 15 for short sequences of about 70 nts with
3-point mutations and then to perform consecutive trials
with increasing e until the optimal value is found for a
particular case. In the case of sequences of about 70 nts
and 3-point mutations, increasing e to high values such as
30 instead of 15 will yield a running time of days instead
of seconds/minutes and is not desired. The program saves
the optimal structure as "Opt" and all the suboptimal
structures as a list called "Subopts".

Filtering suboptimal solutions
We use three filters on the "Subopts" list:

1) The first filter removes all suboptimal solutions for
which the distance of their dot bracket representations
from "Opt" is less than a parameter value ("dist1") as
specified by the user ("dist1" is in the range from 0 to n).
The distances are computed as described below.

2) The second filter is designed to simply discard the sub-
optimal solutions that most likely will not become the
optimal solution after the introduction of an m-point
mutation. For example, if the dot bracket representation
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of the optimal solution of the sequence UGCCUGCCUC-
UUGGGAGGGGC is .(((..((((....))))))) and the dot
bracket representation of one of the suboptimals is
..((........))......., then it is clear that no one-point mutation
can cause the optimal to become suboptimal. Compared
to the other filters, the effect of such a filter is minor, and
indeed it can be easily shut off as explained in connection
with a threshold parameter called DIFF that will be
described below. To generate such a filter, one could con-
sider scenarios of hypothetical mutations in which a pre-
viously suboptimal solution becomes the optimal, but in
such scenarios the location of the mutation is unknown,
and therefore, we cannot measure the stability of such a
structure using the Zuker-Turner energy rules [13]. How-
ever, we can apply a simplistic, highly approximate model
that suits our requirements, one that will calculate the rel-
ative stabilities of the secondary structures of the optimal
and all suboptimal solutions using a weighted Nussinov
model [7] for assessing the strength of the base pairings.
The base pairs CG and GC that are composed of three
hydrogen bonds are given a score of 3, base pairs AU and
UA that are composed of two hydrogen bonds are given a
score of 2, and base pairs GU and UG that are traditionally
considered a weaker bond compared to the former (e.g.,
early estimations described in [26]) are given a score of 1.
After this calculation the filter removes those suboptimal

solutions with relative stabilities that are lower than that
of the optimal as a consequence of the introduction of
"numMuts" mutations (hypothetical mutations for which
their exact location is unknown) into the wild-type
sequence. For more information on how this filter oper-
ates and how to shut it off, see 'Additional file 1:Filter2'
for supplementary information on the second filter.

3) The third filter removes the suboptimal solutions that
are closest to each other, i.e., if the distance between two
suboptimal solutions is less than a parameter "dist2" that
is specified by the user ("dist2" is in the range from 0 to
n), then one of the suboptimal solutions will be removed.
As a pre-processing step, we prefer to remove solutions
whose distances from the optimal are smallest and those
deemed as less stable solutions. For this reason we sort all
the remaining (after the two filters above) suboptimal
solutions according to their distance from optimal in
descending order and subsequently sort them according
to their energy calculated by RNAsubopt. Only after the
program is done with both sorting tasks is the third filter
applied. We start from the first suboptimal solution (with
the largest distance from optimal and the most stable),
and check the distance of this solution against all other
solutions. Each of the following solutions for which the
distance from the first solution is less than "dist2" will be

Flowchart of the Proposed ProcedureFigure 1
Flowchart of the Proposed Procedure. A summary of each step in the suggested procedure.
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removed from the list, but the first solution remains in the
list. After reaching the end of the list, the second subopti-
mal solution becomes the first, and so on.

If the chosen parameters dist1 and dist2 (both ranging
from 0 to n) are large numbers relative to the length of the
sequence, then filtering is a fast process because most sub-
optimal solutions were filtered already with the first filter.
Thus, the third filter, which has a quadratic running time
of O(subs2) because we compare all pairs of suboptimal
solutions, also appears to be fast. The running time of the
first filter is O(subs), where "subs" is the number of sub-
optimal solutions obtained by running RNAsubopt on the
wild-type RNA sequence.

Calculating the distance between two dot-bracket 
representations
In the future, we will offer a choice between three meth-
ods for calculating the distance between two dot-bracket
representations of RNA secondary structures, but here we
only used the two computationally faster techniques to
present the methodology. The first method is Vienna's
RNAdistance, which calculates a tree-edit distance by
default. The second, more approximate method was
developed to save time because we had too many subop-
timal solutions to compare. Using this method we simply
run the two dot-bracket representations in parallel and
calculate the number of mismatches, or, equivalently, the
Hamming distance. The running time is O(n), where n is
the length of the dot-bracket representation. Finally, dis-
tances can also be calculated using the base pair distance
that has been used in many previous studies (also availa-
ble as an option in Vienna's RNAdistance). Similar to the
Hamming distance, the base pair distance can be calcu-
lated efficiently with a running time of O(n). The current
version of our application includes both the Hamming
distance and the base pair distance as options for the user;
the more expensive tree-edit distance could be added in
the future. For example, suppose we have the following
two dot brackets:

((((.....))))

.((((....))))

The Hamming distance between the two dot-bracket rep-
resentations is 2 (which is, in this case, the same value as
the tree-edit distance calculated using RNAdistance with
its default parameters), whereas the base pair distance is 8.

Calculating the stems
After we filter the suboptimal solutions, we calculate the
stems for each suboptimal solution by calculating the
starting and ending points of each stem in the suboptimal
solution.

For example, one of the suboptimal solutions for the
given sequence UGCCUGCCUCUUGGGAGGGGC is:

..(((.((....)).)))...

The dot plot (an n × n matrix with dots in the cells that
correspond to base pairs) for this suboptimal solution has
two stems (Figure 2). In all the dot plots presented in this
work, it should be noted that we start the numbering from
zero, and when referring to sequence positions in the dot
plots this should be taken into account. The stems are rep-
resented by the starting and ending points, so the start of
the first stem on this plot is location (2, 17) and the end
of the first stem is location (4, 15). Similarly, the starting
and the ending points of the second stem are (6, 13) and
(7, 12) respectively.

Calculating m-point mutations that disrupt the optimal 
solution
We begin by searching for locations at which mutations in
the dot plot may: (1) stabilize the suboptimal solution;
(2) destabilize the optimal solution; and (3) simultane-
ously stabilize the suboptimal solution and destabilize
the optimal solution. The stabilizing mutations in our
case are mutations that extend the existing stems, or those
that introduce an additional stem (with length > 1) near
an existing stem, without disrupting any base pairs in the
existing stems. The destabilizing mutations in our case are

Suboptimal Solution in a Dot PlotFigure 2
Suboptimal Solution in a Dot Plot. Illustration of a sub-
optimal solution example in a dot plot. The solution is 
obtained by running Vienna's RNAsubopt for the sequence 
UGCCUGCCUCUUGGGAGGGGC.
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mutations that disrupt some existing base pairs in the
optimal solution without disrupting any base pairs in the
suboptimal solution.

For example, location P(5, 14) for a mutation in the dot
plot of Figure 2 signifies that a mutation in either nucle-
otide 5 or 14 on the RNA sequence forms a base pair
between nucleotides 5 and 14. Note that P(5, 14) extends
both stem1 and stem2, even connecting them, and as such
it stabilizes the suboptimal solution shown in Figure 2.
Additionally, P(1, 18) and the double location P(1, 18),
P(0, 19) are also stabilizing locations because they extend
stem1. All the "stabilizing" mutations that we found on
the dot plot (Figure 2) are highlighted by circles in Figure
3.

Therefore, if we are only searching for stabilizing single
point mutations, then P(5,14) or P(1,18) are candidates
but not P(0,19) as it forms a lonely base pair, which is not
stable, and as such it should be discarded. In the case of
stabilizing two-point mutations there are also two possi-
bilities, P(5,14), P(1,18) and P(1,18), P(0,19), while a
three-point mutation would incorporate P(5,14),
P(1,18), P(0,19). There are no four or greater-than-four
point mutations for this suboptimal solution if we are
considering only stabilizing mutations. The locations
P(8,11) and P(9,10) are not stabilizing locations because
they will lower the hairpin loop to fewer than three nucle-

otides, which is unstable. On the other hand, it is possible
that mutations in the hairpin are good if these mutations
destabilize the optimal solution.

Using the same sequence (UGCCUGCCUCUUGGGAG-
GGGC), the optimal solution is .(((..((((....))))))), and
the corresponding dot plot is shown in Figure 4. In this
Figure the suboptimal solution that appears in Figures 2
&3 and an optimal solution for the RNA sequence are
observable. Figure 5 shows the probability dot plot
obtained by running the Vienna RNA package on the
same sequence. Based on Figures 4 &5, we can conclude
that mutation G14C in location P(5,14) stabilizes the
suboptimal solution by forming a CG base pair between
nucleotides 5 and 14. This same mutation, however, also
destabilizes the optimal solution by breaking a GC base
pair between nucleotides 9 and 14. Therefore, the muta-
tion G14C is both stabilizing and destabilizing. On the
other hand, mutation G5C at the same location P(5,14) is
only a stabilizing mutation, because it also forms a base
pair between nucleotides 5 and 14 in the suboptimal solu-
tion and connects "stem 1" and "stem 2", but it has no dis-
ruptive effect on the optimal solution. Each of these
mutations is worth checking, but we may assume that
mutation G14C will have a stronger effect on the confor-
mational rearrangement of the optimal solution. And
indeed, if we introduce mutation G14C and use the
Vienna RNA package, we can confirm that this is a confor-

Stabilizing Mutations in the Dot PlotFigure 3
Stabilizing Mutations in the Dot Plot. The stabilizing 
mutations found by applying the proposed method on the 
dot plot in Figure 1. The stabilizing mutations are highlighted 
in circles.

Optimal and Suboptimal Solutions in a Dot PlotFigure 4
Optimal and Suboptimal Solutions in a Dot Plot. Both 
optimal and suboptimal solutions in a dot plot, drawn for the 
case of Figure 1, running Vienna's RNAsubopt for the 
sequence UGCCUGCCUCUUGGGAGGGGC.
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mational rearranging mutation (Figure 6). A rearranging
mutation means a drastic change in one of the secondary
structure motifs as inspected by eye, such as two new hair-
pins forming instead of one, etc.

Mutations G18C and G19A at locations P(1,18) and
P(0,19) (Figure 3) are also both stabilizing and destabiliz-
ing mutations, while mutations on the hairpin of the sub-
optimal solution, at locations P(8,11) and P(9,10), are
only destabilizing mutations. For example, mutation U8G
at P(8,11) disrupts a UA base pair between bases 8 and 15
in the optimal solution, but this mutation has no effect on
base pairs in the suboptimal solution.

Implementation
First, we describe the optional modes of operation availa-
ble to the user according to the problem at hand
("method") when implementing the proposed methodol-
ogy. Second, in Testing we analyze the results of two arti-
ficial examples in detail, reporting running times,
parameter usage, and possible limitations. Third, we show
two practical implementation examples taken from the
full P5abc subdomain of the Tetrahymena thermophila
group I intron ribozyme and the 5BSL3.2 sequence of a
subgenomic hepatitis C virus (HCV) replicon.

After identifying the stabilizing and destabilizing loca-
tions, the program calculates m-point mutations using
these detected locations. There are four options, depend-
ing on the desired running time vs. the number of muta-
tions to be tried, for calculating mutations:

1) In the first option, we only take into account the stabi-
lizing locations and we can only extend the existing stems
without making any new stems. The number of mutations
in this option is bounded by (2s)m * 2m, where s is the
number of stems in the suboptimal solution and m is the
number of point mutations. The expression (2s) is needed
because mutations may be introduced at both ends of the
stem, and 2m is included because in each detected location
we may introduce two different mutations. The number of

Optimal and Suboptimal Solutions in a Probability Dot PlotFigure 5
Optimal and Suboptimal Solutions in a Probability 
Dot Plot. The full probability dot plot, drawn for the case of 
Figure 1, as a result of running Vienna's RNAsubopt for the 
sequence UGCCUGCCUCUUGGGAGGGGC.

Secondary Structure Drawings for the Wild-type and MutantFigure 6
Secondary Structure Drawings for the Wild-type and Mutant. Secondary structure drawings for the wild-type and the 
mutant as a consequence of applying the rearranging point mutation found by our method, for the example in Figure 1 (the 
example is for the sequence UGCCUGCCUCUUGGGAGGGGC).
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mutations will be much lower because in practice the
stems are relatively close to each other and it is impossible
to perform m mutations near each stem; and in some
cases, it will be impossible to perform even a single muta-
tion near the ends of most stems. Even for the worst cases,
however, the running time is better than in the existing
version of RNAmute when (3n)mmutations are tried, n
being the length of the sequence and s <<n. Of course, the
running time also depends on the number of suboptimal
solutions found, but if we take only different suboptimal
solutions and use large values for dist1 and dist2, we will
obtain only about 5–20 different suboptimal solutions.

2) In the second option, we take into account not only
mutations that extend existing stems, but also those that
create a new stem of length >1 between existing stems. The
running time of this option is greater than that for the first
option but still better than that of RNAmute. As in the first
option, in most cases this option is also fast. But because
extending the existing stems is more stable than forming
a new short stem near the existing one, in most cases it is
enough to use the first option instead of the second
option.

3) Similar to the first option, this option also considers
destabilizing mutations. In practice, the number of desta-
bilizing mutations is usually relatively low, and therefore,
the running time of this option is affordable for more
than 4–5 point mutations. But in some cases where the
number of possible destabilizing mutations is large, the
running time is close to that of RNAmute.

4) A combination of options 2 and 3 that is similar to the
second option, it also accounts for destabilizing muta-
tions. For the same reason stated above in the second
option, it is often enough to ignore option 2, thereby
choosing option 3 over option 4.

For each m-point mutation found, we check the dot-
bracket distance of the secondary structure of the mutated
sequence, after applying RNAfold on it, against the opti-
mal secondary structure of the wild-type sequence. If the
distance is greater than or equal to dist1, we print this
mutation.

Input
Input to our program includes:

1. Query RNA sequence – "seq".

2. Energy parameter for RNAsubopt routine "e" (for
advice on how to choose its values based on sequence
length, see the Discussion Section).

3. Distance "dist1" for filtering the suboptimal solutions
that are close to the optimal. Note: it is recommended that
the value for dist1 be about 25% of the sequence length,
and this value should be lowered if more solutions are
desired.

4. Distance "dist2" for filtering the suboptimal solutions
that are close to each other. Same advice above on how to
pick a value for dist1 holds for dist2.

5. "numMuts" – number of point mutations that should
be introduced into the RNA sequence.

6. "method" – type of algorithm that will be used to cal-
culate the final m-point mutations.

The recommended parameter values are found in the Dis-
cussion Section.

Testing
We test our method by demonstrating it on two examples
using artificially generated sequences. The results are
described in detail. For our first example, we executed our
procedure on the following sequence of length 23 nts:

CCUUAACCAGCAAAAACUGCUGG

The following parameters were used: dist1 = 4, dist2 = 4, e
= 15, numMuts = 2, method = 3, distance = Hamming.
The input screen appears in Figure 7. The running time
reported was 30 sec on a typical PC. About 500 rearrang-
ing mutations were found (out of a possible total for this
example of about 2300). Fewer mutations can be
obtained by decreasing the value for e or increasing the
values of dist1 and dist2. For example, when dist1 is
larger, out of the 500 rearranging mutations originally
detected, only those exhibiting a greater likelihood to be
rearranging mutations are left; if dist2 is increased, fewer
mutations that degenerate to similar secondary structures
are left. One of the rearranging 2-point mutations (A15G-
U20G) is reported in Figure 8 and its corresponding dot
plot in Figure 9. Examining the dot plot reveals the opti-
mal (denoted by 'o') and suboptimal (denoted by 's')
solutions from which we obtained the structure in Figure
8 after mutations in places P(2,20) and P(10,15). The
mutation A15G stabilizes the suboptimal solution by
elongating the stem (from 3 to 4), and the mutation
U20G is both stabilizing (it elongates the stem in the sub-
optimal solution from length 2 to length 3) and destabi-
lizing (it breaks a base pair 20U-8A in the optimal
solution).

After undergoing mutation, the suboptimal structure
becomes the optimal and vice versa (Figure 10). Some of
the other mutations at positions P(2,20) and P(10,15)
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that produce the same secondary structure are C10U-
U20A, A15G-U20A. Note that C10U is both a stabilizing
and destabilizing mutation (see Figure 9), as well as
U20A.

For comparison, we ran RNAmute with multiple-point
mutations on the same sequence and found that about
20% of all possible 2-point mutations are relatively rear-
ranging mutations (relative rearranging means that the
distance from the wild-type differs by 25% from the size
of the sequence, not necessarily a drastic change to one of
the secondary structure motifs that one can inspect by eye
from the secondary structure drawings). Our program suc-
ceeded in finding almost all of these 2-point mutations
(about 99%) because we used small distance values while
the value of e was even larger than the energy of the opti-
mal structure. Using RNAmute with multiple-point muta-
tions is computationally very slow, and with it we are
almost unable to analyze sequences longer than in the
example above and/or those with more than 2-point
mutations. This shows the necessity for our efficient pro-
cedure.

For longer sequences and for those with more mutations,
the number of rearranging mutations is very large. A trial
run of RNAmute on sequences of about 50 nt with 2-point
mutation showed that more that 10% of all the m-point
mutations were rearranging. If we use a smaller value for
e and a larger value for dist2, however, we obtain fewer

rearranging mutations. Therefore, if we want the program
to terminate fast, we will lose a significant number of
desired mutations. Consequently, to detect more rear-
ranging mutations requires a larger value for e and a
smaller value for dist2.

In terms of this example, the following scenarios may
occur. There may exist a highly unstable suboptimal solu-
tion which, after receiving an m-point mutation, becomes
highly stable, thus becoming the new optimal solution.
Finding such mutations requires that the value of e be
increased. In addition, there may be two similar second-
ary structures, but only one of these structures will
become the optimal solution after the insertion of muta-
tions into both structures. If we filter the first structure, for
example, with the third filter, we remain with the second
one, and as such we may also miss some desired muta-
tions. To overcome this problem, a smaller value of dist2
should be tried, but in so doing the running time will
increase.

Admittedly, what cannot be overcome are the cases in
which mutations destabilize both the optimal and the
suboptimal solutions. Such mutations may destabilize the
optimal solution more than the suboptimal one, and the
suboptimal may, as a consequence, become the optimal
solution. Checking such mutations will require running
times no shorter than those of RNAmute with multiple-
point mutations. It is also possible that mutations (espe-

Input Screen of Artificial Example IFigure 7
Input Screen of Artificial Example I. Input screen of our procedure for an artificial example (the example is for the 
sequence CCUUAACCAGCAAAAACUGCUGG).
Page 9 of 19
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:222 http://www.biomedcentral.com/1471-2105/9/222
cially if the number of mutations is larger than 4–5) form
some stems that do not appear in both the optimal and
the suboptimal solutions; our method cannot find such
mutations, the number of which is relatively small. For
example, in the sequences we checked when comparing
the performance of RNAmute with multiple-point muta-
tions, undetectable mutations comprised no more than
5% of all the rearranging mutations. This number will
increase, however, if we use more than 4–5 point muta-
tions.

For the second example, we ran the program on the fol-
lowing sequence comprising 93 nts:

CCGGAAGAGGGGGACAACCCGGGGAAACUCGGGCU
AAUCCCCCAUGUGGACCCGCCCCUUGGGGUGU-
GUCCAAAGGGCUUUGCCCGCUUCCGG

using the parameters dist1 = 25, dist2 = 25, e = 15, num-
Muts = 3, method = 3, and distance = Hamming.

The running time reported in this example for our proce-
dure was 7 minutes, and the number of rearranging muta-
tions found was about 2000. An example of a rearranging
3-point mutation can be observed in Figure 11 (selected
among a list of mutations) while Figure 12 contains more
information about the same mutation.

Table 1 contains benchmark times, both for the examples
reported above and for sample sequences of length n = 20,
n = 40, n = 60, n = 80, and n = 120 nts respectively. For
these sample sequences, all tests were performed using the
parameters: method = 3, distance = Hamming, and dist1
and dist2 were taken to be 25% of the length n of the
sequence (as recommended in the Input subsection for an
initial run). The base sequence used for these tests was the
following 20 nts long sequence:

UGCCUGCCUCUUGGGAGGGG

And this sequence was repeated (concatenated to itself) to
form the longer sequences of length n = 40, n = 60, n = 80,

Output Screen of a Rearranging Mutation in Artificial Example IFigure 8
Output Screen of a Rearranging Mutation in Artificial Example I. Output screen of our procedure for the rearranging 
mutation A15G-U20G with the secondary structure drawings for the wild-type and the mutant, including additional measures 
(the example is for the sequence CCUUAACCAGCAAAAACUGCUGG).
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and n = 120 nts reported in the table. The calculations
were performed on a stand-alone PC with a 2.8 GHz Intel
dual-core processor.

Examples for a success of our procedure
For the first example we used the full RNA sequence of the
P5abc subdomain of the Tetrahymena thermophila group I
intron ribozyme that appears in the Nucleic Acid Data-
base (NDB) [27]. The purpose of this illustrative example
on a well-known biological structure is to show that pre-
dictions of our suggested efficient procedure that take a
few minutes coincide with predictions performed in a
'brute-force' manner by traversing all possible point muta-
tions that take several hours. In the experiments of Wu
and Tinoco [28], the authors initially took off 4 base pairs
for convenience with their experiment, starting from the
base pair 15 U – 30A and ending with the base pair 18G –
27 U of the structure drawn in Figure 13. In addition, the
19G – 26 U wobble base pair was replaced by a 19G – 26C
Watson-Crick base pair and the 20G – 25C base pair was
flipped to 20C – 25G. This truncated P5abc subdomain of
[28] served as an illustrative example in [16] where it was
analyzed with RNAmute using only single-point muta-
tions, predicting that only an exceptional single-point
mutation may lead to a conformational rearrangement.
However, when inserting the full P5abc subdomain into
RNAMute, it is computationally predicted that no single-
point mutation will cause a conformational rearrange-
ment. This illustrative example is small enough to try the
'brute-force' version of RNAmute for the case of two point
mutations, traversing all two-point mutations in a calcu-
lation that takes several hours, finding that only a few
two-point mutations located in the P5b stem-loop are
predicted to cause a significant conformational rearrange-
ment to a linear structure. We would like to find in a much
more efficient manner, using our suggested procedure,
those two-point mutations in the RNA sequence that will
cause a conformational rearrangement to a linear struc-
ture of the full P5abc subdomain. Therefore, we execute
our program on the sequence with the parameters dist1 =
15, dist2 = 15, e = 15, numMuts = 2, method = 3, and dis-
tance = Hamming.

The wild-type sequence of the full P5abc subdomain is:

GGCAGUACCAAGUCUCAGGGGAAACUUUGAGAUGG
CCUUGCAAAGGGUAUGGUAAUAAGCUGCC

The dot bracket representation of the optimal secondary
structure is:

((((((((((.(((((((((....))))))))).(((((....))))).)))).....)))))
)

The minimum free energy is -29.8 kcals/mole, and the
predicted structure is shown in Figure 13.

After running our program on the wild-type sequence of
the full P5abc subdomain, with a reported running time

Dot Plot of a Rearranging Mutation in Artificial Example IFigure 9
Dot Plot of a Rearranging Mutation in Artificial 
Example I. The dot plot corresponding to the rearranging 
mutation A15G-U20G (the example is for the sequence 
CCUUAACCAGCAAAAACUGCUGG).

Dot Plot with a Suboptimal Structure for Artificial Example IFigure 10
Dot Plot with a Suboptimal Structure for Artificial 
Example I. The dot plot for a sample suboptimal solution, 
and the optimal solution, corresponding to the rearranging 
mutation A15G-U20G (the example is for the sequence 
CCUUAACCAGCAAAAACUGCUGG).
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Mutation Group List Screen in Artificial Example IIFigure 11
Mutation Group List Screen in Artificial Example II. Mutation group list screen as a result of our procedure, for the 
case of 3-point mutations (the example is for the sequence 
CCGGAAGAGGGGGACAACCCGGGGAAACUCGGGCUAAUCCCCCAUGUGGACCCGCCCCUUGGGG
UGUGUCCAAAGGGCUUUGCCCGCUUCCGG).

Output Screen of a Rearranging Mutation in Artificial Example IIFigure 12
Output Screen of a Rearranging Mutation in Artificial Example II. Output screen of our procedure for a rearranging 
3-point mutation with the secondary structure drawings for the wild-type and the mutant, including additional measures (the 
example is for the sequence 
CCGGAAGAGGGGGACAACCCGGGGAAACUCGGGCUAAUCCCCCAUGUGGACCCGCCCCUUGGGG
UGUGUCCAAAGGGCUUUGCCCGCUUCCGG).
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of 3 minutes, we obtained several suboptimal structures,
in which one of them is a linear structure and its dot
bracket representation is:

((((((((((..((((((((....((...))....)))))....)))..)))).....))))))

And its minimum free energy is: -15.9 kcals/mole.

This suboptimal secondary structure is clearly very unsta-
ble when compared to the optimal secondary structure.

Figure 14 shows the dot plot with optimal and subopti-
mal secondary structures. The program finds several two-
point mutations that cause the optimal solution to rear-
range as the suboptimal solution becomes the optimal.
These two-point mutations found in 3 minutes coincide
with the ones found in a 'brute-force' manner that takes
several hours.

For example:

1) The dot bracket representation of the secondary struc-
ture of the sequence with mutation G20C-A21C, using
Vienna's RNAfold with the "no lonely pair" option is:

((((((((((..(((((((((((.((...)).))))))))....)))..)))).....))))))

a drawing of which appears in Figure 15. Inspecting the
dot plot of Figure 16, note that both mutations G20C and
A21C in locations P(20,34) and P(21,33) stabilize the
suboptimal solution by extending "stem 4" (the base pairs
between nucleotides 20 – 34 and 21 – 33 are formed), but
these mutations have no effect on the base pairs of the
optimal solution. In this case we obtain the suboptimal
solution with three additional base pairs: two because of
the mutations and a third one that was previously a lonely
base pair.

Secondary Structure Drawn for the full P5abc Subdomain (wild-type)Figure 13
Secondary Structure Drawn for the full P5abc Sub-
domain (wild-type). The secondary structure for the full 
P5abc subdomain of the tetrahymena thermophila group I 
intron ribozyme that appears in the NDB.

Table 1: Benchmark Times for the Proposed Procedure. 

A. Generated test cases

dist1 dist2 n e numMuts Time (sec)

5 5 20 8 1 1
5 5 20 8 2 5
5 5 20 8 3 21
5 5 20 8 4 63
5 5 20 8 5 124
10 10 40 8 1 3
10 10 40 8 2 14
10 10 40 8 3 64
10 10 40 8 4 341
10 10 40 8 5 1448
15 15 60 8 5 23469
10 10 40 7 2 11
10 10 40 8 2 14
10 10 40 9 2 25
10 10 40 10 2 43
10 10 40 12 2 103
10 10 40 14 2 328
5 5 20 8 2 5
10 10 40 8 2 14
15 15 60 8 2 35
20 20 80 8 2 135
30 30 120 8 2 163
5 5 20 8 3 21
10 10 40 8 3 64
15 15 60 8 3 266
20 20 80 8 3 512
25 25 100 8 3 1032
30 30 120 8 3 1827
40 40 160 8 3 5176

B. Examples reported in the Results Section:

dist1 dist2 n e numMuts Time (sec)

4 4 23 15 2 23
25 25 93 15 3 437
15 15 64 15 2 172
12 12 45 12 2 158

Benchmark times for some generated test cases and for the examples 
reported in the Results Section, performed on a stand-alone PC with 
a 2.8 GHz Intel dual-core processor. Highlighted are the parameter 
values that were varied each time.
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2) Another case of three mutations G20C-G28C, G20C-
G28U, G20C-G28A, in which their secondary structure
has the following dot bracket representation using
Vienna's RNAfold with the "no lonely pair" option:

((((((((((..(((((((((...((...))...))))))....)))..)))).....))))))

As in the previous case, mutation G20C is a stabilizing
mutation, but the second mutation in position 28 of the
sequence is a destabilizing mutation, which destabilizes
the base pair 28G – 15C in the optimal secondary struc-
ture. In this case we obtain the suboptimal solution with
one additional base pair.

For the second example, we take the 5BSL3.2 sequence of
a subgenomic hepatitis C virus (HCV) replicon that was
evaluated in [2] by site-directed mutagenesis experiments
(see Figure 8 in [2], and "C84A/U86G disrupts the upper
helix of 5BSL2.3" and "The upper helix is a scaffold" sub-
sections in the aforementioned reference). This example
shows the reproducibility of an example of published data
for which introduced mutations in a mutagenesis experi-
ment changed the structure and that our suggested com-
putational procedure, given the original sequence, can
successfully predict these mutations. The wild-type
sequence of the 5BSL3.2 is:

Dot Plot with a Suboptimal Example for the full P5abc SubdomainFigure 14
Dot Plot with a Suboptimal Example for the full P5abc Subdomain. The dot plot for a sample suboptimal solution, as 
well as the optimal solution, for illustrating the case of the full P5abc subdomain that appears in Figure 12.
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AGCGGGGGAGACAUAUAUCACAGCCU-
GUCUCGUGCCCGACCCCGCU

The wild-type is well-predicted by RNAfold, as can be
observed in Figure 17. In [2], denaturating gels were
extracted for the 5BSL3.2 wildtype, and for the two-point
mutations C30A-U32G (corresponding to C84A-U86G in
Figure 8 of [2]) and C30A-U32A. The gels indicated that
in mutant C30A-U32G, which was find not viable, elimi-
nation of the C-G base pair by a change from C to A in
position 30 and the change of the loop nucleotide 32
from U to G caused misfolding and disrupted the upper
helix. Interestingly, mutant C30A-U32A was viable and
maintained a similar pattern of cleavage products as the
5BSL3.2 wildtype, providing a clear indication that preser-
vation of the 5BSL3.2 structure correlates with viability. It
was concluded in [2] that the contrast between C30A-
U32G and C30A-U32A suggests that a G in position 32 is
capable of altering the upper helix, while an A in position
32 finds no suitable partners within the nucleotides to

make up the stem. The functional meaning of the above is
that the two-point mutation C30A-U32G alters virus rep-
lication (there is a failure of this mutant to replicate) by
causing a conformational rearrangement. The G in posi-
tion 32 is important for this effect to be achieved.

We now experiment with our suggested method for this
case. To begin with, the wild-type sequence and its pre-
dicted RNAfold optimal structure using a dot-bracket rep-
resentation is:

AGCGGGGGAGACAUAUAUCACAGCCU-
GUCUCGUGCCCGACCCCGC

.((((((((((((............))))))........))))))

Next, after running RNAsubopt, it is found that one of the
suboptimal solutions, in dot-bracket representation, is:

.((((((..((......))...((......#.*))....))))))

where # is in position 30 in the 5BSL3.2, corresponding to
position 84 in the entire 5BSL3, and * is in position 32 in
the 5BSL3.2, corresponding to position 86 in the entire
5BSL3. Examining the mutations reported in [2], it is first
verified that mutation C30A destabilizes the base pair in
the optimal structure and mutation U32G stabilizes the
stem in the suboptimal structure, after which we obtain
the structure of the two-point mutation C30A-U32G in
dot-bracket representation as follows:

.((((((..((......))...((((.....))))....))))))

In the next step, when running our method with the
parameters: dist1 = 12, dist2 = 12, e = 12, numMuts = 2,
method = 3 and distance = Hamming we obtain after
about 3 minutes on a typical PC the results that appear in
Figure 18. By double-clicking on mutation C30A-U32G in
the GUI depicted in Figure 18, we obtain the secondary
structure drawing that appears in Figure 19, and high-
lighted is one of the most distant mutations from the
wild-type. This mutation corresponds to the mutation
from [2], the virus mutant C30A-U32G that fails to repli-
cate, as discussed above. Notably, we find that in full-cor-
respondence with the results and discussion of the
experimental results in [2], the two-point mutations in
our Figure 18 are from C to A, G, U in position 30 but par-
ticularly to G in position 32. This implies that our sug-
gested computational method is in good agreement with
the experimental results available in [2].

Discussion
Considering the possible limitations and the RNA energy
minimization prediction methods that we are utilizing
and our motivation to use them as accurately as possible,

Secondary Structure for the 2-pt mutation of the P5abc sub-domainFigure 15
Secondary Structure for the 2-pt mutation of the 
P5abc subdomain. The secondary structure prediction for 
the mutant as a consequence of applying the 2-point muta-
tion G20C-A21C on the full P5abc subdomain of Figure 12.
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our program is intended to work with sequences no
longer than 100–150 nts. Obviously, sequences much
longer than 100–150 nts will run into memory problems,
but, even more deleterious, in many cases the accuracy of
its folding prediction will suffer. For sequences with 200
nts, the value e = 1 or 2 is recommended; for sequences
with 150 nts, the value e = 5 is recommended; for
sequences with 100 nts, the value e = 10 is recommended,
and for shorter sequences of about 70 nts, similar to the
examples above, the value e = 15 may be used and a typi-
cal PC will return an answer after only a few minutes runt-

ime for sequences with 3-point mutations (RNAsubopt
outputs a total number of suboptimal solutions of no
more than 6 Mb for e = 15 and a sequence length of 100
nts, and its running time is no more than a few seconds or
minutes). In general, a larger e value will provide better
results but also a longer running time. For all the cases
above, although we obtained a large number of subopti-
mal secondary structures using RNAsubopt, after running
our filters we only remained with about 10–20 different
suboptimal solutions. For sequences with 100 – 150 nts
or less, RNAsubopt runtime is not a limiting factor if the

Dot Plot with the Stabilizing Mutations for the full P5abc SubdomainFigure 16
Dot Plot with the Stabilizing Mutations for the full P5abc Subdomain. The dot plot for the full P5abc subdomain in 
the case that appears in Figure 12, including the stems and the stabilizing point mutations that are highlighted.
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recommended value of e is used. If the runtime is fast, e
can be further increased and another run can be tried. In
terms of sequence size and number of point mutations,
the actual limitations of our approach are about 200 nts
for sequence length and 5-point mutations for the
number of point mutations. For longer sequences, predic-
tion reliability starts to decline and the running time will
be hours or days instead of minutes, which is also the case
for more than 5-point mutations even with a sequence
size of about 100–150 nts.

It is possible that some of the mutations found by our
approach will not cause much of a conformational rear-
rangement effect, and their distance from the wild-type
solution will be less than dist1. We simply discard such
mutations. In addition, some mutations may exhibit not
only large distances from their respective wild-type struc-
tures, but there may also be large distances between them
and the suboptimal solutions from which they were
found. Such mutations are printed in the final report,
because they are still conformational rearranging muta-
tions.

What is promised by our procedure is that mutations that
we find (i.e., all sets of m-point mutations that we find by
our procedure) are indeed conformational rearranging

Secondary Structure Drawn for the 5BSL3.2 (wild-type)Figure 17
Secondary Structure Drawn for the 5BSL3.2 (wild-
type). The secondary structure for the 5BSL3.2 of a subge-
nomic hepatitis C virus (HCV) replicon, reported in Refer-
ence [2].

Mutation Group List Screen for the 5BSL3.2Figure 18
Mutation Group List Screen for the 5BSL3.2. Mutation group list screen as a result of our procedure, for the case of 2-
point mutations for the 5BSL3.2 wild-type.
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mutations that will lead to structures located relatively far
from their wild-type secondary structures. Our procedure
may miss some mutations that alter the secondary struc-
ture of the RNA because we rely strictly on suboptimal
solutions as a consequence of energy minimization, and it
is possible that there are some mutations that alter the sec-
ondary structure but that do not appear in the suboptimal
solutions derived by energy minimization. This is possible
because the free energy of such a suboptimal solution is
very large, and the introduction of a mutation may suffi-
ciently lower the free energy, such that it becomes opti-
mal. Nevertheless, such situations are of the exception,
and in practice the method proposed performs accurately
and efficiently.

Conclusion
We present a method that extends RNAmute [18] to treat
multiple-point mutations in a tractable manner using
suboptimal structures as obtained by Vienna's RNAsubopt
[24]. The proposed method is practical, as was demon-
strated in two implementation examples. The first with

the full P5abc subdomain of the Tetrahymena thermophila
group I intron ribozyme, showing the success of the effi-
cient approach relative to a 'brute-force' strategy in which
all possible multiple-mutations are tried, and explaining
the procedure in detail. The second with the 5BSL3.2
sequence of a subgenomic hepatitis C virus (HCV) repli-
con, showing the success of the suggested computational
procedure to predict conformational rearranging muta-
tions that were already found to alter virus replication in
a published mutagenesis experiment. The user has the
flexibility to choose how much time efficiency is desired
vs. how many candidate mutations are to be analyzed.
This makes the proposed method particularly suitable for
application to specific problems in practice.

Methods
All calculations performed in this paper were done using
the RNAsubopt [24] and RNAfold [11] programs available
in the Vienna RNA package version 1.7. The efficient
method suggested called MultiRNAmute was compared
with a 'brute-force' extension (unpublished) of the origi-

Output Screen of a Rearranging Mutation in the 5BSL3.2Figure 19
Output Screen of a Rearranging Mutation in the 5BSL3.2. Output screen of our procedure for the rearranging muta-
tion C30A-U32G with the secondary structure drawings for the wild-type and the mutant, including additional measures.
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nal RNAmute [18], which is a straight-forward extension
from traversing all single point mutations to traversing all
multiple-point mutations without efficiency considera-
tions. For efficiency reasons, the distances between RNA
secondary structures are calculated using either a Ham-
ming distance or a base pair distance, depending on the
initial choice of the user. Both are implemented with a
running time of O(n), where n is the length of the dot-
bracket representation of each secondary structure.
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Project name: MultiRNAmute

Project home page: [1]
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